JPS5831200Y2 - ultrasonic focusing lens - Google Patents

ultrasonic focusing lens

Info

Publication number
JPS5831200Y2
JPS5831200Y2 JP15192278U JP15192278U JPS5831200Y2 JP S5831200 Y2 JPS5831200 Y2 JP S5831200Y2 JP 15192278 U JP15192278 U JP 15192278U JP 15192278 U JP15192278 U JP 15192278U JP S5831200 Y2 JPS5831200 Y2 JP S5831200Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
focusing lens
lens
ultrasound
ultrasonic focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15192278U
Other languages
Japanese (ja)
Other versions
JPS5568198U (en
Inventor
利男 三野宮
憲賢 中鉢
勲 籾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15192278U priority Critical patent/JPS5831200Y2/en
Publication of JPS5568198U publication Critical patent/JPS5568198U/ja
Application granted granted Critical
Publication of JPS5831200Y2 publication Critical patent/JPS5831200Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は、超音波顕微鏡に使用される超音波集束レンズ
の構造に関する。
[Detailed Description of the Invention] The present invention relates to the structure of an ultrasonic focusing lens used in an ultrasonic microscope.

光の代りに超音波を用いて物体の微視的な構造を観察し
ようという考えが古くからあり、最近機械走査型超音波
顕微鏡が開発された。
The idea of using ultrasound instead of light to observe the microscopic structure of objects has been around for a long time, and recently mechanical scanning ultrasound microscopes have been developed.

この超音波顕微鏡は、原理的には細く絞った超高周波超
音波ビームによって試料面を機械的に走査し、散乱され
た超音波を集音して電気信号に変換し、陰極線管の表面
に二次元的に表示し、顕微鏡像を得るのである。
In principle, this ultrasound microscope mechanically scans the sample surface with a narrowly focused ultrahigh-frequency ultrasound beam, collects the scattered ultrasound waves, converts them into electrical signals, and sends them to the surface of a cathode ray tube. It displays it dimensionally and obtains a microscopic image.

構成としては、超音波の検出の仕方によって、すなわち
試料内で散乱あるいは減衰しながら透過してきた超音波
を検出する場合と、試料内の音響的性質の差によって反
射してきた超音波を検出する場合とによって、透過型と
反射型とに分けられる。
The configuration depends on how the ultrasonic waves are detected; in other words, the ultrasonic waves that have passed through the sample while being scattered or attenuated are detected, and the ultrasonic waves that have been reflected due to differences in the acoustic properties within the sample are detected. They are divided into transmissive type and reflective type.

第1図は透過型の超音波顕微鏡の基本構成を示すブロッ
ク図であり、同図中1は高周波発振器、2は送波側超音
波集束レンズでサファイアなどの超音波伝搬媒体材から
なり、−面に送波用トランスジューサ2aが貼着され、
他面は球面状にえぐられた球面レンズ部2bを有する。
FIG. 1 is a block diagram showing the basic configuration of a transmission type ultrasound microscope, in which 1 is a high-frequency oscillator, 2 is a transmitting-side ultrasound focusing lens made of an ultrasound propagation medium material such as sapphire, and - A wave transmitting transducer 2a is attached to the surface,
The other surface has a spherical lens portion 2b hollowed out into a spherical shape.

3は受渡側超音波集束レンズで同じくサファイア板など
の超音波伝搬媒体材からなり、−面に受渡用トランスジ
ューサ3aが貼着され、他面には球面状にえぐられた球
面レンズ部3bを有する。
Reference numeral 3 denotes an ultrasonic focusing lens on the delivery side, which is also made of an ultrasonic propagation medium material such as a sapphire plate, and has a delivery transducer 3a attached to the negative side and a spherical lens portion 3b hollowed out into a spherical shape on the other side. .

そしてこのような一対の超音波集束レンズは互いに球面
レンズ部を対向せしめて音場媒体となる水4を介して共
焦点構成に配設されている。
A pair of such ultrasonic focusing lenses are arranged in a confocal configuration with their spherical lens portions facing each other with water 4 serving as a sound field medium interposed therebetween.

