JPH0835956A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0835956A
JPH0835956A JP6169298A JP16929894A JPH0835956A JP H0835956 A JPH0835956 A JP H0835956A JP 6169298 A JP6169298 A JP 6169298A JP 16929894 A JP16929894 A JP 16929894A JP H0835956 A JPH0835956 A JP H0835956A
Authority
JP
Japan
Prior art keywords
lens
acoustic lens
ultrasonic
piezoelectric element
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6169298A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimori
博幸 西森
Shoji Yamaguchi
祥司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP6169298A priority Critical patent/JPH0835956A/en
Publication of JPH0835956A publication Critical patent/JPH0835956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide effective measures against echo noises due to side surface reflection waves without losing the mechanical strength of an acoustic lens for a high-resolution ultrasonic probe. CONSTITUTION:A tooth-shaped concave surface lens groove 8 with its depth being approximately ultrasonic wavelength is formed on an entire surface reaching a taper region from an upper surface on the cylindrical side surface of an acoustic lens 5 with an upper surface where a piezoelectric element 3 is bonded and a lower surface and a lower surface with a taper region 7 and a concave lens 6. The direction along the teeth of the tooth-shaped concave lens groove 8 is in parallel with the longer axis of the acoustic lens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に超音波顕微鏡に利
用される高解像度の超音波探触子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high resolution ultrasonic probe mainly used in an ultrasonic microscope.

【0002】[0002]

【従来の技術】近年、超音波技術と画像信号処理技術の
発展に伴って、超音波計測法が広く普及してきた。超音
波は、波長が自由に換えられる、取扱が容易、固体や液
体中での減衰が電磁波より著しく少ないなどの特徴があ
るため、固体状、液体状試料の探傷に広く応用されてい
る。
2. Description of the Related Art In recent years, ultrasonic measurement methods have become widespread with the development of ultrasonic technology and image signal processing technology. Ultrasonic waves are widely used for flaw detection of solid and liquid samples because they have the characteristics that the wavelength can be freely changed, they are easy to handle, and attenuation in solids and liquids is significantly less than electromagnetic waves.

【0003】特に、超音波顕微鏡は光学顕微鏡や電子顕
微鏡で測定出来ない物質の弾性的性質を調べることが出
来、また異物質界面が弾性的性質の差として明瞭に検知
できるので、走査機能や電気回路と組み合わせて高い分
解能を有する固体試料の二次元画像を得ることが出来
る。
In particular, the ultrasonic microscope can examine the elastic properties of substances that cannot be measured by an optical microscope or an electron microscope, and the interface of different substances can be clearly detected as a difference in elastic properties. By combining with a circuit, it is possible to obtain a two-dimensional image of a solid sample having high resolution.

【0004】超音波顕微鏡では、センサーとしての超音
波探触子の特性が非常に重要である。超音波探触子は、
圧電素子と音響レンズとから構成されている。上部電極
/圧電素子/下部電極から成る超音波素子は音響レンズ
の上端面に密着配置されている。一点集束型探触子の場
合、音響レンズは円柱形超音波伝搬媒体で形成される。
その下端にはテーパ領域が設けられ、テーパ領域の中央
部には、音響レンズ中心軸のまわりに球面形状をした凹
面レンズが設けられ、前記圧電素子から輻射された平面
波が凹レンズ面で屈折し焦点に向け超音波ビームを集束
しながら放射する機能を有する。この時、被写体試料に
向けて放射される超音波ビームの媒体として、凹面レン
ズと試料表面間に液状カプラントが充填される。
In the ultrasonic microscope, the characteristics of the ultrasonic probe as a sensor are very important. The ultrasonic probe
It is composed of a piezoelectric element and an acoustic lens. An ultrasonic element composed of an upper electrode / piezoelectric element / lower electrode is closely arranged on the upper end surface of the acoustic lens. In the case of the one-point focusing probe, the acoustic lens is formed of a cylindrical ultrasonic wave propagation medium.
A tapered region is provided at the lower end of the tapered region, and a spherical concave lens is provided around the central axis of the acoustic lens at the center of the tapered region. The plane wave radiated from the piezoelectric element is refracted by the concave lens surface and focused. It has the function of radiating the ultrasonic beam while focusing it. At this time, liquid couplant is filled between the concave lens and the sample surface as a medium of the ultrasonic beam emitted toward the subject sample.

