JPS62130351A - Acoustic lens for ultrasonic microscope - Google Patents

Acoustic lens for ultrasonic microscope

Info

Publication number
JPS62130351A
JPS62130351A JP60272071A JP27207185A JPS62130351A JP S62130351 A JPS62130351 A JP S62130351A JP 60272071 A JP60272071 A JP 60272071A JP 27207185 A JP27207185 A JP 27207185A JP S62130351 A JPS62130351 A JP S62130351A
Authority
JP
Japan
Prior art keywords
acoustic
lens
reflected
wave
acoustic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272071A
Other languages
Japanese (ja)
Inventor
Toshitaka Suwaki
洲脇 利孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60272071A priority Critical patent/JPS62130351A/en
Publication of JPS62130351A publication Critical patent/JPS62130351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the SN ratio of a reflected signal by embedding a material which has acoustic impedance nearly equal to the acoustic impedance of an acoustic lens and high ultrasonic wave absorptivity in a recessed part formed in the outer periphery of the acoustic lens at right angles to the acoustic axis. CONSTITUTION:The acoustic lens 4 has the triangular notched recessed part 11 in the outer periphery at right angles to the acoustic axis of the lens 4 and a damper member 12 in the same shape is fitted in the recessed part 11. A signal from a transmitter which is applied to a piezoelectric converter 3 is converted into an ultrasonic wave, which is propagated as a plane wave in the lens 4 and converted by a spherical lens part 4a into a spherical wave, so that the wave travels toward a sample 5 and is propagated in an ultrasonic wave propagation medium 6. Then, a reflected wave P1 reflected at the focus position of the sample 5 passes through the same path as the forward path and reaches the converter 3, so that it is detected signal. Part of the plane wave reaching the spherical surface of the lens part 4a is reflected by the spherical surface and the reflected wave P, is reflected by the side wall of the lens 4 to travel toward the converter 3. This unnecessary reflected wave P2, however, is absorbed 12 and the incidence on the converter 3 is suppressed, so that the SN ratio of the reflected signal is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、音響レンズ内における多重反射を抑制するよ
うにした超音波顕微鏡用音響レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an acoustic lens for an ultrasound microscope that suppresses multiple reflections within the acoustic lens.

〔従来の技術〕[Conventional technology]

近年、光学的な顕微鏡とか電子線を利用した電子顕微鏡
とは異り、音響的な画俊情報を得ることのできる超音波
顕微鏡が注目されるようになった。
In recent years, unlike optical microscopes or electron microscopes that use electron beams, ultrasound microscopes have been attracting attention because they can obtain acoustic information.

上記超音波顕微鏡は1例えば100MHz〜数GHzの
超音波を用いることによって1μmオーダーの分解能を
有する超音波顕微鏡画像を得ることができる。
The ultrasonic microscope described above can obtain an ultrasonic microscope image having a resolution on the order of 1 μm by using ultrasonic waves of, for example, 100 MHz to several GHz.

この超音波顕微鏡は、原理的には細く絞った超高周波超
音波ビームによって試料面を機械的に走査し、その試料
により散乱された超音波を集音して電気信号に変換し、
その信号をブラウン管等の表示画面に二次元的に表示し
、顕微鏡像を得るのである。構成としては超音波の検出
の仕方によって、すなわち試料内で散乱あるいは減衰し
ながら透過してきた超音波を検出する場合と、試料内の
音響的性質の差によって反射してきた超音波を検出する
場合とによって、透過型と反射型とに分けられる。
In principle, this ultrasonic microscope mechanically scans the sample surface with a narrowly focused ultrahigh-frequency ultrasonic beam, collects the ultrasonic waves scattered by the sample, and converts them into electrical signals.
The signal is displayed two-dimensionally on a display screen such as a cathode ray tube to obtain a microscopic image. The configuration depends on how the ultrasound is detected; in other words, there are two methods: detecting ultrasound that has passed through the sample while being scattered or attenuated, and detecting ultrasound that has been reflected due to differences in acoustic properties within the sample. Depending on the type, it can be divided into transmissive type and reflective type.

