JP3809670B2 - Grinding machine and control method thereof - Google Patents

Grinding machine and control method thereof Download PDF

Info

Publication number
JP3809670B2
JP3809670B2 JP20928696A JP20928696A JP3809670B2 JP 3809670 B2 JP3809670 B2 JP 3809670B2 JP 20928696 A JP20928696 A JP 20928696A JP 20928696 A JP20928696 A JP 20928696A JP 3809670 B2 JP3809670 B2 JP 3809670B2
Authority
JP
Japan
Prior art keywords
grinding
amount
workpiece
target
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20928696A
Other languages
Japanese (ja)
Other versions
JPH1034532A (en
Inventor
健治 宮田
正則 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP20928696A priority Critical patent/JP3809670B2/en
Publication of JPH1034532A publication Critical patent/JPH1034532A/en
Application granted granted Critical
Publication of JP3809670B2 publication Critical patent/JP3809670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【0001】
【技術分野】
本発明は,研削盤及び研削盤の制御方法に関するものであり,特に,加工の途中における加工部の寸法を精度良く測定出来ない被加工物等に対して好適な研削機及び研削方法に関する。
【0002】
【従来技術】
研削盤は,回転する砥石を被加工物に接触させ,砥石または被加工物を縦横両方向に所定の量だけ移動させて,所望の形状に加工する工作機械である。
そして,研削の精度を高めるために,加工の途中で,特に研削完了の近辺において,被加工物の加工部の寸法を測定し,研削量が過剰とならないように最後段階の微妙な研削量を設定するという方法が知られている(特開昭57−194875号公報参照)。
【0003】
また,他の装置では,研削の途中において被加工物の予定研削量と実研削量との差を測定し,その差を打ち消す方向に砥石の送り速度を変化させて,研削量が所定の値となるように制御するという方法が提案されている(特開昭57−1948876号公報参照)。
【0004】
しかしながら,加工部の形状やサイズによっては,加工の途中で被加工物に測寸装置を接触又は近接させ,加工部の寸法を測定すること,所謂インプロセス測定が困難なものがあり,この場合には上記のような方法は採用することが出来ない。また,加工の途中で砥石を被加工物から引き離し寸法を測定することは,そのような動きが新たな誤差の原因となるという問題もある。
【0005】
このような問題等に対処する為に,ポストプロセス測定,即ち加工後の仕上がり寸法を検査し,そのデータに基づいて以後の研削条件を設定する方法が広く用いられている。
例えば,加工前における被加工物の加工部寸法を測定し,加工後の所望の寸法との差を砥石の目標研削量とし,上記研削量となるように砥石の研削時間等の研削条件を設定する。この方法では,加工前の寸法を測定するから加工前における被加工物の加工部寸法にバラツキがあっても,加工後の加工部の寸法をほぼ同一とすることができる利点がある。
【0006】
また,同一のものを多数加工する場合には,研削量の指令値に対する実際の研削値の推移,即ち研削個数に対する研削特性の推移を過去のデータとしてプールし,研削個数に対応して研削条件の設定を変更する方法もある。これによって,研削の個数によって変わる砥石の研削特性変化等に対応しようとするものである。
【0007】
【解決しようとする課題】
しかしながら,ポストプロセス測定における上記従来装置には次のような問題点がある。
加工前に被加工物の加工部寸法を測定し,加工後の所望の寸法との差を単純に砥石の目標研削量とする第1の方法では,被加工物の加工前寸法のバラツキには対処することが出来るが,砥石の目減りや磨耗等の特性の変化に対処することが出来ない。
【0008】
一方,研削個数に対応して変化する研削特性の推移をデータとしてプールし,この過去のデータに基づいて研削個数に対応する研削条件の設定を変更する方法は,1個1個の砥石の変化,即ち砥石の個別的な特性の変化又は個性には対処することができない。