【0005】超音波顕微鏡の分解能は超音波の波長程度
であるため、分解能を高める目的で、として1〜10G
Hzの高周波領域が用いられる。たとえば、1GHzで
水をカプラントとして用いると、分解能が約1μmとな
る。曲率半径が40μmサファイア凹面から3GHzで
60℃の水カプラントを介してに超音波ビームを放射し
た場合の分解能は約0.5μmとなる。このように高い
周波数の超音波を送受信するために、超音波探触子の圧
電素子は薄膜形状で、音響レンズ中心軸に垂直な平面上
に密着配置されている。下面電極と音響レンズ上端面の
密着性を高めるために、下部電極への導線接続は、下部
電極を上面電極側まで延ばして上面電極側で行うなどの
工夫がされている。
Since the resolution of the ultrasonic microscope is about the wavelength of the ultrasonic wave, the resolution of 1 to 10 G is used for the purpose of increasing the resolution.
The high frequency range of Hz is used. For example, when water is used as couplant at 1 GHz, the resolution is about 1 μm. The resolution is about 0.5 μm when an ultrasonic beam is emitted from a concave sapphire surface with a radius of curvature of 40 μm at 3 GHz through a water couplant at 60 ° C. In order to transmit and receive ultrasonic waves of such a high frequency, the piezoelectric element of the ultrasonic probe has a thin film shape and is arranged in close contact with a plane perpendicular to the central axis of the acoustic lens. In order to enhance the adhesion between the lower surface electrode and the upper end surface of the acoustic lens, the lead wire is connected to the lower electrode by extending the lower electrode to the upper surface electrode side and performing the connection on the upper surface electrode side.

【0006】解像度を左右する他の重要な因子に雑音が
ある。特に、エコー雑音とよばれる音響レンズ側面から
反射する散乱波が信号波のS/N比を低下させる。図
2、図3を用いてこの現象の説明を行う。図2は、超音
波探触子と試料の相対位置および音響レンズ内における
超音波ビームの反射の様子を示す縦断面図である。円筒
状の音響レンズ20の上端面に上部電極17/圧電素子
18/下部電極19から成る超音波素子が密着配置され
ている。音響レンズ20の下端部には、テーパ領域およ
び凹面レンズが設けられている。圧電素子18と音響レ
ンズ20が超音波探触子16の主要構成部である。凹面
レンズと試料22の間には、液状カプラント21が充填
されている。通常、上部電極17の直径と凹面レンズ口
径は、ほぼ一致するよう設計されいる。
Another important factor affecting resolution is noise. In particular, a scattered wave reflected from the side surface of the acoustic lens called echo noise reduces the S / N ratio of the signal wave. This phenomenon will be described with reference to FIGS. FIG. 2 is a vertical cross-sectional view showing the relative position of the ultrasonic probe and the sample and the reflection of the ultrasonic beam in the acoustic lens. An ultrasonic element composed of an upper electrode 17, a piezoelectric element 18, and a lower electrode 19 is closely arranged on the upper end surface of a cylindrical acoustic lens 20. A taper region and a concave lens are provided at the lower end of the acoustic lens 20. The piezoelectric element 18 and the acoustic lens 20 are the main components of the ultrasonic probe 16. A liquid couplant 21 is filled between the concave lens and the sample 22. Usually, the diameter of the upper electrode 17 and the diameter of the concave lens are designed to be substantially the same.

【0007】さて、今音響レンズ20の凹面レンズ焦点
が試料22の表面にあう位置にレンズ/試料間距離を選
び、圧電素子を駆動して超音波発振を行う。図2に示し
たように、通常上部電極17は下部電極19の直径より
小さく設計されており、上、下部電極間にパルス電圧を
印加すると、超音波は上部電極17の直下領域の圧電素
子部位においてのみ励振される。したがって、音響レン
ズ20からの超音波受信/信号電圧への変換も当該部位
においてのみ生ずる。
Now, the lens / sample distance is selected at the position where the concave lens focus of the acoustic lens 20 is on the surface of the sample 22, and the piezoelectric element is driven to perform ultrasonic oscillation. As shown in FIG. 2, the upper electrode 17 is usually designed to have a diameter smaller than that of the lower electrode 19, and when a pulse voltage is applied between the upper and lower electrodes, ultrasonic waves are generated directly below the upper electrode 17 in the piezoelectric element region. Is excited only in. Therefore, the reception of ultrasonic waves from the acoustic lens 20 and the conversion into the signal voltage also occur only in the relevant part.

