JPS60149963A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS60149963A
JPS60149963A JP59005586A JP558684A JPS60149963A JP S60149963 A JPS60149963 A JP S60149963A JP 59005586 A JP59005586 A JP 59005586A JP 558684 A JP558684 A JP 558684A JP S60149963 A JPS60149963 A JP S60149963A
Authority
JP
Japan
Prior art keywords
lens
spherical
sample
solid angle
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59005586A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59005586A priority Critical patent/JPS60149963A/en
Publication of JPS60149963A publication Critical patent/JPS60149963A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water

Abstract

PURPOSE:To make it possible to stably hold a liquid medium to the leading end part of a sound wave lens, by enlarging the solid angle of a spherical surface forming the transmitting receiving surface of the sound wave lens to at least 180 deg. or more. CONSTITUTION:In the case of the drawing (b), a concaved surface part having a spherical surface of which the solid angle is slightly larger than 180 deg. is formed to the transmitting receiving surface of a lens 1. This lens 1 having such shape can be easily obtained by a method wherein a spherical air bubble remaining in a lens material such as quartz is utilized and the lens material is ground to the vicinity of the equator surface of the air bubble to expose a spherical surface. The drawing (c) shows such a state that the spherical lens of the drawing (b) is used in an ultrasonic microscope and, when a liquid metal 14 is inserted into the concaved surface hole as shown by the drawing, said liquid metal 14 is sufficiently held in the concaved surface hole and, therefore, stably held between the spherical lens 1 and a specimen 7 without receiving the influence of external shock.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波顕微鏡、特にその試料撮影のための手段
を備えた超音波顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasound microscope, and more particularly to an ultrasound microscope equipped with means for photographing a specimen.

近年、1GHzに及び超高周波の音波の発生検出が可能
となったので、水中、約1μmの音波長が実現できるこ
とになり、その結果、高い分解能の音波撮影装置が得ら
れるようになった。即ち、凹面レンズを用いて集束音波
ビームを作り、1μmに及ぶ高い分解能を実現するので
ある。
In recent years, it has become possible to generate and detect ultra-high frequency sound waves of up to 1 GHz, making it possible to realize sound wavelengths of approximately 1 μm underwater, and as a result, it has become possible to obtain high-resolution sonic imaging devices. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm.

上記のビーム中に試料を挿入し、試料からの反射超音波
を検出して試料の微細領域の弾性的性質を解明したり、
或いは試料を機械的に2次元に走査しながら、この信号
の強度をブラウン管の輝度信号として表示すれば、試料
の微細構造を拡大してみることができる。
Insert a sample into the above beam and detect the reflected ultrasonic waves from the sample to elucidate the elastic properties of minute regions of the sample.
Alternatively, if the sample is mechanically scanned in two dimensions and the intensity of this signal is displayed as a brightness signal on a cathode ray tube, the fine structure of the sample can be enlarged.

第1図は、このような超音波顕微鏡の概略構成を示す図
である。超音波の集束及び送受は音波レンズlにより行
っているが、その構造は旧柱状の溶融石英等をもちいた
物質の一面を光学研磨し、その上に圧電薄膜(例えばZ
n0)2を上下電極3によりはさむ、このようにサンド
ウィッチ構造になっている圧電薄膜2にパルス発振器4
から発生されたパルス5を印加して超音波6を発生させ
る。また、他端部は口径0.1m〜1.0mm程度の凹
面状の六が形成されており、この穴と試料との間には、
超音波6を試料7に伝播させるための媒質(例えば水)
8が満されている。
FIG. 1 is a diagram showing a schematic configuration of such an ultrasound microscope. Ultrasonic waves are focused, transmitted and received by a sonic lens l, whose structure consists of optically polishing one side of a material made of old columnar fused silica, etc., and then applying a piezoelectric thin film (for example, Z
A pulse oscillator 4 is connected to the piezoelectric thin film 2 which has a sandwich structure in which n0) 2 is sandwiched between the upper and lower electrodes 3.
The ultrasonic wave 6 is generated by applying the pulse 5 generated from the ultrasonic wave 6. In addition, a concave hole with a diameter of about 0.1 to 1.0 mm is formed at the other end, and between this hole and the sample,
Medium for propagating the ultrasonic waves 6 to the sample 7 (e.g. water)
8 is fulfilled.