本発明は,かかる従来の問題点に鑑みてなされたものであり,加工前における被加工物の寸法のバラツキと,砥石の特性の個性的な変動と経時的な変化とに対応することの出来る精度の高い研削機及び研削機の制御方法を提供しようとするものである。
【0009】
【課題の解決手段】
請求項1の発明にかかる研削盤は,被加工物を保持し回転させる第1の主軸と,被加工物を研削する砥石を保持し回転させる第2の主軸と,砥石を被加工物に近接又は離隔させるように上記第1主軸又は第2主軸を移動させる送り手段と,被加工物の加工部の研削前後の寸法を計測する検知手段と,この検知手段の検知信号を受け上記送り手段に対して送り操作量Oを指令する制御手段とを有する研削盤である。
【0010】
上記制御手段は,被加工物の加工部の寸法の目標値M及び加工部の研削前後の寸法を記録する記憶手段と,上記記録手段に記憶された最近のm個の被加工物に関する加工前の加工部の寸法である位置データD1,D2,D3・・・Dm及び加工後の加工部の寸法である位置データd1,d2,d3・・・dm上記目標値Mとに基づいて上記送り操作量Oを算出する演算手段とを有している。
【0011】
そして,上記演算手段は,上記m個の被加工物それぞれに関してM−Di(i=1,2,...m)により表される目標研削量Siと,Di−di(i=1,2,...m)により表される実研削量siとの差値Ei(=M+di−2Di)を算出し,m個の差値Eiの平均値Eaに基づいて補正量を算出し次回又は次回以降の目標研削量Sを用いた関数f(S)を含む式により導かれる送り操作量を補正して上記送り操作量Oを算出する。即ち,目標研削量Siと実研削量siとの差値Ei(誤差または補正)の最近の傾向に基づいて,それ迄の制御動作又は目標研削量を補正する。このような補正演算は,加工前に毎回行なってもよいが,機械の特性の変化は徐々に変化するものであるので,適当な間隔で行ってもよい。
【0012】
本発明の研削盤は,次回又は次回以降の被加工物の加工前の加工寸法である位置データを測定し,該位置データに基づいて算出する次回又は次回以降の目標研削量Sを用いた関数f(S)を含む式により導かれる上記送り操作量Oを設定するため,被加工物の加工前寸法にバラツキがあっても仕上がり寸法が変動するようなことがない。
また,次回又は次回以降に研削する以前の測定により得られた最近の装置の誤差(補正),即ち差値E i の平均値E a の傾向を検知して以降の研削制御動作に反映させるから,常に目標の加工値に精度良く近づけることが出来る。即ち,砥石の磨耗等の経時的な特性の変化を反映させて,精度の高い動作特性を維持することが出来る。
【0013】
上記のように,本発明によれば,加工前における被加工物の寸法のバラツキと,砥石の特性の経時的な変化と個性的な変動とに対応することの出来る精度の高い研削機を提供することが出来る。
なお,上記において,誤差または補正Eiの平均値 a を取るデータの数mは,請求項2及び請求項4記載のように,5から15位が適当である。データの個数mが多すぎると,次の制御に古いデータ(特性)が反映されることとなるから,データの個数mは15以下が適当である。また,データの個数mが少なすぎると,再現性のない特殊要因が発生した場合等においてその影響が反映されることになるから,データの個数mは5以上が適切である。
【0014】
そして,請求項3記載の発明は,上記研削盤と同様の制御モードに基づく研削盤の制御方法である。即ち,本発明によれば最近のm個の被加工物に関する加工前の加工部の寸法である位置データD1,D2,D3・・・Dm及び加工後の加工部の寸法である位置データd1,d2,d3・・・dmと上記目標値Mとに基づいて,上記m個の被加工物それぞれに関してM−Di(i=1,2,...m)により表される目標研削量Siと,Di−di(i=1,2,...m)により表される実研削量siとの差値Ei(=M+di−2Di)を算出し,m個の差値Eiの平均値Eaに基づいて補正量を算出し次回又は次回以降の目標研削量Sを用いた関数f(S)を含む式により導かれる送り操作量を補正する。その結果,請求項1の発明と同様の効果を得ることはできる。
【0015】
【発明の実施の形態】
実施形態例1
本例は,図1に示すように,被加工物81を保持し回転させる第1の主軸11と,被加工物81を研削する砥石16を保持し回転させる第2の主軸15と,砥石16を被加工物81に近接又は離隔させるように第1主軸11及び第2主軸15を移動させる送り手段21,22と,加工前及び加工後の被加工物81の加工部811,812の寸法を計測する検知手段31,32と,この検知手段31,32の検知信号x1,x2を受け送り手段21,22を駆動するモーター211,221のドライブ回路212,222に対して送り操作量Oを指令する制御手段40とを有する研削盤1である。
【0016】