【0008】圧電素子で励振された超音波(平面波)
は、音響レンズ20を下方へ伝搬し、凹面レンズ界面か
ら液状カプラント21内へ放射される。図2の音響レン
ズ20内の直線、矢印は超音波の進行方向を示す。上部
電極17直下の圧電素子18領域で励振、輻射される超
音波のうち、凹面レンズ上において、輻射エネルギーが
もっとも高いのは輻射角度ゼロ、すなわちレンズ中心軸
に沿って輻射される超音波である。この超音波は、圧電
素子から最短距離を伝搬して凹面レンズに達し、一部は
界面で反射されて元の径路を戻り、一部は液体カプラン
ト21内に放射され、試料22表面でさらにその一部が
吸収され、残りは反射されて元の経路を辿って圧電素子
へ戻る。試料22表面で反射されて戻った波が受信信号
波である。
Ultrasonic wave (plane wave) excited by a piezoelectric element
Propagates down the acoustic lens 20 and is radiated from the concave lens interface into the liquid couplant 21. A straight line and an arrow in the acoustic lens 20 of FIG. 2 indicate the traveling direction of the ultrasonic wave. Of the ultrasonic waves excited and radiated in the region of the piezoelectric element 18 immediately below the upper electrode 17, the highest radiant energy on the concave lens is the ultrasonic wave radiated at zero radiation angle, that is, the central axis of the lens. . This ultrasonic wave propagates the shortest distance from the piezoelectric element and reaches the concave lens, part of which is reflected at the interface and returns to the original path, part of which is radiated into the liquid couplant 21 and further on the surface of the sample 22. Part of the light will be absorbed and the rest will be reflected and follow the original path back to the piezoelectric element. The wave reflected by the surface of the sample 22 and returned is the received signal wave.

【0009】圧電素子から輻射された超音波で、前記し
た最短距離を進まない波は、凹面レンズで一部が反射さ
れると図示したように反射波の進路がレンズ中心軸から
ずれる。図2では簡単のために圧電素子から輻射角度ゼ
ロで輻射される波のみを示しているが、実際にはある輻
射角をもって輻射される波もあり、これら波の凹面レン
ズでの反射波もレンズ中心軸からずれて音響レンズ20
の側面で再反射される波となる。
The ultrasonic wave radiated from the piezoelectric element, which does not travel the shortest distance, is partially reflected by the concave lens, and the path of the reflected wave is deviated from the central axis of the lens as shown in the figure. In FIG. 2, for simplicity, only the waves radiated from the piezoelectric element at a radiation angle of zero are shown, but in reality, there are also waves radiated at a certain radiation angle, and the waves reflected by the concave lens are also lenses. Acoustic lens 20 deviated from the central axis
It becomes a wave that is re-reflected on the side of.

【0010】図3は、音響レンズ20内から圧電素子に
戻って電気信号に変換されたパルスのパターンとそのソ
ースを示している。図で「レンズエコー」は最短距離で
凹面レンズで反射されて戻った波を、また「試料エコ
ー」が前記信号波を指す。その間に分布する「散乱波」
は、前記音響レンズ20の側面での反射波を指す。これ
ら散乱波、すなわち多重反射波は、エコー雑音であって
信号波近傍に現れる成分は信号波と干渉を起こし、信号
波のS/N比を低下させる。その結果、超音波顕微鏡の
解像度が低下するという問題点がある。
FIG. 3 shows a pulse pattern converted from the acoustic lens 20 back to the piezoelectric element and converted into an electric signal, and its source. In the figure, "lens echo" refers to the wave reflected and returned by the concave lens at the shortest distance, and "sample echo" refers to the signal wave. "Scattered waves" distributed in the meantime
Indicates a reflected wave on the side surface of the acoustic lens 20. These scattered waves, that is, the multiple reflected waves, are echo noises, and components appearing in the vicinity of the signal wave cause interference with the signal wave, thereby reducing the S / N ratio of the signal wave. As a result, there is a problem that the resolution of the ultrasonic microscope is lowered.