5は試料保持用枠でマイラー膜6が張設され、該マイラ
ー膜6に被検査物体となる試料7が取付けられている。
Reference numeral 5 denotes a sample holding frame on which a mylar film 6 is stretched, and a sample 7 serving as an object to be inspected is attached to the mylar film 6.

8は試料保持用枠5をX及びY方向に移動させる走査装
置、9は走査装置8を制御する走査回路、10は受渡側
超音波集束レンズ3の出力を受信する受信回路、11は
表示装置である。
8 is a scanning device that moves the sample holding frame 5 in the X and Y directions, 9 is a scanning circuit that controls the scanning device 8, 10 is a receiving circuit that receives the output of the delivery-side ultrasonic focusing lens 3, and 11 is a display device. It is.

前述の如き超音波顕微鏡において、まず送波用トランス
ジューサ2aによって放射された平面超音波は球面レン
ズ部2bによって集束され水中に焦点を結ぶ。
In the ultrasonic microscope as described above, first, plane ultrasonic waves emitted by the transmitting transducer 2a are focused by the spherical lens portion 2b and focused into water.

この焦点に集まった超音波は共焦点に配置されている受
渡側超音波集束レンズ3の球面レンズ部3bによって集
音され水平面超音波となり、受渡用トランスジューサ3
aによって電気信号に変換される。
The ultrasonic waves gathered at this focal point are collected by the spherical lens portion 3b of the delivery-side ultrasonic focusing lens 3 arranged confocally and become horizontal plane ultrasound waves, which are transmitted to the delivery transducer 3.
is converted into an electrical signal by a.

そこで試料7の検査面が焦点に位置するようにしながら
試料保持用枠5をX方向に振動させなからY方向に少し
ずつ移動させれば、超音波ビームは相対的に試料面を走
査することになる。
Therefore, by moving the sample holding frame 5 little by little in the Y direction instead of vibrating it in the X direction while keeping the inspection surface of the sample 7 at the focal point, the ultrasonic beam can relatively scan the sample surface. become.

超音波ビームが試料7を透過する際、振幅や位相の変化
を受けるから、超音波ビームが横切るところの試料面の
各点に対応させて表示装置11内の陰極線管(CRT)
の電子ビームを掃引し、受波用トランスジューサ3aの
出力信号に応じて輝度変調をかければCRT面上には二
次元的に顕微鏡像が得られる。
When the ultrasonic beam passes through the sample 7, it undergoes changes in amplitude and phase.
By sweeping the electron beam and subjecting it to brightness modulation according to the output signal of the receiving transducer 3a, a two-dimensional microscopic image can be obtained on the CRT surface.

ところで、上述の如き超音波顕微鏡は、第2図aに詳細
に示すように、送波側超音波集束レンズ2及び受波側超
音波集束レンズ3の球面レンズ部2b及び3bの周辺部
2C及び3Cが平坦な形のものを使用している例が多い
By the way, as shown in detail in FIG. 2a, the above-mentioned ultrasound microscope has peripheral parts 2C and spherical lens parts 2b and 3b of the transmitting-side ultrasound focusing lens 2 and the receiving-side ultrasound focusing lens 3, respectively. In many cases, 3C is used with a flat shape.

しかしこのような形状のレンズ系では連続波を使用する
場合、超音波伝搬媒体科内に定在波が生じ、レンズ面の
平坦な周辺部2Cからも超音波が水中に漏洩・放射され
るため、集束超音波ビームの信号がマスクされてS/N
が劣化する。
However, when continuous waves are used in a lens system with this type of shape, standing waves are generated within the ultrasonic propagation medium, and ultrasonic waves leak and radiate into the water from the flat peripheral area 2C of the lens surface. , the signal of the focused ultrasound beam is masked to reduce the S/N
deteriorates.

また、S/Nの劣化を防止するため、第2図すに示すよ
うに、平坦な周辺部2C及び3Cに吸音材12を添着し
たものもあるが、超音波の周波数が高くなり、また焦点
が短かくなると、吸音材12が試料と接触してしまうの
できわめて不都合である。
In addition, in order to prevent deterioration of the S/N ratio, as shown in Figure 2, there is a sound absorbing material 12 attached to the flat peripheral parts 2C and 3C, but the frequency of the ultrasonic waves becomes high and the focus If it becomes too short, the sound absorbing material 12 will come into contact with the sample, which is extremely inconvenient.