制御手段40は,図2に示すように,被加工物81の加工部の寸法の目標値M及び加工部の研削前後の寸法を記録する記憶手段41と,記録手段41に記憶された最近のm個の被加工物に関する加工前の加工部の寸法である位置データD1,D2,D3・・・Dm及び加工後の位置データd1,d2,d3・・・dm上記目標値Mとに基づいて上記送り操作量Oを算出する演算手段42と,演算手段42の演算結果に基づいてドライブ回路212,222に対して送り操作量Oを指令する指令部43とを有している。
【0017】
演算手段42は,M−Di(i=1,2,...m)により表される目標研削量SiとDi−di(i=1,2,...m)により表される実研削量siとの差値Ei(=M+di−2Di)とを算出し,(Σi=1,2,..mi)/mで表されるm個の差値Eiの平均値Eaに基づいて補正量を算出し次回又は次回以降の目標研削量Sを用いた関数f(S)を含む式により導かれる送り補正量を補正して送り操作量Oを算出する。
以下それぞれについて説明を補足する。
【0018】
図1に示すように,研削盤1において被加工物81を加工する研削部分は,砥石16と,砥石16を回転させる第2主軸15と,被加工物81を保持し回転させる第1主軸11と,第1主軸11及び第2主軸15を移動させる送り手段21,22とからなる。
また,検知手段は,被加工物81の研削前の加工部811の寸法を計測する第1検知手段31と,砥石16による研削加工後の加工部812の寸法を計測する第2検知手段32とからなる。なお,第1,第2検知手段は同一のものを兼用してもよい。同図において,符号89は前記目標値Mなどを入力する入力手段である。
【0019】
制御手段40の記憶手段41は,図2に示すように,上記目標値Mを記録する目標値メモリー411と,加工前の位置データDi(i=1,2,...m)を記録した第1計測値メモリー412と,加工後の位置データdi(i=1,2,...m)を記録した第2計測メモリー413とを有する。
そして,演算手段42は,上記目標値Mと加工前の位置データDiに基づいて,上記m個の被加工物それぞれに関してM−D i (i=1,2,...m)により表される目標研削量Siを算出する第1演算部421を有し,その結果は目標研削量メモリー422に順次記憶される。
【0020】
また,演算手段42は,加工前の位置データDi と加工後の位置データdi とから,実研削量si (=Di −di )を算出する第2演算部423を有し,この値は実研削量メモリー424に順次記憶される。
そして,補正値演算部423に設けた第3演算部426において,目標研削量メモリー422と実研削量メモリー424とに記憶された,最新のm個のデータから,モータードライブ回路212に対する送り操作量Oの今後の補正量αを次式により算出する。そして,補正量αを補正メモリー427に記録する。
【0021】
α=k×{Σi=1,2,..m(Si−si)/m} ・・・(2)
なお,上記データの基となる前回までの送り操作量Oの中に,関数f(S)の他に既に前回の補正量α0が含まれている場合には,次回以降に対する補正量αは,次式のように修正する。
α=k×{Σi=1,2,..m(Si−si)/m}+α0 ・・・ (2’)
【0022】
そして,操作量演算部428は,次回又は次回以降の目標研削量Sに基づいて算出されたf(S)に対して次式のように補正された送り操作量Oを算出する。
O=f(S)+α (3)
そして,指令部43は,送り操作量Oを砥石の送りモーター221のドライブ回路222に対して指令する。また,被加工物81の送りモーター222に対しては,加工部881,882の研削幅に対応した送り操作量Oを指令する。
【0023】
上記のように,本例の研削盤1によれば,加工前における被加工物81の寸法を測定し,その値に基づいて次回の目標研削量Sを設定し,この目標研削量Sを用いた関数f(s)を含む式により導かれた送り操作量Oを設定するから,加工前寸法のバラツキが仕上がり寸法に影響することがない。また,上述した平均値E a に基づく送り操作量Oの補正により,砥石16の特性の経時的な変化及び砥石16の1個1個の個性的な変動等による加工後寸法のバラツキに対応すること出来る。
【図面の簡単な説明】
【図1】実施形態例の研削盤のシステム構成図。
【図2】実施形態例の研削盤の制御手段の接続と信号の流れを示す図。
【符号の説明】
1...研削盤,
11...第1主軸,
15...第2主軸,
16...砥石,
21,22...送り手段,
31,32...検知手段,
40...制御手段,
81...被加工物,
811,812...加工部,
[0001]
【Technical field】
The present invention relates to a grinding machine and a grinding machine control method, and more particularly to a grinding machine and grinding method suitable for a workpiece or the like that cannot accurately measure the dimension of a machined part during machining.