圧電薄膜2によって発生した超音波6は円柱の中を開面
波となって伝播する。この平面波が穴に達すると石英(
五速6000m/s)と水(音速1500m/s)との
音速の差により屈折作用が生じ、試料7面上に集束した
超音波6を照射することができる。逆に試料7から反射
されてくる超音波は、球面レンズにより集音整相され、
平面波となって圧電薄膜2に達し、ここで、RF信号9
に変換される。このRF信号9を受信器10で受信し、
ここでダイオード検波してビデオ信号11しこ変換し、
CRTディスプレイ120入力信号として用いる。
The ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as open-plane waves. When this plane wave reaches the hole, the quartz (
A refraction effect occurs due to the difference in sound speed between water (sound speed 6000 m/s) and water (sound speed 1500 m/s), and focused ultrasonic waves 6 can be irradiated onto the surface of the sample 7. Conversely, the ultrasonic waves reflected from the sample 7 are collected and phased by a spherical lens.
It becomes a plane wave and reaches the piezoelectric thin film 2, where the RF signal 9
is converted to This RF signal 9 is received by a receiver 10,
Here, the diode is detected and the video signal is converted into 11 parts.
It is used as a CRT display 120 input signal.

この様に構成された装置において、試料7が試料台7′
の駆動電源13によりx−y平面内で2次元に走査して
いると試料走査にともなう試料面からの反射の強弱が2
次元的にCRT面12に表示される。
In the apparatus configured in this way, the sample 7 is placed on the sample stage 7'.
When the drive power source 13 is used to scan two-dimensionally within the x-y plane, the strength of reflection from the sample surface as the sample is scanned is
It is displayed on the CRT surface 12 dimensionally.

以上の説明は、球面レンズ1を固定し、これに対向する
試料をx−y平面内で2次元に走査する方法を述べたが
、これとは逆に球面レンズ1をX−y平面内で走査し、
試料7を固定する方法でも上述の方法と同一の効果があ
げられる。
The above explanation describes a method in which the spherical lens 1 is fixed and the sample facing it is scanned two-dimensionally within the x-y plane. scan,
The same effect as the above-mentioned method can be obtained by fixing the sample 7.

超音波顕微鏡の特徴は、超音波が光学的に不透明な物体
でも透過するので、物質の内部構造が観察できることや
、物質の弾性、密度、粘性などの力学的性質の変化を反
映した情報が得られることから、無染色の生物組織や細
胞もコン1〜ラストが生じ観察が可能となる。
Ultrasonic microscopes are characterized by the fact that ultrasonic waves can pass through optically opaque objects, making it possible to observe the internal structure of materials and to obtain information reflecting changes in mechanical properties such as elasticity, density, and viscosity of materials. As a result, even unstained biological tissues and cells can be observed as a contrast.

このような特徴をもつ装置を使って試料を観察しようと
する場合、特に試料内部を観察しようとする場合には、
出来るだけ音波を試料内部レヒ伝播するように媒質8を
えらび、試料の音響インピーダンス(2=ρ・V、ρ:
密度、v:音速)に近い値をもつ物質を媒質8に使用す
ることが望ましい。なぜならば、音響インピーダンスの
異なった二つの物質2..22の界面での&波の反射は
、(Zz ’l* / (Zl +22 ) に比例り
、lニーmテ反射されるからである。1例として観察し
ようとする物質を金属材料とした場合、そのほとんど音
響インピーダンスZ s = 20〜50 X I O
’ M K Sの値をもっているために、媒質8に水(
Z w 〜1.5 X 10’ MKS)を用いると、
音波のはとんどは界面で反射し、音源の方へ、もどって
しまし)、試料の内部には、音波を伝播することが出来
なり)ことから、試料の内部観察が可不能になってしま
う。
When trying to observe a sample using a device with these characteristics, especially when trying to observe the inside of the sample,
The medium 8 is selected so that the sound wave propagates inside the sample as much as possible, and the acoustic impedance of the sample (2=ρ・V, ρ:
It is desirable to use a material having a value close to the density (v: sound velocity) for the medium 8. This is because two substances with different acoustic impedances2. .. This is because the reflection of the & wave at the interface of 22 is proportional to (Zz 'l* / (Zl +22), and is reflected by 1 mte. As an example, when the substance to be observed is a metal material , whose almost acoustic impedance Z s = 20~50 X I O
' Since it has the value of M K S, water (
Z w ~1.5 X 10' MKS),
Most of the sound waves are reflected at the interface and return to the sound source (and cannot propagate inside the sample), making it impossible to observe the inside of the sample. I end up.