【0011】この問題点を解決する方法として、たとえ
ば特開昭62−130351号広報には、音響レンズの
円筒状側面に圧電素子の超音波励振領域直下(励振領域
と凹面レンズ口径を結ぶ輻射角ゼロの超音波輻射領域)
を除く音響レンズ深奥部に達する程度に深く溝を周回状
に切り込み、この溝内に音響レンズとほぼ等しい音響イ
ンピーダンスをもつ超音波吸収材を埋没した超音波探触
子用音響レンズが開示されている。
As a method for solving this problem, for example, in Japanese Patent Laid-Open No. 62-130351, a cylindrical side surface of an acoustic lens is directly below an ultrasonic wave excitation area of a piezoelectric element (a radiation angle connecting the excitation area and a concave lens aperture). Zero ultrasonic radiation area)
The acoustic lens for ultrasonic probes is disclosed in which a groove is deeply cut in a circular shape so as to reach the deep part of the acoustic lens, and an ultrasonic absorber having an acoustic impedance substantially equal to that of the acoustic lens is buried in the groove. There is.

【0012】この技術を用いれば、音響レンズ側面への
入射する反射波は超音波吸収材によってそのエネルギー
の大半を失い、再反射波は急激に減衰するため図4で示
したような散乱波は著しく抑制することができる。溝部
に埋没した超音波吸収材の音響インピーダンスが音響レ
ンズとほぼ等しいため、音響レンズと超音波吸収材との
界面で入射してきた超音波が散乱されることなく、効果
的に超音波吸収材に入射してエネルギーを失うのであ
る。
By using this technique, the reflected wave incident on the side surface of the acoustic lens loses most of its energy by the ultrasonic absorbing material, and the re-reflected wave is rapidly attenuated, so that the scattered wave as shown in FIG. It can be significantly suppressed. Since the acoustic impedance of the ultrasonic absorber buried in the groove is almost equal to that of the acoustic lens, the ultrasonic wave incident on the interface between the acoustic lens and the ultrasonic absorber is not scattered, and the ultrasonic absorber is effectively used as the ultrasonic absorber. It is incident and loses energy.

【0013】[0013]

【発明が解決しようとする課題】前記した従来技術によ
れば、吸収材効果によって凹面レンズで反射された後音
響レンズ側面で再反射される超音波のエネルギーを相当
減衰させることができる。しかし、音響レンズ側面に加
工される周回分布溝は、凹面レンズで口径を除く領域迄
深く切り込まれる。前記したように、超音波顕微鏡の分
解能を向上させるため数GHzの高周波超音波を用いる
と、凹面レンズ口径は100μm以下となる。しかる
に、音響レンズはサファイアや石英など高硬度脆性材で
構成されるので、一般に形状加工が困難であり、前記の
ように深い溝を周回的に形成すると、音響レンズの機械
的強度が著しく低下する。
According to the above-mentioned prior art, the energy of the ultrasonic wave reflected by the concave lens and then re-reflected by the side surface of the acoustic lens can be considerably attenuated by the absorbing effect. However, the circular distribution groove formed on the side surface of the acoustic lens is deeply cut by the concave lens up to the area excluding the aperture. As described above, when a high frequency ultrasonic wave of several GHz is used to improve the resolution of the ultrasonic microscope, the diameter of the concave lens is 100 μm or less. However, since the acoustic lens is composed of a high hardness brittle material such as sapphire or quartz, it is generally difficult to form the shape, and when the deep groove is circumferentially formed as described above, the mechanical strength of the acoustic lens is significantly reduced. .