本考案は、上述の如き従来の欠点を改善する新しい考案
であり、その目的は超音波顕微鏡において、球面レンズ
部以外からの超音波の不要輻射がなく球面レンズ部のみ
から超音波が発射され、また球面レンズ部のみから超音
波を吸音するような超音波集束レンズを提供することを
目的とする。
The present invention is a new invention that improves the above-mentioned conventional drawbacks, and its purpose is to emit ultrasound only from the spherical lens part without unnecessary radiation of ultrasound from parts other than the spherical lens part in an ultrasound microscope. Another object of the present invention is to provide an ultrasonic focusing lens that absorbs ultrasonic waves only from the spherical lens portion.

次に本考案の一実施例を図面に用いて詳細に説明する。Next, one embodiment of the present invention will be described in detail with reference to the drawings.

本考案の実施例においては、超音波伝搬媒体材としてサ
ファイアを用い、これをZ切断して第3図及び第4図に
示すように直径dが4mmφ、長さlが4mmのサファ
イア棒を形成する。
In the embodiment of the present invention, sapphire is used as the ultrasonic propagation medium material, and it is Z-cut to form a sapphire rod with a diameter d of 4 mmφ and a length l of 4 mm, as shown in FIGS. 3 and 4. do.

そして、その一端に平坦面14を設け、他端にレンズ部
15を形成する。
A flat surface 14 is provided at one end, and a lens portion 15 is formed at the other end.

このレンズ部15の直径及び曲率半径はそれぞれ2mm
であり、レンズのFナンバーは約1.1となる。
The diameter and radius of curvature of this lens portion 15 are each 2 mm.
Therefore, the F number of the lens is approximately 1.1.

レンズ部15を設けた端部は、傾斜面16が形成され、
該傾斜面16及び側面17の表面は粗面にしである。
An inclined surface 16 is formed at the end where the lens portion 15 is provided,
The surfaces of the inclined surface 16 and side surface 17 are roughened.

平坦面14の中央には、l−ランスジューサ18が取付
けられている。
An l-transducer 18 is attached to the center of the flat surface 14.

このトランスジューサ18は、140MHz用酸化亜鉛
(ZnO)圧電膜トランスジューサで、スパッタ法で形
成される。
This transducer 18 is a 140 MHz zinc oxide (ZnO) piezoelectric film transducer formed by sputtering.

なお、このトランスジューサの直径は1.6mmφであ
る。
Note that the diameter of this transducer is 1.6 mmφ.

上述の如き構成を有する超音波集束レンズ系全体の伝送
特性を調べるため、超音波集束レンズ2個を共焦点配置
にした場合の入出カドランスジューサ間の挿入損失の周
波数特性を50Ω系で測定したところ、第5図の如き結
果を得た。
In order to investigate the transmission characteristics of the entire ultrasonic focusing lens system having the above configuration, we measured the frequency characteristics of the insertion loss between the input and output quadrangle juicers in a 50Ω system when two ultrasonic focusing lenses were placed in a confocal arrangement. However, the results shown in FIG. 5 were obtained.

なお、第5図において、実線は連続波、破線は高周波パ
ルス(パルス幅約0.6μ5ec)で測定した場合であ
る。
In addition, in FIG. 5, the solid line shows the case of continuous wave measurement, and the broken line shows the case of measurement with high frequency pulse (pulse width about 0.6 μ5 ec).

連続波の場合にみられるリップルは、サファイア棒内の
定在波によるもので、リップルの大きさは第1図に示し
た従来のレンズを用いて本考案者らが以前に測定したも
のに比べて十数dB以上も減少している。
The ripples observed in the case of continuous waves are due to standing waves within the sapphire rod, and the ripples are larger than those previously measured by the inventors using the conventional lens shown in Figure 1. It has decreased by more than ten dB.