このことから、金属材料のように音響インピーダンスの
大きい値をもつ物質を観察しようとする場合に適した媒
質としてはHg+ In、Gaなどの液体金属がもちい
られている。例えば、HgはZ=〜]、9X10’MK
Sであることから、AQの2=〜18X10’MKSと
ほとんど同′−の値となることか地、界面での反射は、
無視できる値となり、音波のほとんどを試料内部に伝播
することができ、試料の内部観察が可能となる。
For this reason, liquid metals such as Hg+In and Ga are used as suitable media when observing substances with large acoustic impedance values such as metal materials. For example, Hg is Z=~], 9X10'MK
Since it is S, the value is almost the same as AQ's 2=~18X10'MKS.The reflection at the ground and interface is,
This becomes a negligible value, allowing most of the sound waves to propagate inside the sample, making it possible to observe the interior of the sample.

しかし、Hgを媒質8として使用する場合、Hgは試料
表面に塗ることができず、試料表面を球状となって飛散
してしまい安定した媒質として球面レンズ1と試料7と
の間に保持しておくことがむずかしいために、実用の面
では、問題があった。
However, when Hg is used as the medium 8, Hg cannot be applied to the sample surface, and the sample surface becomes spherical and scatters, so it must be held between the spherical lens 1 and the sample 7 as a stable medium. This poses a problem in practical use because it is difficult to store.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題点に鑑み、試料と音波レンズ間を
充填する液体媒質を安定して保持することができ、以っ
て効率良く試料の?1察が可能な超音波顕微鏡を提供か
ることを目的とする。
In view of the above-mentioned problems, the present invention makes it possible to stably maintain the liquid medium filling the space between the sample and the sonic lens, thereby efficiently cleaning the sample. The purpose is to provide an ultrasonic microscope that can perform a single observation.

〔発明の概要〕[Summary of the invention]

本発明は、音波レンズの送受波面に形成する球面の立体
角(球面の中心から見た立体角9をすくなくとも180
a以上にまで拡大し、このことにより、液体媒質を音波
レンズ先端部に安定に保持することを可能としたもので
ある。
The present invention improves the solid angle of the spherical surface formed on the wave transmitting/receiving surface of the sonic lens (the solid angle 9 seen from the center of the spherical surface by at least 180
This makes it possible to stably hold the liquid medium at the tip of the sonic lens.

〔発明の実施例〕[Embodiments of the invention]

以下、図をもちいて、その実施例を示す。第2図(、)
は従来の音波レンズの形状を示す図であり、■は球面レ
ンズ、7は試料、14は液体金属の媒質を示す。レンズ
の明るさを表わすFナンバは、 F= 1/ [2sin (a/Rf) コ −−=−
(L)であたえられ、これはレンズの開口径aと焦点距
離Rfで定まる量である。
Examples are shown below using figures. Figure 2 (,)
1 is a diagram showing the shape of a conventional acoustic lens, where ■ is a spherical lens, 7 is a sample, and 14 is a liquid metal medium. The F number, which represents the brightness of the lens, is F = 1/ [2sin (a/Rf) Co - - = -
(L), which is determined by the aperture diameter a and focal length Rf of the lens.