[0002]
[Prior art]
A grinding machine is a machine tool that contacts a workpiece with a rotating grindstone and moves the grindstone or workpiece by a predetermined amount in both the vertical and horizontal directions to machine the workpiece into a desired shape.
And in order to improve the grinding accuracy, measure the dimension of the processed part of the workpiece during the machining, especially near the completion of grinding, and adjust the fine grinding amount at the final stage so that the grinding amount does not become excessive. A method of setting is known (see Japanese Patent Application Laid-Open No. 57-194875).
[0003]
In other devices, the difference between the planned grinding amount and the actual grinding amount of the work piece is measured in the middle of grinding, and the grinding wheel feed speed is changed in the direction to cancel the difference. There has been proposed a method of controlling so as to be (see Japanese Patent Application Laid-Open No. 57-1948876).
[0004]
However, depending on the shape and size of the machined part, it may be difficult to measure the dimension of the machined part by bringing a measuring device into contact with or close to the workpiece during machining, so-called in-process measurement. The above method cannot be used. In addition, when the grindstone is pulled away from the workpiece during measurement and the dimensions are measured, there is a problem that such movement causes a new error.
[0005]
In order to deal with such problems, post-process measurement, that is, a method of inspecting a finished dimension after processing and setting subsequent grinding conditions based on the data is widely used.
For example, measure the processed part dimension of the workpiece before processing, use the difference from the desired dimension after processing as the target grinding amount of the grinding wheel, and set grinding conditions such as the grinding time of the grinding wheel so as to achieve the above grinding amount To do. In this method, since the dimensions before processing are measured, there is an advantage that the dimensions of the processed portion after processing can be made substantially the same even if the processing portion dimensions of the workpiece before processing vary.
[0006]
In addition, when machining the same workpiece many times, the transition of the actual grinding value with respect to the command value of the grinding amount, that is, the transition of the grinding characteristic with respect to the grinding number is pooled as past data, and the grinding conditions corresponding to the grinding number are pooled. There is also a way to change the settings. This is intended to cope with changes in grinding characteristics of the grindstone that change depending on the number of grinding.
[0007]
[Problems to be solved]
However, the conventional apparatus in the post process measurement has the following problems.
In the first method, where the processed part dimension of the workpiece is measured before machining and the difference from the desired dimension after machining is simply set as the target grinding amount of the grindstone, Although it is possible to cope with it, it is not possible to cope with changes in characteristics such as wear of the grinding wheel and wear.
[0008]
On the other hand, the method of pooling the changes in grinding characteristics corresponding to the number of grinding as data and changing the setting of the grinding conditions corresponding to the number of grinding based on this past data is the change of each grinding wheel. That is, it is impossible to cope with the change or individuality of individual characteristics of the grindstone.
The present invention has been made in view of such conventional problems, and can cope with variations in dimensions of a workpiece before processing, individual variations in characteristics of a grindstone, and changes over time. It is an object of the present invention to provide a highly accurate grinding machine and a grinding machine control method.