【0014】また、吸収材は音響インピーダンスを音響
レンズとほぼ等しくしているとは云え、両者の界面に入
射する超音波は垂直入射することがなく、界面での反射
成分は避けることができない。したがって、高いS/N
比を得るために充分な側面反射波抑制効果が必ずしも得
られるとは限らない。本発明の目的は、音響レンズの機
械的強度を損うことなく効果の高い側面反射波の雑音対
策を備えた音響レンズを提供することである。
It can be said that the absorber has an acoustic impedance substantially equal to that of the acoustic lens, and the ultrasonic wave incident on the interface between the two does not enter vertically, and the reflection component at the interface cannot be avoided. Therefore, high S / N
It is not always possible to obtain a sufficient side surface reflected wave suppressing effect to obtain the ratio. An object of the present invention is to provide an acoustic lens equipped with a highly effective countermeasure against side reflected wave noise without impairing the mechanical strength of the acoustic lens.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するため
に本発明では、円柱形状部を持つ音響レンズと、このレ
ンズの中心軸に垂直な平面をなす上端面に形成された圧
電素子と、音響レンズの下端面に設けた、テーパ領域と
前記中心軸まわりに球面形状をした凹面レンズと、を有
する超音波探触子において、音響レンズは、その円柱状
側面の前記上端面から前記テーパ領域までの全面に、深
さが前記圧電素子で励振される波長程度ののこぎり歯状
の切欠き溝を、各円筒断面で円形のこぎり歯状になるよ
うに形成したことを特徴とする超音波探触子を開示す
る。
In order to achieve the above object, according to the present invention, an acoustic lens having a cylindrical portion, and a piezoelectric element formed on an upper end surface forming a plane perpendicular to the central axis of the lens, In an ultrasonic probe having a tapered region provided on the lower end surface of an acoustic lens and a concave lens having a spherical shape around the central axis, the acoustic lens has a cylindrical region from the upper end face to the tapered region. The ultrasonic probe is characterized in that a sawtooth-shaped notch groove having a depth of about the wavelength excited by the piezoelectric element is formed so as to have a circular sawtooth shape in each cylindrical cross section. Disclose the child.

【0016】[0016]

【作用】本発明ののこぎり歯状切欠き溝は、深さが超音
波の波長程度(100μm程)であるため加工が容易な
上に音響レンズの機械的強度を損なう危険性は小さい。
更に、のこぎり歯状の形状で且つその歯に沿う方向が音
響レンズの長軸に沿う方向であるため、凹レンズからの
ノイズ反射波は乱反射に近い反射となり、圧電素子への
入射量も少なくなり、ノイズ除去の機能を持つ。
The saw-toothed notch groove of the present invention has a depth of about the wavelength of ultrasonic waves (about 100 μm), so that it is easy to process and the risk of impairing the mechanical strength of the acoustic lens is small.
Furthermore, since it has a sawtooth shape and the direction along the teeth is the direction along the long axis of the acoustic lens, the noise reflected wave from the concave lens becomes a reflection close to irregular reflection, and the amount of incidence on the piezoelectric element also decreases. It has a noise removal function.

【0017】[0017]

【実施例】以下本発明を、実施例に基づいてより詳しく
述べる。図1(イ)、(ロ)は、実施例による音響レン
ズを用いた超音波探触子構造を示す。図1(イ)は上面
図であり、図1(ロ)は図1(イ)のA−A′断面図で
ある。なお、図では簡単のために上、下部電極用導線の
記載は省いてある。図において1は超音波探触子、2は
上部電極、3は圧電素子、4は下部電極、5は円柱状音
響レンズ、6は凹面レンズ、7はテーパ領域、8はのこ
ぎり歯状切欠き溝である。
The present invention will be described in more detail based on the following examples. FIGS. 1A and 1B show an ultrasonic probe structure using an acoustic lens according to an example. 1A is a top view, and FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. It should be noted that in the drawing, for simplicity, the conductor wire for the lower electrode is omitted. In the figure, 1 is an ultrasonic probe, 2 is an upper electrode, 3 is a piezoelectric element, 4 is a lower electrode, 5 is a cylindrical acoustic lens, 6 is a concave lens, 7 is a tapered region, 8 is a sawtooth notch groove. Is.

【0018】音響レンズ5はサファイアや石英を加工し
たもので、下端にはのテーパ領域7と超音波を点状に絞
って焦点位置に放射する凹面レンズ6が設けられてい
る。のこぎり歯状レンズ溝8は、音響レンズ5の円柱状
側面において、各円柱断面で、深さd(超音波の1〜数
波長程度の深さ)ののこぎり歯形状の凹凸溝が音響レン
ズ5の上端面からテーパ領域まで設けられたものであ
る。溝の深さdは、超音波の波長(1〜数波長)による
が、100μm程度とすればよい。このような溝加工
は、音響レンズ5の機械的強度を損うことなく、比較的
容易に研削で行うことができる。
The acoustic lens 5 is made by processing sapphire or quartz, and is provided with a taper region 7 at the lower end and a concave lens 6 which squeezes ultrasonic waves into a point shape and radiates it to a focal position. The sawtooth-shaped lens groove 8 is a sawtooth-shaped uneven groove having a depth d (a depth of about 1 to several wavelengths of ultrasonic waves) in each cylindrical cross section on the cylindrical side surface of the acoustic lens 5. It is provided from the upper end surface to the taper region. The depth d of the groove depends on the wavelength of the ultrasonic wave (1 to several wavelengths), but may be about 100 μm. Such groove processing can be relatively easily performed by grinding without impairing the mechanical strength of the acoustic lens 5.