挿入損失は、140MH2付近において約52 dBで
あるが、水中の伝搬減衰を16 dB、サファイアと水
との境界における透過損失を送受で約20 dBと見積
ると、トランスジューサのみの変換損失は1個当り約8
dBとなる。
The insertion loss is approximately 52 dB near 140 MH2, but if we estimate the propagation loss in water to be 16 dB and the transmission loss at the boundary between sapphire and water to be approximately 20 dB for transmission and reception, the conversion loss of only the transducer is Approximately 8
dB.

次にレンズによる集束状況を知るため、2つの超音波集
束レンズの共焦点面上で直径30μmの銅線をZ軸と垂
直方向に移動させなから受波トランスジューサの出力の
変化を観測した。
Next, in order to understand the focusing status of the lenses, we observed changes in the output of the receiving transducer while moving a copper wire with a diameter of 30 μm in the direction perpendicular to the Z-axis on the confocal plane of the two ultrasonic focusing lenses.

その結果を第6図に示す。The results are shown in FIG.

なお、第6図において実線は本考案による超音波集束レ
ンズを用いた場合の結果、破線は第2図aに示す従来型
の超音波レンズを用いた場合の結果である。
In FIG. 6, the solid line shows the result when the ultrasonic focusing lens according to the present invention is used, and the broken line shows the result when the conventional ultrasonic lens shown in FIG. 2a is used.

また、2個の超音波集束レンズを互いに共焦点からずら
した場合の受波出力の変化を観測した。
We also observed changes in the received wave output when the two ultrasonic focusing lenses were shifted from their confocal positions.

第7図は両レンズをZ軸に沿ってずらしていった場合の
特性である。
FIG. 7 shows the characteristics when both lenses are shifted along the Z axis.

また、第8図a、l)はZ軸に対して垂直方向にずらし
た場合で、それぞれX方向及びY方向に対する特性であ
る。
Further, FIGS. 8a and 8l) show the characteristics in the X direction and the Y direction, respectively, when shifted in the direction perpendicular to the Z axis.

3dB減の幅はZ方向に対して約80μm、X方向及び
Y方向に対しては約11μmとなっている。
The width of the 3 dB reduction is approximately 80 μm in the Z direction and approximately 11 μm in the X and Y directions.

なお、上記実施例は、本考案に係る超音波集束レンズを
透過型超音波顕微鏡に適用した場合であるが、これを反
射型超音波顕微鏡にも適用できることはいうまでもない
ことである。
In addition, although the above-mentioned example is a case where the ultrasonic focusing lens according to the present invention is applied to a transmission type ultrasound microscope, it goes without saying that this can also be applied to a reflection type ultrasound microscope.

また、超音波伝搬媒体材も、サファイアのほか、水晶、
ルビー、ダイヤモンド、パイレックスガラスなどの材料
を用いることもできる。
In addition to sapphire, the ultrasonic propagation medium materials include crystal,
Materials such as ruby, diamond, and Pyrex glass can also be used.

以上詳細に説明したように、本考案は、超音波集束レン
ズの基体となる超音波伝搬媒体のレンズ部を設けた端部
に傾斜面を設け、かつ該傾斜面と側壁面を粗面に形成し
たので、超音波媒体材の中に生じる定在数は従来のもの
に比べて非常に小さくなった。
As explained in detail above, the present invention provides an inclined surface at the end of the ultrasonic propagation medium, which is the base of the ultrasonic focusing lens, at which the lens portion is provided, and forms the inclined surface and the side wall surface into rough surfaces. Therefore, the standing number generated in the ultrasonic medium material is much smaller than that of the conventional one.