[0009]
[Means for solving problems]
A grinding machine according to a first aspect of the present invention includes a first main shaft that holds and rotates a workpiece, a second main shaft that holds and rotates a grindstone that grinds the workpiece, and the grindstone is close to the workpiece. Alternatively, the feed means for moving the first spindle or the second spindle so as to be separated, the detection means for measuring the dimension of the workpiece part before and after grinding, and the detection signal of the detection means are received by the feed means. On the other hand, the grinding machine has control means for instructing a feed operation amount O.
[0010]
The control means includes a storage means for recording a target value M of a processed part of the workpiece and a dimension before and after grinding of the processed part, and a pre-processing related to m recent workpieces stored in the recording means. position data D 1 is the size of the working portion of the, D 2, D 3 ··· D m and the dimension of the working portion of the processed position data d 1, d 2, d 3 ··· d m and the target And a calculation means for calculating the feed operation amount O based on the value M.
[0011]
Then, the calculation means calculates the target grinding amount S i represented by M−D i (i = 1, 2,... M) for each of the m workpieces and D i −d i (i = 1, 2,... M) is calculated as a difference value E i (= M + d i −2D i ) from the actual grinding amount s i, and an average value E a of m difference values E i is calculated. A correction amount is calculated on the basis of this, and the feed operation amount O is calculated by correcting the feed operation amount derived from an equation including the function f (S) using the next or subsequent target grinding amount S. That is, based on the recent tendency of the difference value Ei (error or correction) between the target grinding amount S i and the actual grinding amount s i , the control operation or target grinding amount so far is corrected. Such correction calculation may be performed every time before machining, but since the change in the characteristics of the machine gradually changes, it may be performed at an appropriate interval.
[0012]
The grinding machine of the present invention measures position data, which is a processing dimension before processing the workpiece next time or next time, and uses a target grinding amount S for the next time or the next time calculated based on the position data. Since the feed operation amount O derived from the equation including f (S) is set, the finished dimension does not fluctuate even if the pre-working dimension of the workpiece varies.
The error (correction) of recent devices obtained by previous measurements of grinding the next time or next time, i.e., because to be reflected in the subsequent grinding control operation by detecting the trend of the average value E a difference value E i , It can always be close to the target machining value with high accuracy. That is, highly accurate operating characteristics can be maintained by reflecting changes in characteristics over time such as wear of the grinding wheel.
[0013]
As described above, according to the present invention, it is possible to provide a highly accurate grinding machine that can cope with the dimensional variation of the workpiece before processing, the change with time of the characteristics of the grindstone, and the individual variation. I can do it.
In the above, the number m of the data for which the error or the average value E a of the correction E i is taken is suitably 5 to 15 as described in claims 2 and 4 . If the number m of data is too large, old data (characteristics) will be reflected in the next control, so the number m of data is suitably 15 or less. In addition, if the number of data m is too small, the influence is reflected in the case where a special factor having no reproducibility occurs, so that the number of data m is appropriately 5 or more.
[0014]
The invention described in claim 3 is a grinding machine control method based on a control mode similar to that of the grinding machine. That is, according to the present invention, the position data D 1 , D 2 , D 3 ... D m which are dimensions of the machined part before machining on the recent m workpieces and the machined part dimensions after machining. Based on the position data d 1 , d 2 , d 3 ... Dm and the target value M, M−D i (i = 1, 2,... M) for each of the m workpieces. A difference value E i (= M + d i −2D i ) between the target grinding amount S i expressed by the following equation and the actual grinding amount s i expressed by D i −d i (i = 1, 2,... M ). ), A correction amount is calculated based on the average value E a of the m difference values E i , and a feed operation derived from an equation including a function f (S) using the target grinding amount S at or after the next time Correct the amount . As a result, the same effect as that of the invention of claim 1 can be obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
In this example, as shown in FIG. 1, a first main shaft 11 that holds and rotates a workpiece 81, a second main shaft 15 that holds and rotates a grindstone 16 that grinds the workpiece 81, and a grindstone 16 The feed means 21 and 22 for moving the first main shaft 11 and the second main shaft 15 so as to be close to or away from the workpiece 81, and the dimensions of the processing parts 811 and 812 of the workpiece 81 before and after processing. Sending operation amount O is commanded to detection means 31 and 32 for measuring, and drive circuits 212 and 222 of motors 211 and 221 for receiving detection signals x1 and x2 of the detection means 31 and 32 and driving the sending means 21 and 22. It is a grinding machine 1 having a control means 40 to perform.