【0019】本実施例によれば、凹レンズ6の中心軸以
外からの反射波Qは、図1(イ)、(ロ)に示す。のこ
ぎり歯の凹部ピーク位置P1と凸部ピーク位置P3とテー
パ部P2とで異なった反射の様相を呈す。 (1)、凹部ピーク位置P1、凹部ピーク位置P3…凹レ
ンズ6の反射波Qの入射角で定まる反射角方向へと反射
する。この反射方向には圧電素子3がありノイズ成分と
なるが、凹部ピーク位置P1、P3の占める面積は全体の
反射面に占める割合は少ないため、少ないノイズ成分で
あって無視できる程小さい。またP1とP3では反射波の
路程が異なり溝の深さの設定によって位相をずらし打ち
消せば更に反射波の音圧を下げることが不可能である。 (2)、のこぎり歯のテーパ部P2…凹レンズ面からの
ノイズ反射波Qの中で95%以上のエネルギーを持つ反
射部分である。このテーパ部にあっては互いに対向する
テーパ部を折り返しながら反射してゆく。この路程は大
となり、且つ反射方向を圧電素子3からずらす方向にす
ることで、圧電素子3へのノイズ反射成分は少なくな
る。本実施例によれば、A−A′平面内で音響レンズ5
の側面の反射が散乱され、超音波圧電素子3への散乱波
の入力量は少なくなる。
According to the present embodiment, the reflected wave Q from other than the central axis of the concave lens 6 is shown in FIGS. The concave peak position P 1 , the convex peak position P 3 and the taper part P 2 of the saw tooth exhibit different reflection patterns. (1) Recessed peak position P 1 , recessed peak position P 3 ... Reflected in the reflection angle direction determined by the incident angle of the reflected wave Q of the concave lens 6. There is the piezoelectric element 3 in this reflection direction and it becomes a noise component. However, since the area occupied by the recess peak positions P 1 and P 3 occupies a small portion of the entire reflection surface, it is a small noise component which is negligible. Further, the path length of the reflected wave is different between P 1 and P 3 , and it is impossible to further reduce the sound pressure of the reflected wave by offsetting the phase by canceling the phase by setting the groove depth. (2), tapered portion of sawtooth P 2 ... A reflected portion having energy of 95% or more in the noise reflected wave Q from the concave lens surface. In this taper portion, the taper portions facing each other are reflected and reflected. This path length is large, and the noise reflection component to the piezoelectric element 3 is reduced by shifting the reflection direction from the piezoelectric element 3. According to this embodiment, the acoustic lens 5 is in the AA 'plane.
The reflection of the side surface of the ultrasonic wave is scattered, and the input amount of the scattered wave to the ultrasonic piezoelectric element 3 is reduced.

【0020】[0020]

【発明の効果】以上述べたように本発明によれば、音響
レンズの機械的強度を損なうことなく、比較的簡単な加
工によって音響レンズの側面反射波に起因するエコー雑
音を効果的に抑制することができる。その結果、試料か
らの反射信号のS/N比を向上させることが出来、超音
波探査像の解像度向上に資することができる。
As described above, according to the present invention, the echo noise caused by the side reflected wave of the acoustic lens can be effectively suppressed by the relatively simple processing without deteriorating the mechanical strength of the acoustic lens. be able to. As a result, the S / N ratio of the reflected signal from the sample can be improved, which can contribute to the improvement of the resolution of the ultrasonic probe image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波探触子の実施例図である。FIG. 1 is a diagram showing an embodiment of an ultrasonic probe of the present invention.

【図2】従来例による超音波探触子と側面反射波の軌跡
を示す図である。
FIG. 2 is a diagram showing a trajectory of an ultrasonic probe and a side reflected wave according to a conventional example.