第3図は反射型の超音波顕微鏡の原理図、第4図は従来
の音響レンズの構成図である。送信機1からの信号は方
向性結合器又はサーキエレータ2により送受兼用圧電ト
ランスデユーサ3へ供給され、る。この信号は超音波に
変換されてこの圧電トランスデユーサ3が一方の面(上
端面)に貼着された送受波兼用のサファイヤ等の超音波
伝搬媒体材から成る超音波集束レンズ(音響レンズ)4
の一面より内部に平面波状に放射され、他面側に送波さ
れる。この音響レンズ4の他面は球面状にえぐられて球
面レンズ部4&が形成され、この球面レンズ部4aに対
向する試料5との間に介装される水等の超音波伝搬媒体
6を球面波状に伝搬し、試料5の表面でビームスポット
状に集束されるようにしである(表面にフォーカスした
場合)。
FIG. 3 is a diagram showing the principle of a reflection type ultrasound microscope, and FIG. 4 is a diagram showing the configuration of a conventional acoustic lens. A signal from a transmitter 1 is supplied by a directional coupler or circuit generator 2 to a piezoelectric transducer 3 for both transmitting and receiving purposes. This signal is converted into an ultrasonic wave, and this piezoelectric transducer 3 is attached to one surface (upper end surface) of an ultrasonic focusing lens (acoustic lens) made of an ultrasonic propagation medium material such as sapphire for both transmitting and receiving waves. 4
The wave is radiated inward from one side in the form of a plane wave and transmitted to the other side. The other surface of this acoustic lens 4 is hollowed out into a spherical shape to form a spherical lens portion 4&, and the ultrasonic propagation medium 6 such as water interposed between the sample 5 and the spherical lens portion 4a is formed into a spherical shape. The beam propagates in a wave-like manner and is focused into a beam spot on the surface of the sample 5 (when focused on the surface).

上記試料5は試料保持台7上に配置されており。The sample 5 is placed on a sample holder 7.

この試料5側に送波された超音波はその試料表面での音
響特性に応じて透過、吸収等をするが1反射波、散乱波
の一部が同一の経路を通り、圧電トランスデユーサ3で
電気信号に変換され、受信機8に入力される。この受信
機8で検波されその出力はビデオ信号処理部9を経てC
RT等の表示器10に入力される。一方、上記音響レン
ズ4は図示しない加振器で例えばX方向に走査され、試
料保持台7側はY方向への走査され、これらの走査に同
期した掃引信号が表示器10のX、Y軸に印加され、こ
の表示器9の表示画面に2次元的な超音波顕微鏡画倫が
表示される。
The ultrasonic waves transmitted to the sample 5 side are transmitted, absorbed, etc. depending on the acoustic characteristics on the sample surface, but some of the reflected waves and scattered waves pass through the same path and pass through the piezoelectric transducer 3. The signal is converted into an electrical signal and input to the receiver 8. The signal is detected by this receiver 8, and the output is sent to the video signal processing section 9.
It is input to a display 10 such as RT. On the other hand, the acoustic lens 4 is scanned, for example, in the X direction by a vibrator (not shown), and the sample holding table 7 side is scanned in the Y direction, and sweep signals synchronized with these scans are displayed on the X and Y axes of the display 10. is applied, and a two-dimensional ultrasound microscope image is displayed on the display screen of the display device 9.