半球穴の曲率半径Rのレンズの場合、レンズ材の音速を
VB、Vvとするとレンズの屈折率n。
In the case of a lens with a radius of curvature R of a hemispherical hole, if the sound speed of the lens material is VB, Vv, then the refractive index of the lens is n.

は ne =yW/ye ・=−−−=(2)であって、焦
点距離Rfは、 Rf=R/ (1−ne) ・・・・・・・・(3)で
あたえられる。
is ne=yW/ye·=---=(2), and the focal length Rf is given by Rf=R/(1-ne) (3).

筆者らの、使用しているレンズ材としては、サファイヤ
や、石英を使用しているが、このようなレンズ材を使用
した場合レンズの球面の中心から見た立体角θり120
°で、Fナンバ慢0.7を実現している。
The lens materials used by the authors include sapphire and quartz, but when such lens materials are used, the solid angle θ seen from the center of the spherical surface of the lens is 120
°, achieving an F number of 0.7.

一方、音波の性質としで、音波が試料の内部に音波を伝
播するためには、試料への照射角度は、試料のもつ臨界
角度θC(はとんどの物質は臨界角度は10〜15″付
近である)より小さい角度で照射しなければならない、
したがって、試料の内部観察を主とした球面レンズとし
ては開口角をいか程にも大きくとって、Fナンバ大きく
することにつとめたとしても、分解能の向上はのぞめな
い。
On the other hand, due to the nature of sound waves, in order for the sound waves to propagate inside the sample, the irradiation angle to the sample must be the critical angle θC of the sample (for most materials, the critical angle is around 10 to 15 inches). ) must be irradiated at a smaller angle,
Therefore, as a spherical lens primarily used for internal observation of samples, no matter how large the aperture angle is made and the F number is increased, no improvement in resolution can be expected.

云い換えれば、試料の内部観察だけに限っていうならば
、球面レンズの球面の立体角は15°以上は分解能に関
係ないと云うことになる。
In other words, if only the internal observation of a sample is concerned, a solid angle of 15 degrees or more of the spherical surface of a spherical lens has no bearing on the resolution.

このようなことから、むしろレンズの球面の立体角を大
きく取り、少なくとも130°を越えるまで大きくする
としたことが本発明の趣旨である。
For this reason, the purpose of the present invention is to increase the solid angle of the spherical surface of the lens to at least exceed 130°.

その実施例は第2図(b)に示される。すなわちレンズ
1の送受波面には立体角が180°よりやや大きい球面
を有する凹面部が形成さ、れでいる。
An example thereof is shown in FIG. 2(b). That is, a concave portion having a spherical surface with a solid angle slightly larger than 180° is formed on the wave transmitting/receiving surface of the lens 1.

この形状のレンズは石英等のレンズ材料中に残留してい
る球形の気泡を利用し、この圧泡の赤道面近くまでレン
ズ材料を研摩することにより球面を露出させて容易に得
ることができる。またさらに、底面に微小のくぼみを有
する容器中で平面状に研摩したレンズ材料を融点付近ま
で加熱するか、もしくは微小なガス発生物を配置した容
器中でレンズ材料を加熱するなどして故ガ、に気泡を形
成したレンズ材料を用いることもできる。これらの気泡
を利用した球面レンズの形成方法は特開昭55−149
98号公報にて詳しく述べている。
A lens of this shape can be easily obtained by utilizing spherical bubbles remaining in a lens material such as quartz, and by polishing the lens material close to the equatorial plane of the bubble to expose the spherical surface. Furthermore, the lens material can be heated to near its melting point in a container with a minute depression on the bottom, or the lens material can be heated in a container in which a minute gas generating object is placed. It is also possible to use a lens material in which bubbles are formed. A method for forming a spherical lens using these bubbles is described in Japanese Patent Application Laid-Open No. 55-149.
It is described in detail in Publication No. 98.

第2図(c)は第2図(b)の球面レンズ超音波顕微鏡
で使用する状態を述べたもので、液体金属14の如く、
凹面穴内に挿入した場合、液体金属14は、充分に凹面
穴により保持されることから、外部の衝撃に対して影響
を受けることなく。
FIG. 2(c) describes the state in which the spherical lens ultrasonic microscope of FIG. 2(b) is used.
When inserted into the concave hole, the liquid metal 14 is sufficiently held by the concave hole and is not affected by external impact.