【図3】従来例の超音波探触子の出力パターンを示す図
である。
FIG. 3 is a diagram showing an output pattern of a conventional ultrasonic probe.

【符号の説明】[Explanation of symbols]

1 圧電素子 2、17 上部電極 3、18 圧電素子 4、19 下部電極 5、20 音響レンズ 6 凹面レンズ 7 テーパ領域 8 円筒状切欠き溝 9、21 液状カプラント 10 被検試料 16 超音波探触子 22 試料 d 溝の深さ DL 音響レンズ P、Q、O 凹面レンズ反射点 M 凹面レンズ焦点1 Piezoelectric element 2, 17 Upper electrode 3, 18 Piezoelectric element 4, 19 Lower electrode 5, 20 Acoustic lens 6 Concave lens 7 Tapered area 8 Cylindrical notch groove 9, 21 Liquid couplant 10 Test sample 16 Ultrasonic probe 22 Sample d Groove depth D L Acoustic lens P, Q, O Concave lens reflection point M Concave lens focus

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円柱形状部を持つ音響レンズと、このレ
ンズの中心軸に垂直な平面をなす上端面に形成された圧
電素子と、音響レンズの下端面に設けた、テーパ領域と
前記中心軸まわりに球面形状をした凹面レンズと、を有
する超音波探触子において、音響レンズは、その円柱状
側面の前記上端面から前記テーパ領域までの全面に、深
さが前記圧電素子で励振される波長程度ののこぎり歯状
の切欠きまたは切溝を、各円柱断面で円形のこぎり歯状
になるように形成したことを特徴とする超音波探触子。
1. An acoustic lens having a cylindrical portion, a piezoelectric element formed on an upper end surface of a plane perpendicular to the central axis of the lens, a taper region and the central axis provided on the lower end surface of the acoustic lens. In an ultrasonic probe having a concave lens having a spherical shape around the acoustic lens, the acoustic lens has a depth that is excited by the piezoelectric element over the entire surface from the upper end surface of the cylindrical side surface to the taper region. An ultrasonic probe characterized in that a sawtooth-shaped notch or groove having a wavelength of about a wavelength is formed so as to have a circular sawtooth shape in each cylindrical cross section.
JP6169298A 1994-07-21 1994-07-21 Ultrasonic probe Pending JPH0835956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169298A JPH0835956A (en) 1994-07-21 1994-07-21 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169298A JPH0835956A (en) 1994-07-21 1994-07-21 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0835956A true JPH0835956A (en) 1996-02-06

Family

ID=15883933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169298A Pending JPH0835956A (en) 1994-07-21 1994-07-21 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0835956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322789A (en) * 2005-05-18 2006-11-30 Jtekt Corp Ultrasonic probe
JP2020098167A (en) * 2018-12-19 2020-06-25 日本製鉄株式会社 Ultrasonic wave flaw sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322789A (en) * 2005-05-18 2006-11-30 Jtekt Corp Ultrasonic probe
JP2020098167A (en) * 2018-12-19 2020-06-25 日本製鉄株式会社 Ultrasonic wave flaw sensor

Similar Documents

Publication Publication Date Title
JP2664443B2 (en) Equipment for examining samples with ultrasound
JPS6217195B2 (en)
US5115414A (en) Conical ultrasonic wave deflection system
JPH0835956A (en) Ultrasonic probe
JPH0437379B2 (en)
JP2002044773A (en) Acoustic lens and ultrasonic transmitter
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
JPS634142B2 (en)
CN214374519U (en) Fine sound beam ultrasonic probe
JPH0835955A (en) Ultrasonic probe
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope
EP0033751B1 (en) Ultrasonic transducer using ultra high frequency
JPH08313496A (en) Ultrasonic probe
JPH11316216A (en) Ultrasonic probe
CN112946087A (en) Fine sound beam ultrasonic probe and design method
JPH0545346A (en) Ultrasonic probe
RU34794U1 (en) ACOUSTIC MICROSCOPE HEAD
JP2667684B2 (en) Focus transducer
JPH05256828A (en) Acoustic wave conversion element
Farnell et al. Planar acoustic microscope lens
JP3002082B2 (en) Ultrasonic probe
JPH0755778A (en) Ultrasonic probe
JPH03252554A (en) Ultrasonic probe
JPH0526655A (en) Film thickness measuring method and device
JPH0365495B2 (en)