ところで上記超音波顕微鏡は、第4図に示すようにX、
Y平面と垂直なZ軸方向におけるフォーカス位置を変え
る。つまり音響レンズ4を試料側に近づけて試料内部に
フォーカスした状態で使用すれば、試料内部に対する超
音波顕微鏡画偉を得ることができるという特徴を有する
By the way, the above-mentioned ultrasonic microscope has X,
The focus position in the Z-axis direction perpendicular to the Y plane is changed. In other words, if the acoustic lens 4 is used close to the sample side and focused on the inside of the sample, an ultrasonic microscope image of the inside of the sample can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記構成の超音波顕微鏡において、第4
図に示されるように、試料5のフォーカス位置からの反
射波P1の他に、音響レンズ4の球面レンズ部4aによ
りて反射した反射波P2や試料5のフォーカス位置以外
1例えば試料5の表面からの反射波Pa等が発生し、こ
れらの反射波P2゜Paが音響Vンズ4の壁面で多重反
射して圧電トランスデユーサ3に入射し1反射信号とし
て検出されることになる。特に試料5からの反射波P1
が・超音波伝搬媒体6を経て音響レンズ4に再入射し圧
電トランスデユーサ3に達する時刻に前述のような多重
反射による反射波Pg 、 Paが圧電トランスデユー
サ3に達して、特にコヒーレントな音響系となっている
ため干渉等を起こし、試料5からの反射波P1を訪客す
ることがある。そのため従来の音響レンズでは、多重反
射による反射波がノイズ成分となり、反射信号のS/N
が低下し、正確な試料からの反射波のみを反射信号とし
て取り出しにくい欠点がある。
However, in the ultrasonic microscope with the above configuration, the fourth
As shown in the figure, in addition to the reflected wave P1 from the focus position of the sample 5, the reflected wave P2 reflected by the spherical lens portion 4a of the acoustic lens 4 and the reflected wave P2 reflected from the focus position of the sample 5, for example, from the surface of the sample 5. Reflected waves Pa and the like are generated, and these reflected waves P2.degree. Pa are multiple-reflected on the wall surface of the acoustic V-lens 4, enter the piezoelectric transducer 3, and are detected as one reflected signal. In particular, the reflected wave P1 from sample 5
However, at the time when it re-enters the acoustic lens 4 via the ultrasonic propagation medium 6 and reaches the piezoelectric transducer 3, the reflected waves Pg and Pa due to multiple reflections as described above reach the piezoelectric transducer 3, and a particularly coherent wave is generated. Since it is an acoustic system, interference may occur, and the reflected wave P1 from the sample 5 may reach the customer. Therefore, in conventional acoustic lenses, the reflected waves due to multiple reflections become noise components, and the S/N of the reflected signal is
This has the drawback that it is difficult to extract only the reflected waves from the accurate sample as reflected signals.

そこで本出願人は、特開昭58−96248号において
、音響レンズの音場媒体と接する球面レンズ部と圧電ト
ランスデユーサが取り付けられる電極部分を除く外周面
に、音響レンズの音響インピーダンスに比較的近い音響
インピーダンスを有し、かつ超音波吸収の大きい物質な
被着した音響レンズを提案している。これによると、音
響レンズ内における不要な反射波をある程度吸収し、ノ
イズ成分となる反射波の圧電トランスデユーサへの入射
を抑制することができるが、不要な反射波が完全に除去
されるわけではない。
Therefore, in Japanese Patent Laid-Open No. 58-96248, the present applicant proposed that the acoustic impedance of the acoustic lens be relatively reduced by adding a layer to the outer peripheral surface of the acoustic lens excluding the spherical lens part in contact with the sound field medium and the electrode part to which the piezoelectric transducer is attached. We propose an acoustic lens coated with a material with similar acoustic impedance and high ultrasound absorption. According to this, unnecessary reflected waves within the acoustic lens can be absorbed to some extent and the reflected waves that become noise components can be suppressed from entering the piezoelectric transducer, but unnecessary reflected waves cannot be completely removed. isn't it.

〔発明の目的] 本発明は、上記事情に鑑みてなされたものであり、ノイ
ズ成分となる多重反射波を除去して1反射信号のS/N
を向上でき、しかも、焦点位置のみの情報を選択的に取
り出すことのできる超音波顕微鏡用音響レンズを提供す
ることを目的としている。
[Object of the Invention] The present invention has been made in view of the above circumstances, and is aimed at reducing the S/N of one reflected signal by removing multiple reflected waves that become noise components.
It is an object of the present invention to provide an acoustic lens for an ultrasonic microscope that can improve the image quality and selectively extract information about only the focal position.