このため、超音波集束レンズを送波用に用いた場合、レ
ンズ部以外からの超音波の漏れが非常に少なくなり、ま
た、受波用に用いた場合、レンズ部以外からの吸音がほ
とんどなくなるため、超音波顕微鏡のS/N比が従来に
比べて向上した。
Therefore, when an ultrasonic focusing lens is used for transmitting waves, there is very little leakage of ultrasonic waves from areas other than the lens, and when it is used for receiving waves, there is almost no sound absorption from areas other than the lens. Therefore, the S/N ratio of the ultrasonic microscope has improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は透過型超音波顕微鏡のブロック図、第2図a及
びbは従来型の超音波集束レンズの側面図、第3図及び
第4図は本考案の一実施例を示す斜視図及び断面図、第
5図、第6図、第7図、第8図a及びbはいずれも本考
案の一実施例の特性曲線図で゛ある。 図中、1は高周波発振器、2は送波側超音波集束レンズ
、3は受渡側超音波集束レンズ、4は氷、5は試料保持
用枠、6はマイラー膜、7は試料、8は走査装置、9は
走査回路、10は受信回路、11は表示装置、14は平
坦面、15はレンズ部、16は傾斜面、17は側面、1
8は1−ランスジューサである。
FIG. 1 is a block diagram of a transmission ultrasound microscope, FIGS. 2a and 2b are side views of a conventional ultrasound focusing lens, and FIGS. 3 and 4 are perspective views showing an embodiment of the present invention. The sectional views, FIGS. 5, 6, 7, and 8 a and b are characteristic curve diagrams of an embodiment of the present invention. In the figure, 1 is a high-frequency oscillator, 2 is an ultrasonic focusing lens on the transmitting side, 3 is an ultrasonic focusing lens on the delivery side, 4 is ice, 5 is a sample holding frame, 6 is a mylar film, 7 is a sample, and 8 is a scanning 1 is a device, 9 is a scanning circuit, 10 is a receiving circuit, 11 is a display device, 14 is a flat surface, 15 is a lens portion, 16 is an inclined surface, 17 is a side surface, 1
8 is a 1-transducer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 棒状の超音波伝搬媒体材の一端にトランスジューサを設
は他端にレンズ部を設けた超音波集束レンズにおいて、
レンズ部を設けた端部に傾斜面を設けるとともに該傾斜
面と側面を粗面に形成したことを特徴とする超音波集束
レンズ。
In an ultrasonic focusing lens in which a transducer is provided at one end of a rod-shaped ultrasonic propagation medium material and a lens portion is provided at the other end,
An ultrasonic focusing lens characterized in that an inclined surface is provided at an end portion where a lens portion is provided, and the inclined surface and side surfaces are formed into rough surfaces.
JP15192278U 1978-11-05 1978-11-05 ultrasonic focusing lens Expired JPS5831200Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15192278U JPS5831200Y2 (en) 1978-11-05 1978-11-05 ultrasonic focusing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15192278U JPS5831200Y2 (en) 1978-11-05 1978-11-05 ultrasonic focusing lens

Publications (2)

Publication Number Publication Date
JPS5568198U JPS5568198U (en) 1980-05-10
JPS5831200Y2 true JPS5831200Y2 (en) 1983-07-09

Family

ID=29137652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15192278U Expired JPS5831200Y2 (en) 1978-11-05 1978-11-05 ultrasonic focusing lens

Country Status (1)

Country Link
JP (1) JPS5831200Y2 (en)

Also Published As

Publication number Publication date
JPS5568198U (en) 1980-05-10

Similar Documents

Publication Publication Date Title
JPH07121158B2 (en) Ultrasonic probe
US4510810A (en) Ultrasonic microscope
US4012950A (en) Method of and apparatus for acoustic imaging
JPS6224741B2 (en)
JPS5831200Y2 (en) ultrasonic focusing lens
US4550609A (en) Acoustic lens
JPH0330105B2 (en)
SU832449A1 (en) Scanning acoustic microscope
JPH0437379B2 (en)
JPS634142B2 (en)
JPH0155411B2 (en)
JPS62142267A (en) Ultrasonic convergent lens
JPS61186850A (en) Acoustic wave probe
US4881618A (en) Acoustic lens for use in acoustic microscope
JPS6145456B2 (en)
JPH0338543B2 (en)
JPH0230769Y2 (en)
JPH0419500Y2 (en)
JPS62130351A (en) Acoustic lens for ultrasonic microscope
JPS6240920B2 (en)
JPS5950937B2 (en) ultrasound microscope
JPH0546218B2 (en)
JPH05285134A (en) Ultrasonic transmitter/receiver
JPH0835956A (en) Ultrasonic probe
JPS6145455B2 (en)