安定に球面レンズ1と試料7間に保持される。It is stably held between the spherical lens 1 and the sample 7.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によればレンズ、試料間の音波
伝播媒質として液体金属を用いても、その媒質を安定し
て保持することができ、もって効率の良い試料の観察が
可能な超音波顕微鏡を得ることができる。
As described above, according to the present invention, even when a liquid metal is used as a sound wave propagation medium between a lens and a sample, the medium can be stably maintained, thereby enabling efficient observation of the sample using ultrasonic waves. You can get a microscope.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波顕微鏡の構成図、第2図(a)は従来の
超音波顕微鏡の主要部を示す図、第2図(b)、(C)
は本発明の実施例の主要部を示す図である。 ■・・・球面レンズ、7・・・試料、14・・・液体媒
質。 /3 12
Figure 1 is a block diagram of an ultrasound microscope, Figure 2 (a) is a diagram showing the main parts of a conventional ultrasound microscope, Figures 2 (b) and (C)
1 is a diagram showing main parts of an embodiment of the present invention. ■... Spherical lens, 7... Sample, 14... Liquid medium. /3 12

Claims (1)

【特許請求の範囲】[Claims] 音波送受波面が球面の一部をなすように凹面状に形成さ
れた音波レンズ有し、該音波レンズの焦点近傍に位置す
る試料からのしよう乱音波により前記試料を撮影する超
音波顕微鏡において、該音波レンズは該球面の中心から
見た立体角が180゜以上の凹面を有することを特徴と
する超音波顕微鏡。
In an ultrasonic microscope that has a sonic lens formed in a concave shape so that a sound wave transmission/reception surface forms a part of a spherical surface, and that photographs a sample using the disturbed sound waves emitted from the sample located near the focal point of the sonic lens, An ultrasonic microscope characterized in that the acoustic lens has a concave surface with a solid angle of 180° or more when viewed from the center of the spherical surface.
JP59005586A 1984-01-18 1984-01-18 Ultrasonic microscope Pending JPS60149963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005586A JPS60149963A (en) 1984-01-18 1984-01-18 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005586A JPS60149963A (en) 1984-01-18 1984-01-18 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS60149963A true JPS60149963A (en) 1985-08-07

Family

ID=11615343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005586A Pending JPS60149963A (en) 1984-01-18 1984-01-18 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS60149963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881618A (en) * 1986-06-06 1989-11-21 Olympus Optical Co., Ltd. Acoustic lens for use in acoustic microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881618A (en) * 1986-06-06 1989-11-21 Olympus Optical Co., Ltd. Acoustic lens for use in acoustic microscope

Similar Documents

Publication Publication Date Title
EP0084174B1 (en) Ultrasonic microscope
JPS6035254A (en) Acoustic microscope
US4641530A (en) Acoustic microscope for analyzing an object in depth having aspherical lenses
US4566333A (en) Focusing ultrasonic transducer element
JPS60149963A (en) Ultrasonic microscope
JPH0324982B2 (en)
JPH0330105B2 (en)
SU832449A1 (en) Scanning acoustic microscope
JPS60129666A (en) Ultrasonic microscope
JPS585646A (en) Ultrasonic microscope
JPS6188144A (en) Ultrasonic microscope
JPS58166258A (en) Ultrasonic microscopic lens
JPS5815151A (en) Ultrasonic microscope
JPS60111152A (en) Ultrasonic microscope
JPS58118958A (en) Ultrasonic microscope
JPH0158458B2 (en)
JPS6411902B2 (en)
JPS61111458A (en) Ultrasonic microscope
JPS6342742B2 (en)
JPH0210379B2 (en)
JPS5831200Y2 (en) ultrasonic focusing lens
JPS6144346A (en) Ultrasonic microscope
JPS585648A (en) Ultrasonic microscope
JPS59163561A (en) Acoustic wave probe of ultrasonic microscope
JPS60151555A (en) Sonic probe