〔問題点を解決するための手段及び作用〕本発明による
超音波顕微鏡用音響レンズは、音iレンズの音響軸に対
し直交する外周に凹部を周回状に設け、該凹部に音響レ
ンズの音響インピーダンスと略等しい音響インピーダン
スを有シ、かつ超音波吸収の大きい物質を埋設したもの
である。
[Means and effects for solving the problem] The acoustic lens for an ultrasonic microscope according to the present invention has a concave portion circularly provided on the outer periphery perpendicular to the acoustic axis of the acoustic i-lens, and the acoustic impedance of the acoustic lens is provided in the concave portion. This material has an acoustic impedance approximately equal to that of the material and has a material embedded therein that has a high absorption of ultrasonic waves.

すなわち、前記凹部に埋設した超音波吸収物質中を通過
するノイズ成分となる多重反射波は、超音波吸収物質に
より吸収され、その結果、試料からの反射波のみが反射
信号として検出される。
That is, the multiple reflected waves that become noise components passing through the ultrasound absorbing material embedded in the recess are absorbed by the ultrasound absorbing material, and as a result, only the reflected waves from the sample are detected as reflected signals.

〔発明の実施例〕[Embodiments of the invention]

以下1図面を参照して本発明の詳細な説明する。。 The present invention will be described in detail below with reference to one drawing. .

第1図は本発明の第1実施例の音響レンズの構成図であ
る。
FIG. 1 is a configuration diagram of an acoustic lens according to a first embodiment of the present invention.

本実施例の音響レンズ4は、従来のものと同様にサファ
イア等よりなる音響レンズの音響軸に直交する外周に、
音響軸方向の断面が音咎レンズの外周側が底辺となる三
角形の形状の切込み凹部11が周回状に設けられ、該凹
部11にそれと同形状のダンパ一部材12が嵌合されて
いる。
The acoustic lens 4 of this embodiment is made of sapphire or the like, as in the conventional one, on its outer periphery perpendicular to the acoustic axis.
A triangular cut recess 11 whose cross section in the acoustic axis direction is a triangle whose base is on the outer circumferential side of the acoustic lens is provided in a circumferential manner, and a damper member 12 having the same shape as the recess 11 is fitted into the recess 11 .

このダンパ一部材12は、音響レンズの音響インピーダ
ンスと略等しい音響インピーダンスを有し、かつ超音波
吸収の大きい物質からなる。そのような単体物質を捜す
のは困難であるが1等価的にそのような物質を作ること
は可能である。例えば、タングステン金属粉末とエポキ
シ樹脂を混合することにより広い範囲にわたり音響イン
ピーダンスを変化させることができることは、超音波診
断装置探触子等で公知である。、また、タングステン金
属粉末に限らず、レンズ構成物質の音番インピーダンス
よりも大きい音響インピーダンスを有する粉末と有機樹
脂とを適当割合混合することにより前記ダンパ一部材1
2を形成できる。
This damper member 12 is made of a material that has an acoustic impedance substantially equal to that of the acoustic lens and that absorbs large ultrasonic waves. Although it is difficult to find such a simple substance, it is possible to create such a substance in one equivalent manner. For example, it is well known that the acoustic impedance can be varied over a wide range by mixing tungsten metal powder and epoxy resin in ultrasonic diagnostic probes and the like. In addition, the damper member 1 can be prepared by mixing not only tungsten metal powder but also a powder having an acoustic impedance larger than the acoustic impedance of the lens constituent material and an organic resin in an appropriate proportion.
2 can be formed.

また、前記ダンパ一部材12は、それ自体で音響レンズ
4の入射瞳及び出射瞳を形成している。
Further, the damper member 12 itself forms an entrance pupil and an exit pupil of the acoustic lens 4.

このように構成された音響レンズ4において。In the acoustic lens 4 configured in this way.