[0016]
As shown in FIG. 2, the control means 40 includes a storage means 41 that records a target value M of the dimension of the processed part of the workpiece 81 and a dimension of the processed part before and after grinding , and a recent value stored in the recording means 41. the m position data is the size of the processing unit before processing relating workpiece D 1, D 2, D 3 position data d 1 of the · · · D m and after processing, d 2, d 3 ··· d m And calculating means 42 for calculating the feed operation amount O based on the target value M, and a command section 43 for instructing the feed operation amount O to the drive circuits 212 and 222 based on the calculation result of the calculation means 42 ; the it has.
[0017]
The computing means 42 is represented by a target grinding amount S i represented by M−D i (i = 1, 2,... M) and D i −d i (i = 1, 2,... M). The difference value E i (= M + di−2Di) from the actual grinding amount s i calculated is calculated, and m difference values E expressed by (Σ i = 1,2, .. m E i ) / m calculating a manipulated variable O feed by correcting the feed amount of correction derived by the formula comprising i of the average value E next calculates the correction amount based on a or the next time the target grinding amount function with S f (S) To do.
The following is a supplementary explanation for each.
[0018]
As shown in FIG. 1, the grinding part for processing the workpiece 81 in the grinding machine 1 includes a grindstone 16, a second spindle 15 for rotating the grindstone 16, and a first spindle 11 for holding and rotating the workpiece 81. And feed means 21 and 22 for moving the first main shaft 11 and the second main shaft 15.
The detection means includes a first detection means 31 for measuring the dimension of the processed part 811 before grinding the workpiece 81, and a second detection means 32 for measuring the dimension of the processed part 812 after grinding by the grindstone 16. Consists of. The first and second detection means may be the same. In the figure, reference numeral 89 denotes an input means for inputting the target value M and the like.
[0019]
As shown in FIG. 2, the storage means 41 of the control means 40 records a target value memory 411 for recording the target value M and position data D i (i = 1, 2,... M) before processing. The first measurement value memory 412 and the second measurement memory 413 in which the post-processing position data d i (i = 1, 2,... M) are recorded.
Based on the target value M and the position data D i before machining, the calculation means 42 uses M−D i (i = 1, 2,... M) for each of the m workpieces. A first calculation unit 421 that calculates a target grinding amount S i represented is included , and the result is sequentially stored in the target grinding amount memory 422.
[0020]
The arithmetic unit 42 includes a second arithmetic unit 423 for calculating the position data d i after processing the position data D i before processing, the actual amount of grinding s i (= D i -d i ), This value is sequentially stored in the actual grinding amount memory 424.
Then, in the third calculation unit 426 provided in the correction value calculation unit 423, the feed operation amount for the motor drive circuit 212 is calculated from the latest m pieces of data stored in the target grinding amount memory 422 and the actual grinding amount memory 424. The future correction amount α of O is calculated by the following equation. Then, the correction amount α is recorded in the correction memory 427.
[0021]
α = k × {Σ i = 1,2, .. m (S i −s i ) / m} (2)
If the previous correction amount α 0 is already included in addition to the function f (S) in the feed operation amount O up to the previous time, which is the basis of the above data, the correction amount α for the next and subsequent times is , Modify as follows.
α = k × {Σ i = 1,2, .. m (S i −s i ) / m} + α 0 (2 ′)
[0022]
Then, the operation amount calculation unit 428 calculates the feed operation amount O corrected by the following equation with respect to f (S) calculated based on the next or subsequent target grinding amount S.
O = f (S) + α (3)
The command unit 43 commands the feed operation amount O to the drive circuit 222 of the grindstone feed motor 221. In addition, a feed operation amount O corresponding to the grinding width of the machining portions 881 and 882 is commanded to the feed motor 222 of the workpiece 81.