圧電トランスデユーサ3に加えられた送信機1からの信
号は、超音波に変換され、平面波となって音響レンズ4
を伝播し、球面レンズ部4aにより球面波に変換されて
試料5に向い水等の超音波伝搬媒体6中を伝播する。そ
して、試料5のフォーカス位置で反射した反射波Plは
往路と同一の経路を通り、圧電トランスデユーt3に達
し1反射信号として検出される。
The signal from the transmitter 1 applied to the piezoelectric transducer 3 is converted into an ultrasonic wave, becomes a plane wave, and passes through the acoustic lens 4.
is converted into a spherical wave by the spherical lens portion 4a, and propagated toward the sample 5 through an ultrasonic propagation medium 6 such as water. Then, the reflected wave Pl reflected at the focus position of the sample 5 passes through the same path as the outward path, reaches the piezoelectric transducer t3, and is detected as one reflected signal.

一方、音響レンズ4の球面レンズ部4aの球面に到来し
た平面波の一部は、その球面によって反射し、この反射
波P2は音響レンズ4の側壁によって反射して、圧電ト
ランスデユーサ3に向う。しかし、この不要な反射波P
2の進路上には前記ダンパ一部材12が配設されている
ため1反射波P2はダンパ一部材12を通過する際にダ
ンパ一部材12により大きく吸収され、不要な反射波P
2の圧電トランスデユーサ3への入射が十分抑制される
。その結果、ノイズが低下し1反射信号のS/Nが向上
する。
On the other hand, a part of the plane wave that has arrived at the spherical surface of the spherical lens portion 4a of the acoustic lens 4 is reflected by the spherical surface, and this reflected wave P2 is reflected by the side wall of the acoustic lens 4 and is directed toward the piezoelectric transducer 3. However, this unnecessary reflected wave P
Since the damper member 12 is disposed on the path of the second damper member 12, the first reflected wave P2 is largely absorbed by the damper member 12 when passing through the damper member 12, resulting in an unnecessary reflected wave P2.
2 to the piezoelectric transducer 3 is sufficiently suppressed. As a result, noise is reduced and the S/N of one reflected signal is improved.

また、試料5に向う球面波の一部は、試料5のフォーカ
ス位置以外1例えば試料5の表面で反射する。この反射
波P3も前述の反射波P2と同様に音響レンズ4の側壁
によって反射して圧電トランスデユーサ3に向うが、ダ
ンパ一部材12によって大きく吸収され、圧電トランス
デユーサ3への入射が抑制される。その結果、試料5の
フォーカス位置近傍の情報のみを選択的に取り出すこと
かで゛きる。
Further, a part of the spherical wave toward the sample 5 is reflected at a point other than the focus position of the sample 5, for example, the surface of the sample 5. This reflected wave P3 is also reflected by the side wall of the acoustic lens 4 and directed toward the piezoelectric transducer 3 in the same manner as the reflected wave P2 described above, but is largely absorbed by the damper member 12 and is prevented from entering the piezoelectric transducer 3. be done. As a result, it is possible to selectively extract only information near the focus position of the sample 5.

前記ダンパ一部材12を形成する物質は、超音波吸収が
大きいことの他に、その音響インピーダンスが音響レン
ズの音響インピーダンスに略等しいことが必要とされる
。それは1両者の音響インピーダンスが大きく異なると
1両者の界面において超音波の反射率が大きくなり、ダ
ンパ一部材12中に不要な反射波が入射せず、その結果
、不要な反射波の吸収が行われなくなるためである。こ
れを詳しく述べると1例えば超音波の反射について。
The material forming the damper member 12 is required not only to have high ultrasonic absorption but also to have an acoustic impedance approximately equal to the acoustic impedance of the acoustic lens. 1. If the acoustic impedance of the two is greatly different, the reflectance of ultrasonic waves will increase at the interface between the two, and unnecessary reflected waves will not enter the damper member 12. As a result, unnecessary reflected waves will be absorbed. This is so that you will not be disappointed. To explain this in detail, 1. For example, regarding the reflection of ultrasonic waves.

超音波が第1媒質から第2媒質に向って入射したとする
と1強さの反射率Rは垂直入射のとき。
If the ultrasonic wave is incident from the first medium to the second medium, the reflectance R of 1 intensity is when it is perpendicularly incident.

R= ((Zl −Zz )/(Z1+Z2 ) )”
で与えられる。ただし、zlは第1媒質の音響インピー
ダンス、Z2は第2媒質の音響インピーダンスである。
R= ((Zl − Zz )/(Z1+Z2 ) )”
is given by However, zl is the acoustic impedance of the first medium, and Z2 is the acoustic impedance of the second medium.

また、媒質の音響インピーダンス2は。Also, the acoustic impedance 2 of the medium is:

2=ρC で与えられる。ただしρは媒質の密度、Cは媒質中の音
速である。上記4式よりZl = Z2であれば超音波
の垂直入射の反射は0となる。従って本発明のように、
音響レンズの音響インピーダンスとダンパ一部材の音響
インピーダンスが略等シい場合には、不要な反射波P2
 、 Paは音響レンズからダンパ一部材へ、その界面
でほとんど反射することなく入射して、ダンパ一部材に
より吸収されることになる。
2=ρC. However, ρ is the density of the medium, and C is the speed of sound in the medium. According to the above 4 formulas, if Zl = Z2, the reflection of vertically incident ultrasonic waves becomes 0. Therefore, as in the present invention,
When the acoustic impedance of the acoustic lens and the acoustic impedance of the damper member are approximately equal, unnecessary reflected waves P2
, Pa enters the damper member from the acoustic lens with almost no reflection at the interface, and is absorbed by the damper member.

第2図は本発明の第2実施例の音響レンズの構成図であ
る。
FIG. 2 is a block diagram of an acoustic lens according to a second embodiment of the present invention.

本実施例の音響レンズ4は、音響軸に直交する外周に、
音響軸方向の断面が長方形の形状の凹部゛11を、圧電
トランスデユーサ3近傍から曲面レンズ部近傍にわたっ
て周回状に設け、該凹部11にそれと同形状のダンパ一
部材12を嵌合したものである。ダンパ一部材12は第
1実施例と同様に、音響レンズの音響インピーダンスと
略等しい音響インピーダンスを有し、かつ超音波吸収の
大きい物質からなる。
The acoustic lens 4 of this embodiment has an outer periphery perpendicular to the acoustic axis.
A recess 11 having a rectangular cross section in the acoustic axis direction is provided in a circumferential manner from near the piezoelectric transducer 3 to near the curved lens part, and a damper member 12 having the same shape is fitted into the recess 11. be. As in the first embodiment, the damper member 12 is made of a material that has approximately the same acoustic impedance as the acoustic impedance of the acoustic lens and has high ultrasonic absorption.

本実施例の音響レンズ4では、不要な反射波P2 、 
Paがダンパ一部材12中を通過する距離が長くなり、
不要な反射波P2 、 P3の吸収がより完全に行なわ
れると共に、音響軸に平行な方向からそれた方向に進む
反射波は前記ダンパ一部材12により吸収され、音響軸
に略平行に進む反射波のみを圧電トランスデユーサ3で
検出することができる。すなわち、試料5のフォーカス
位置近傍の情報のみをより選択的に取り出すことができ
る。その他の作用及び効果は第1実施例と同様である。
In the acoustic lens 4 of this embodiment, unnecessary reflected waves P2,
The distance that Pa passes through the damper member 12 becomes longer,
The unnecessary reflected waves P2 and P3 are absorbed more completely, and the reflected waves traveling in a direction deviating from the direction parallel to the acoustic axis are absorbed by the damper member 12, and the reflected waves traveling substantially parallel to the acoustic axis are absorbed. can be detected by the piezoelectric transducer 3. That is, only information near the focus position of the sample 5 can be extracted more selectively. Other functions and effects are similar to those of the first embodiment.

以上説明したように、音響レンズ4に埋設するダンパ一
部材12の、音響軸に垂直な方向の長さ。
As explained above, the length of the damper member 12 embedded in the acoustic lens 4 in the direction perpendicular to the acoustic axis.