[0023]
As described above, according to the grinding machine 1 of this example, the dimension of the workpiece 81 before processing is measured, the next target grinding amount S is set based on the measured value, and this target grinding amount S is used. Since the feed operation amount O derived from the equation including the function f (s) is set, the variation in the dimension before processing does not affect the finished dimension. Further, by correcting the feed operation amount O based on the average value E a described above, it is possible to cope with variations in dimensions after processing due to changes in characteristics of the grindstone 16 over time and individual variations of the grindstone 16 one by one. it can be.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a grinding machine according to an embodiment.
FIG. 2 is a diagram illustrating connection of a control unit and a signal flow of a grinding machine according to an embodiment.
[Explanation of symbols]
1. . . Grinder,
11. . . First spindle,
15. . . Second spindle,
16. . . Whetstone,
21,22. . . Feeding means,
31, 32. . . Detection means,
40. . . Control means,
81. . . Work piece,
811 812. . . process section,

Claims (4)

被加工物を保持し回転させる第1の主軸と,被加工物を研削する砥石を保持し回転させる第2の主軸と,砥石を被加工物に近接又は離隔させるように上記第1主軸又は第2主軸を移動させる送り手段と,被加工物の加工部の研削前後の寸法を計測する検知手段と,この検知手段の検知信号を受け上記送り手段に対して送り操作量Oを指令する制御手段とを有する研削盤であって,
上記制御手段は,被加工物の研削後の加工部の寸法の目標値M及び加工部の研削前後の寸法を記録する記憶手段と,上記記録手段に記憶された最近のm個の被加工物に関する加工前の加工部の寸法である位置データD1,D2,D3・・・Dm及び加工後の加工部の寸法である位置データd1,d2,d3・・・dmと上記目標値Mとに基づいて上記送り操作量Oを算出する演算手段とを有しており,
上記演算手段は,上記m個の被加工物それぞれに関してM−Di(i=1,2,...m)により表される目標研削量Siと,Di−di(i=1,2,...m)により表される実研削量siとの差値Ei(=M+di−2Di)を算出し,m個の差値Eiの平均値Eaに基づいて補正量を算出し次回又は次回以降の目標研削量Sを用いた関数f(S)を含む式により導かれる送り操作量を補正して上記送り操作量Oを算出することを特徴とする研削盤。
A first main shaft for holding and rotating the workpiece; a second main shaft for holding and rotating a grinding wheel for grinding the workpiece; and (2) Feeding means for moving the spindle, detecting means for measuring the dimensions of the workpiece part before and after grinding, and control means for instructing the feed operation amount O to the feeding means in response to a detection signal of the detecting means A grinding machine having
The control means includes a storage means for recording a target value M of a processed part after grinding of the work piece and a dimension before and after grinding of the processed part, and the latest m pieces of work pieces stored in the recording means. position data D 1 is the size of the processing unit before processing relating, D 2, D 3 ··· D m and the dimension of the working portion of the processed position data d 1, d 2, d 3 ··· d m And calculating means for calculating the feed operation amount O based on the target value M,
The arithmetic means calculates the target grinding amount S i represented by M−D i (i = 1, 2,... M) and D i −d i (i = 1) for each of the m workpieces. , 2, ... m) is calculated as a difference value E i (= M + d i -2D i ) from the actual grinding amount s i, and based on the average value E a of the m difference values E i. A grinding machine characterized in that the feed operation amount O is calculated by correcting a feed operation amount derived by an expression including a function f (S) using a target grinding amount S for the next time or after the next time after calculating a correction amount. .