音響軸に平行な方向の長さ、埋設する位置及び形状を調
節することにより1等位相々超音波、すなわちフォーカ
ス位置のみの情報を選択的に取り出すことができる。
By adjusting the length in the direction parallel to the acoustic axis, the buried position, and the shape, it is possible to selectively extract the information of the primary phase phase ultrasound, that is, only the focus position.

また、音響レンズの入射瞳及び出射滝をダンパ一部材1
2で形成することができるため、音響レンズ4に圧電ト
ランスデユーサ3や音響レンズ4を振動運動させる加振
器等を取り付ける場合、音響レンズ4の前記入射瞳及び
出射11iVCより限定される範囲外の部位を利用する
ことができ、圧電トランスデユーサ3や加振器等の取り
付は作業が容易になる。また、ダンパ一部材12が入射
瞳及び出射瞳を形成するため、圧電トランスデユーサ3
の大きさを限定することができ、圧電トランスデユーサ
を形成する作業が容易になる。
In addition, the entrance pupil and output waterfall of the acoustic lens are damped by the damper member 1.
2. Therefore, when attaching a piezoelectric transducer 3 or an exciter for vibrating the acoustic lens 4 to the acoustic lens 4, it is possible to form the acoustic lens 4 outside the range limited by the entrance pupil and the exit 11iVC of the acoustic lens 4. This makes it easier to attach the piezoelectric transducer 3, vibrator, etc. In addition, since the damper member 12 forms an entrance pupil and an exit pupil, the piezoelectric transducer 3
The size of the piezoelectric transducer can be limited, making it easier to form the piezoelectric transducer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、音響レンズの音
響軸に対し直交する外周に凹部を周回状に設け、該凹部
に音響レンズの音響インピーダンスと略等しい音響イン
ピーダンスを有し、かつ超音波吸収の大きい物質を埋設
したので、前記凹部に埋設した超音波吸収物質中を通過
するノイズ成分と々る多重反射波を吸収除去することが
でき。
As explained above, according to one aspect of the present invention, a concave portion is provided in a circumferential manner on the outer periphery perpendicular to the acoustic axis of an acoustic lens, and the concave portion has an acoustic impedance substantially equal to the acoustic impedance of the acoustic lens, and Since a highly absorbing material is buried, it is possible to absorb and remove noise components and multiple reflected waves passing through the ultrasonic absorbing material buried in the recess.

反射信号のS/Nを向上することができる。The S/N of the reflected signal can be improved.

また、超音波吸収物質の大きさを調整することにより、
焦点位置のみの情報を選択的に取り出すことができる。
In addition, by adjusting the size of the ultrasonic absorbing substance,
Information about only the focus position can be selectively extracted.

また、音響レンズの入射瞳及び出射瞳を超音波吸収物質
により形成することができるため、圧電トランスデユー
サや音響レンズを振動運動させる加振器等を取り付ける
作業が容易になり、また、圧電トランスデユーサの大き
さを限定でき、圧電トランスデユーサを形成する作業が
容易になる。
In addition, since the entrance pupil and exit pupil of the acoustic lens can be formed from an ultrasonic absorbing material, it becomes easier to attach a piezoelectric transducer or an exciter that vibrates the acoustic lens. The size of the transducer can be limited and the work of forming the piezoelectric transducer becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の構成図、第2図は本発明
の第2実施例の構成図、第3図は反射型の超音波顕微鏡
の原理図、@4図は従来の音響レンズの構成図である。 1・・・送信機、     2・・・サーキュレータ。 3・・・圧電トランスデユーサ。 4・・・音響レンズ、   4&・・・球面レンズ部。 5・・・試料、     6・・・超音波伝搬媒体。 7・・・試料保持台、  8・・・受信機。 9・・・ビデオ信号処理部。 10・・・表示部、11・・・凹部。 12・・・ダンパ一部材。 ゝ゛−2−・′ 第21!1 第3図 第4図 ス
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a block diagram of the second embodiment of the present invention, Fig. 3 is a principle diagram of a reflection type ultrasound microscope, and Fig. 4 is a diagram of the conventional ultrasonic microscope. FIG. 2 is a configuration diagram of an acoustic lens. 1...Transmitter, 2...Circulator. 3...Piezoelectric transducer. 4...acoustic lens, 4&...spherical lens section. 5... Sample, 6... Ultrasonic propagation medium. 7... Sample holding stand, 8... Receiver. 9...Video signal processing section. 10... Display portion, 11... Recessed portion. 12...Damper part.ゝ゛-2-・' 21!1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一方の端面に設けられた超音波トランスデューサから出
射される超音波を伝送して他方の端面に介在させた液体
を経て試料側に送出し、反射された超音波を取り込み、
超音波トランスデューサ側に伝送して超音波像を表示す
るために用いられる超音波顕微鏡用音響レンズにおいて
、音響レンズの音響軸に対し直交する外周に凹部を周回
状に設け、該凹部に音響レンズの音響インピーダンスと
略等しい音響インピーダンスを有し、かつ超音波吸収の
大きい物質を埋設したことを特徴とする超音波顕微鏡用
音響レンズ。
Transmits ultrasonic waves emitted from an ultrasonic transducer installed on one end surface, sends them to the sample side through a liquid interposed on the other end surface, and captures the reflected ultrasound waves.
In an acoustic lens for an ultrasound microscope used to transmit ultrasound images to the ultrasound transducer side, a concave portion is provided in a circumferential manner on the outer periphery perpendicular to the acoustic axis of the acoustic lens, and the acoustic lens is placed in the concave portion. 1. An acoustic lens for an ultrasonic microscope, characterized in that a material having an acoustic impedance substantially equal to an acoustic impedance and having a large absorption of ultrasonic waves is embedded therein.
JP60272071A 1985-12-02 1985-12-02 Acoustic lens for ultrasonic microscope Pending JPS62130351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272071A JPS62130351A (en) 1985-12-02 1985-12-02 Acoustic lens for ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272071A JPS62130351A (en) 1985-12-02 1985-12-02 Acoustic lens for ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS62130351A true JPS62130351A (en) 1987-06-12

Family

ID=17508688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272071A Pending JPS62130351A (en) 1985-12-02 1985-12-02 Acoustic lens for ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS62130351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119416A (en) * 2012-12-19 2014-06-30 National Institute Of Advanced Industrial & Technology Probe array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119416A (en) * 2012-12-19 2014-06-30 National Institute Of Advanced Industrial & Technology Probe array

Similar Documents

Publication Publication Date Title
DE69128919D1 (en) Ultrasound imaging with radial scanning of a trapezoidal sector
US5072722A (en) Device for the spatial ultrasonic location of calculi
GB2212920A (en) Apparatus for investigating a sample with ultrasound
JPS59160754A (en) Scan type acoustic microscope
US5381695A (en) Apparatus for investigating a sample with ultrasound
US4457175A (en) Insonification apparatus for an ultrasound transmission system
JPH03113362A (en) Conical ultrasonic wave deflector
JPS62130351A (en) Acoustic lens for ultrasonic microscope
JPH0437379B2 (en)
JPH0324982B2 (en)
JP2002044773A (en) Acoustic lens and ultrasonic transmitter
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
JPS5950936B2 (en) Ultrasonic microscope sample holding plate
JPS5928362Y2 (en) ultrasound microscope
JPS5831200Y2 (en) ultrasonic focusing lens
JP3002082B2 (en) Ultrasonic probe
JPS58129354A (en) Ultrasonic microscope
JPS62142267A (en) Ultrasonic convergent lens
JPH0835956A (en) Ultrasonic probe
JP3505757B2 (en) Ultrasound spectrum microscope
JPS62133946A (en) Ultrasonic transmitter-receiver
JPS5950937B2 (en) ultrasound microscope
JPS5822043A (en) Ultrasonic probe
JP3027495B2 (en) Ultrasonic probe
JPH0222343B2 (en)