請求項1において,上記平均値Eaを決定する為のデータの数mは,5から15であることを特徴とする研削盤。In claim 1, the number m of data for determining the average value E a is grinding machine, characterized in that from 5 and 15. 被加工物を保持し回転させる第1の主軸と,被加工物を研削する砥石を保持し回転させる第2の主軸と,砥石を被加工物に近接又は離隔させるように上記第1主軸又は第2主軸を移動させる送り手段とを備えた研削盤の制御方法であって,
被加工物の研削後の加工部の寸法の目標値M及び加工部の研削前後の寸法を記録し,記憶された最近のm個の被加工物に関する加工前の加工部の寸法である位置データD1,D2,D3・・・Dm及び加工後の加工部の寸法である位置データd1,d2,d3・・・dmと上記目標値Mとに基づいて,上記m個の被加工物それぞれに関してM−Di(i=1,2,...m)により表される目標研削量Siと,Di−di(i=1,2,...m)により表される実研削量siとの差値Ei(=M+di−2Di)を算出し,m個の差値Eiの平均値Eaに基づいて補正量を算出し次回又は次回以降の目標研削量Sを用いた関数f(S)を含む式により導かれる送り操作量を補正することを特徴とする研削盤の制御方法。
A first main shaft for holding and rotating the workpiece; a second main shaft for holding and rotating a grinding wheel for grinding the workpiece; and A control method of a grinding machine comprising a feed means for moving two spindles,
The target value M of the dimension of the processed part after grinding of the workpiece and the dimension before and after grinding of the processed part are recorded, and the position data which is the dimension of the processed part before processing related to the latest m workpieces stored. on the basis of the D 1, D 2, D 3 ··· D m and the position data d 1 is the size of the processing portion after machining, d 2, d 3 ··· d m and the target value M, the m For each of the workpieces, the target grinding amount S i represented by M−D i (i = 1, 2,... M) and D i −d i (i = 1, 2,... M). ) To calculate the difference value E i (= M + d i −2D i ) from the actual grinding amount s i, and calculate the correction amount based on the average value E a of the m difference values E i. A grinding machine control method, comprising: correcting a feed operation amount derived from an expression including a function f (S) using a target grinding amount S from the next time onward.
請求項3において,上記平均値Eaを決定する為のデータの数mは,5から15であることを特徴とする研削盤の制御方法。In claim 3, the number m of data for determining the average value E a, the control method of the grinding machine, characterized in that from 5 and 15.
JP20928696A 1996-07-19 1996-07-19 Grinding machine and control method thereof Expired - Fee Related JP3809670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20928696A JP3809670B2 (en) 1996-07-19 1996-07-19 Grinding machine and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20928696A JP3809670B2 (en) 1996-07-19 1996-07-19 Grinding machine and control method thereof

Publications (2)

Publication Number Publication Date
JPH1034532A JPH1034532A (en) 1998-02-10
JP3809670B2 true JP3809670B2 (en) 2006-08-16

Family

ID=16570439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20928696A Expired - Fee Related JP3809670B2 (en) 1996-07-19 1996-07-19 Grinding machine and control method thereof

Country Status (1)

Country Link
JP (1) JP3809670B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111539077B (en) * 2020-04-02 2023-04-18 苏州萨伯工业设计有限公司 Valve sleeve inner conical surface cone angle deviation precision design and grinding amount detection method
CN111539076B (en) * 2020-04-02 2023-04-18 苏州萨伯工业设计有限公司 Manufacturing control method for taper angle of inner conical surface of valve sleeve of threaded plug-in overflow valve

Also Published As

Publication number Publication date
JPH1034532A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
US4873793A (en) Numerically controlled machine tool
EP1736278B1 (en) Grinding method
JP2000198047A (en) Machine tool
JP2846881B2 (en) Numerically controlled grinding machine
JPH01234151A (en) Numerically controlled grinder
JPH0431819B2 (en)
JP3809670B2 (en) Grinding machine and control method thereof
JPH04348869A (en) Correction device for angular grinding wheel
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JPH10156692A (en) Cam grinding machine
JP3344064B2 (en) Grinding equipment
JPH07186044A (en) Grinding wheel deflection measuring device and grinding wheel truing device
JP3714162B2 (en) Machine tool control system and recording medium
JP2001212757A (en) Grinding method and grinding device
JP3163792B2 (en) Numerical control grinding machine
JPH01295762A (en) Grinding wheel condition supervisory device and its utilizing method for nc grinding machine
JP3413938B2 (en) Grinding equipment
JPH11282519A (en) Numerical controller for grinder and grinding method
JP2001179621A (en) Displacement measurement device and grinding attachment
JP2023153670A (en) cam grinder
RU2023536C1 (en) Method of multipass mechanical treatment
JP2020114614A (en) Surface roughness estimation device and machine tool system
JP3143657B2 (en) Grinding equipment
JPH09285943A (en) Precision work machine from workpiece reference face

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees