JPH0526655A - Film thickness measuring method and device - Google Patents
Film thickness measuring method and deviceInfo
- Publication number
- JPH0526655A JPH0526655A JP20492291A JP20492291A JPH0526655A JP H0526655 A JPH0526655 A JP H0526655A JP 20492291 A JP20492291 A JP 20492291A JP 20492291 A JP20492291 A JP 20492291A JP H0526655 A JPH0526655 A JP H0526655A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- probe
- film thickness
- reflected
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、焦点型探触子を使った
膜厚測定方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring method and apparatus using a focus type probe.
【0002】[0002]
【従来の技術】超音波を利用した膜厚測定では、図4に
示すようにフラット型探触子10から周波数の異なる平
面波を試料11に放射し、各周波数毎の反射波の強度か
ら膜厚を測定する。図5には、基板12上に形成された
薄膜13の膜厚測定例を示す。平面波超音波は水等の媒
質を介して薄膜13に達するが、このときの反射強度R
は、2. Description of the Related Art In film thickness measurement using ultrasonic waves, a flat type probe 10 radiates plane waves having different frequencies to a sample 11 as shown in FIG. 4, and the film thickness is measured from the intensity of a reflected wave at each frequency. To measure. FIG. 5 shows an example of film thickness measurement of the thin film 13 formed on the substrate 12. The plane wave ultrasonic waves reach the thin film 13 through a medium such as water, but the reflection intensity R at this time
Is
【0003】[0003]
【数1】Z=A/B ここで、A、Bは[Equation 1] Z = A / B Where A and B are
【0004】[0004]
【数2】 となる。[数2]のZ12、Z23は以下である。[Equation 2] Becomes Z 12 and Z 23 in [Equation 2] are as follows.
【0005】[0005]
【数3】Z12=Z1/Z2
Z23=Z2/Z3
ここで、Z1は媒質14中の音響インピーダンス、Z2は
薄膜13中の音響インピーダンス、Z3は基板12中の
音響インピーダンスである。更に、[数2]中のk
2は、薄膜13中の波数である。Z 12 = Z 1 / Z 2 Z 23 = Z 2 / Z 3 where Z 1 is the acoustic impedance in the medium 14, Z 2 is the acoustic impedance in the thin film 13, and Z 3 is the substrate 12. The acoustic impedance. Furthermore, k in [Equation 2]
2 is the wave number in the thin film 13.
【0006】薄膜13と基板12の音響インピーダンス
Z2、Z3の間でZ2<Z3の場合、薄膜13の厚さdが、
超音波の波長λの1/4、3/4、5/4、…倍におい
て反射率Rが極小となることが知られている。膜厚測定
では、このことを利用する。図6には、Z2<Z3のもと
での、反射率Rとd/λとの関係図を示す。この関係図
は、基板12がサファイァ、薄膜13が石英ガラスの例
であり、サファイァの音速を11000m/s、密度
4.0g/cm3、石英ガラスの音速5900m/s、
密度2.2g/cm3とした。図6では、(d/λ)=
0.25と、0.75の2点で極小値が現われているこ
とがわかる。When Z 2 <Z 3 between the acoustic impedances Z 2 and Z 3 of the thin film 13 and the substrate 12, the thickness d of the thin film 13 is
It is known that the reflectance R becomes minimum at 1/4, 3/4, 5/4, ... This is used in the film thickness measurement. FIG. 6 shows a relationship diagram between the reflectance R and d / λ under the condition of Z 2 <Z 3 . This relationship diagram is an example in which the substrate 12 is sapphire and the thin film 13 is quartz glass. The sound velocity of the sapphire is 11000 m / s, the density is 4.0 g / cm 3 , the sound velocity of the quartz glass is 5900 m / s,
The density was 2.2 g / cm 3 . In FIG. 6, (d / λ) =
It can be seen that the minimum value appears at two points of 0.25 and 0.75.
【0007】図6から膜厚を測定するには、超音波の周
波数を小さく設定しておき、これを次第に大きくしなが
ら、各周波数毎に反射率Rを求める。そして、最初に現
われる極小値をみつける。この最初に現われる極小値と
は、(d/λ)=0.25である。一方、音速vと超音
波の周波数fiと波長λとは、In order to measure the film thickness from FIG. 6, the frequency of ultrasonic waves is set to a small value, and the reflectance R is calculated for each frequency while gradually increasing the frequency. Then, find the minimum value that appears first. The minimum value that appears first is (d / λ) = 0.25. On the other hand, the sound velocity v, the ultrasonic frequency f i, and the wavelength λ are
【0008】[0008]
【数4】λ=v/fi の関係にある故に、膜厚dは、Since the relationship of λ = v / f i , the film thickness d is
【0009】[0009]
【数5】d=0.25(v/fi) なる数式で求まることになる。## EQU5 ## It can be obtained by the mathematical expression d = 0.25 (v / f i ).
【0010】[0010]
【発明が解決しようとする課題】従来例では、平面波の
放射のためにフラット型探触子を使用しなければならな
い。フラット型探触子は、図4に示すように放射面が平
行な面であり、超音波を放射される面積は、探触子の径
Dによって決まる。そして測定結果は放射される面積全
体の平均値となる。かくして、測定位置の分解能が低下
し、試料上の互いに近接した位置での膜厚測定では、同
一膜厚の測定値が得られてしまい、実際上の膜厚の変動
の様子までは測定できなかった。In the prior art, a flat probe must be used for plane wave radiation. As shown in FIG. 4, the flat probe is a plane whose emission surfaces are parallel to each other, and the area where ultrasonic waves are emitted is determined by the diameter D of the probe. And the measurement result is an average value of the entire radiated area. As a result, the resolution of the measurement position decreases, and when measuring the film thickness at positions close to each other on the sample, measured values of the same film thickness are obtained, and it is not possible to measure the actual film thickness variation. It was
【0011】本発明の目的は、フラット型探触子ではな
く、焦点型探触子を使用して膜厚測定を可能にする膜厚
測定方法及び装置を提供するものである。It is an object of the present invention to provide a film thickness measuring method and apparatus which enable film thickness measurement using a focus type probe instead of a flat type probe.
【0012】[0012]
【課題を解決するための手段】本発明の測定方法は、探
触子として焦点型探触子を使用し、該焦点型探触子の焦
点より内側に試料を設置した状態において試料から反射
してきた反射波の周波数特性を求め、この周波数特から
薄膜の膜厚を求めることとした(請求項1)。The measuring method of the present invention uses a focus type probe as a probe, and reflects from the sample when the sample is installed inside the focus of the focus type probe. The frequency characteristic of the reflected wave is obtained, and the film thickness of the thin film is obtained from this frequency characteristic (claim 1).
【0013】更に本発明の測定装置は周波数可変の打ち
出しパルス源と、該周波数を可変にしてのパルスに従っ
て超音波を、焦点より内側に設置した試料に向けて放射
する焦点型探触子と、試料からの反射波の中で直達反射
波のみを表面弾性波との時間差を利用して抽出する手段
と、パルス周波数と直達波の反射信号(反射率)との関
係を参照して反射信号の極小値となるパルス周波数を求
め、このパルス周波数と音速とから薄膜の厚さを算出す
る手段と、より成る(請求項2)。Further, the measuring device of the present invention comprises a variable frequency embossing pulse source, and a focus type probe which emits an ultrasonic wave toward a sample placed inside the focal point in accordance with a pulse having a variable frequency. Of the reflected waves from the sample, refer to the relationship between the pulse frequency and the reflected signal (reflectance) of the direct wave and the means for extracting only the directly reflected wave using the time difference from the surface acoustic wave. And a means for calculating the thickness of the thin film from the pulse frequency and the speed of sound, which is the minimum value.
【0014】更に本発明の測定装置は、パルス周波数を
与えるパルス幅は、焦点から内側設置位置までの距離Δ
Zでの前記時間差よりも小さい値としてなる(請求項
3)。Further, in the measuring apparatus of the present invention, the pulse width which gives the pulse frequency is the distance Δ from the focus to the inner installation position.
The value is smaller than the time difference in Z (claim 3).
【0015】[0015]
【作用】本発明によれば、焦点型探触子の焦点より内側
に試料を設置して反射波を測定することにより、膜厚測
定が可能となる(請求項1)。According to the present invention, the film thickness can be measured by placing the sample inside the focus of the focus type probe and measuring the reflected wave (Claim 1).
【0016】更に本発明によれば、パルス信号の周波数
を変えながら直達反射波のみを検出し、平面波と同様な
かんがえ方で極小値より膜厚測定が可能になる(請求項
2、3)。Further, according to the present invention, only the direct reflection wave is detected while changing the frequency of the pulse signal, and the film thickness can be measured from the minimum value in the same way as the plane wave (claims 2 and 3).
【0017】[0017]
【実施例】図1は本発明の膜厚測定装置の実施例図であ
る。以下の各構成要素より成る。
高周波パルス発振器1…可変周波数のパルスを発生可能
とする発振器である。ここで、可変周波数とは、パルス
幅が可変との意である。
受信器2…探触子6から戻ってくる反射波信号(高周波
パルス電圧)を受信し、増幅する。
AD変換器3…受信器2で受信した反射波信号をAD変
換する。
コンピュータ4…AD変換器3で得た反射波波形に対す
るデータをバッファ内(図示せず)に格納し、解析処理
を行う。
モニタ5…コンピュータ4での解析・処理結果を表示し
て、観察者に示す。
探触子6…圧電素子6Aと音響レンズ6Bとより成り、
音響レンズ6Bの放射面6Cは凹面形状をなす。この凹
面の形状によって超音波の焦点が定まる。一点焦点形で
は、凹面部6Cは円錐状をなし、ライン焦点形では、探
触子6全体が長方形であって凹面部6Cは紙面から裏面
にかけて円筒形状をなす。この探触子6は、高周波パル
ス電圧の印加によって、励起した超音波は、レンズ6B
の凹面部6Cで集束し、放出される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an embodiment of the film thickness measuring device of the present invention. It consists of the following components. High frequency pulse oscillator 1 ... An oscillator capable of generating a variable frequency pulse. Here, the variable frequency means that the pulse width is variable. Receiver 2 ... Receives and amplifies the reflected wave signal (high frequency pulse voltage) returned from the probe 6. AD converter 3 ... AD-converts the reflected wave signal received by the receiver 2. Computer 4 ... Data of the reflected wave waveform obtained by the AD converter 3 is stored in a buffer (not shown) and analysis processing is performed. Monitor 5 ... Displays the analysis / processing result on the computer 4 and presents it to the observer. The probe 6 is composed of a piezoelectric element 6A and an acoustic lens 6B,
The emission surface 6C of the acoustic lens 6B has a concave shape. The shape of this concave surface determines the focus of ultrasonic waves. In the one-point focus type, the concave surface portion 6C has a conical shape, and in the line focus type, the entire probe 6 is rectangular and the concave surface portion 6C has a cylindrical shape from the paper surface to the back surface. In this probe 6, ultrasonic waves excited by applying a high frequency pulse voltage are reflected by the lens 6B.
The light is focused by the concave surface portion 6C of and is discharged.
【0018】媒体15…探触子6との間で超音波の伝播
を減衰させることなく行わせるためのもので、例えば水
より成る。
試料16…膜厚をその表面に有するものである。
ステージ17…試料16を保持し、且つX、Y、Z方向
への移動が可能な機械系である。
コンピュータ9…ステージ17の制御目的で設置してあ
る。コンピュータ4が兼用してもよい。
以上の構成で、探触子6は焦点形である故に、平面波を
いかに得るかが問題となる。探触子6の放出超音波とし
ては、直下の試料に直角(法線)方向からそのまま直進
する直達波(垂直入射波)と、臨界角で入射して弾性表
面波として働く斜向波とがあり、直達波のみが平面波と
しての性格を持つと考えられる。そこで、本実施例で
は、直達波のみを反射波として検出するように工夫した
点に特徴を持つ。直達波と斜向波(表面波)とは反射波
としては干渉することがあり、本実施例では、この干渉
がないような状態のもとで、直達反射波を検出すること
にした。Medium 15: A medium for transmitting ultrasonic waves between the probe 6 and the probe 6 without attenuating the medium, and is made of, for example, water. Sample 16 ... It has a film thickness on its surface. Stage 17 ... A mechanical system that holds the sample 16 and can move in the X, Y, and Z directions. Computer 9 ... Installed for the purpose of controlling the stage 17. The computer 4 may also serve as the computer. With the above configuration, since the probe 6 is a focus type, how to obtain a plane wave becomes a problem. The ultrasonic waves emitted from the probe 6 are a direct wave (vertical incident wave) that travels straight from the right-angled (normal) direction to the sample directly below, and an oblique wave that enters at a critical angle and acts as a surface acoustic wave. Yes, only direct waves are considered to have the character of plane waves. Therefore, the present embodiment is characterized in that only the direct wave is detected as the reflected wave. The direct wave and the oblique wave (surface wave) may interfere with each other as a reflected wave. In this embodiment, the direct reflected wave is detected under the condition that there is no interference.
【0019】先ず、図1の動作を簡単に述べる。探触子
6の圧電素子に高周波パルス発振器1より発せられたパ
ルス電圧が印加されると、圧電素子下面に超音波が励起
される。励起された超音波は探触子6のもう一方の端面
に設けられた凹面によって集束される。集束された超音
波は液体音場媒体15を介し、被検査体16に照射され
る。その際、コンピュータ9からの信号によって、ステ
ージ17は、X、Y、Z方向に移動する。そして、被検
査体16の反射波は探触子6によって集音され、電気信
号に変換され、受信器2によって増幅される。増幅され
た電気信号はAD変換器3によってディジタル値に変換
され、コンピュータ4のメモリに記憶され、信号を解析
・処理した結果はモニタ5上に表示される。First, the operation of FIG. 1 will be briefly described. When a pulse voltage generated by the high frequency pulse oscillator 1 is applied to the piezoelectric element of the probe 6, ultrasonic waves are excited on the lower surface of the piezoelectric element. The excited ultrasonic waves are focused by the concave surface provided on the other end surface of the probe 6. The focused ultrasonic waves are applied to the object 16 to be inspected via the liquid sound field medium 15. At that time, the stage 17 moves in the X, Y, and Z directions according to a signal from the computer 9. Then, the reflected wave of the inspection object 16 is collected by the probe 6, converted into an electric signal, and amplified by the receiver 2. The amplified electric signal is converted into a digital value by the AD converter 3, stored in the memory of the computer 4, and the result of analyzing and processing the signal is displayed on the monitor 5.
【0020】本実施例では、焦点位置よりも手前(デフ
ォーカス位置)に試料17を設置し、パルス周波数を変
化させて多重反射波の中のn次反射波を検出する。この
n次反射波による反射率Rと周波数との関係を、周波数
を低い値から高い値へと変化させながら求める。焦点位
置よりも手前に試料17が存在する場合には、直達波と
斜向波からの表面弾性波とは、振動子6Aに到達する時
間が異なり、且つ多重反射波のうち次数の高いもの程、
この時間差が大になる。そこで、次数の高い反射波を検
出し反射率と周波数との関係から極小値となる位置を検
出し、[数4]、[数5]を用いて試料17の薄膜の厚
さdを算出する。更に詳述する。In this embodiment, the sample 17 is placed in front of the focus position (defocus position) and the pulse frequency is changed to detect the nth-order reflected wave in the multiple reflected waves. The relationship between the reflectance R due to the nth-order reflected wave and the frequency is obtained while changing the frequency from a low value to a high value. When the sample 17 is present in front of the focus position, the direct arrival wave and the surface acoustic wave from the oblique wave have different arrival times to the vibrator 6A, and the higher the order of the multiple reflected waves, the higher the order. ,
This time difference becomes large. Therefore, a reflected wave with a high order is detected, the position where the minimum value is obtained is detected from the relationship between the reflectance and the frequency, and the thickness d of the thin film of the sample 17 is calculated using [Equation 4] and [Equation 5]. . Further details will be described.
【0021】(1)、デフォーカスと多重反射波の関
係。
探触子6の焦点位置に被検査体16が位置する場合、時
間軸上の反射波の位置関係は図2のように、レンズエコ
ー(1)→被検査体反射エコー→レンズエコー(2)と
なる。この状態より探触子6と被検査体16の間の距離
を縮めていく、即ち、デフォーカスしていくと、反射波
の位置関係は図3のようになり、被検査体16の表面で
反射した超音波がレンズ球面において再び反射し、被検
査体16に向い、更に被検査体16の表面で反射する多
重反射波(1)→(2)→(3)が現われてくる。探触
子6をデフォーカスしていくと圧電素子6Aからの出力
に寄与する超音波はレンズ効果により中心軸近傍の直達
入射波(直角入射波)と、表面を伝搬する弾性表面波の
水15中への再放射波(斜向波)の2種類であるが、打
ち出しパルスのパルス幅をΔtを短くすることにより、
圧電素子面におけるこの2種類の波は時間的に離れたも
のとなり、干渉させないことが可能となる。即ち、この
2種類の波は伝搬距離及び伝搬速度が異なる為、圧電素
子面に到達するまでの時間が異なり、時間軸上で分離で
きる。(1) Relationship between defocus and multiple reflected waves. When the inspection object 16 is located at the focal position of the probe 6, the positional relationship of the reflected waves on the time axis is as shown in FIG. 2, lens echo (1) → inspection object reflected echo → lens echo (2). Becomes When the distance between the probe 6 and the object 16 to be inspected is reduced from this state, that is, defocusing is performed, the positional relationship of the reflected waves becomes as shown in FIG. The reflected ultrasonic waves are reflected again on the spherical surface of the lens, travel toward the object 16 to be inspected, and multiple reflected waves (1) → (2) → (3) appearing on the surface of the object 16 to be inspected. When the probe 6 is defocused, the ultrasonic waves that contribute to the output from the piezoelectric element 6A are a direct incident wave (a right angle incident wave) near the center axis due to the lens effect, and a surface acoustic wave water 15 propagating on the surface. There are two types of re-radiation wave (oblique wave) into the inside, but by shortening the pulse width Δt of the launch pulse,
These two types of waves on the surface of the piezoelectric element are temporally separated from each other and can be prevented from interfering with each other. That is, since the two types of waves have different propagation distances and propagation velocities, the time required to reach the piezoelectric element surface is different and they can be separated on the time axis.
【0022】(2)、多重反射波の分離。
多重反射波の時間差は計算によって求めることができ
る。このことを以下示す。試算式で用いる定義は以下で
ある。
レンズ材の音速=CL
媒質の音速=CW
表面波の音速=CR
レンズ球面の半径=R
焦点距離F=R/{1−(CW/CL)}
また、図7には、探触子6と試料18との位置関係を示
す。図7において、中心軸上の超音波がレンズ6B内を
伝播する距離La、表面波として伝わった超音波がレン
ズ6B内を伝播する距離Lbとすると、La、Lbは下
記となる。(2) Separation of multiple reflected waves. The time difference between the multiple reflected waves can be calculated. This is shown below. The definitions used in the trial calculation formula are as follows. Sound velocity of lens material = Sound velocity of C L medium = Sound velocity of C W surface wave = C R Radius of lens spherical surface = R Focal length F = R / {1- (C W / C L )} Further, in FIG. The positional relationship between the probe 6 and the sample 18 is shown. In FIG. 7, assuming that the ultrasonic wave on the central axis propagates in the lens 6B as a distance La and the ultrasonic wave transmitted as a surface wave propagates in the lens 6B as a distance Lb, La and Lb are as follows.
【0023】[0023]
【数6】
一方、試料を焦点位置からΔZだけレンズ側に近づける
とすると[Equation 6] On the other hand, if the sample is moved closer to the lens side by ΔZ from the focus position,
【0024】[0024]
【数7】
となる。よって、中心の直達波(垂直入射波)が試料面
でn回多重反射して再び圧電素子に戻るまでの時間t1
は[Equation 7] Becomes Therefore, the time t 1 until the direct wave (vertical incident wave) at the center is multiply reflected n times on the sample surface and returns to the piezoelectric element again
Is
【0025】[0025]
【数8】
となる。また、試料表面を表面波として伝搬し、A→B
→C→D→C→B→A→B…とn回多重反射して再び圧
電素子に戻るまでの時間t2は[Equation 8] Becomes Also, the sample surface propagates as a surface wave, and A → B
→ C → D → C → B → A → B ... The time t 2 required for multiple reflections n times and returning to the piezoelectric element again is
【0026】[0026]
【数9】 となる。[Equation 9] Becomes
【0027】例として球面の半径R=2mm、レンズ材
の音速CL=11000m/s、水の音速CW=1500
m/s、表面波の音速CR=3000m/s、軸長L1=
11mmとした場合のデフォーカス量ΔZに対する時間
差を計算した例を図8に示す。図中の数字は多重反射の
次数で、3次まで示してある。図より、次数が大きくな
るに従って同じデフォーカス量に対して伝搬時間差が大
きくなっていくのがわかる。また、次数が1の線に注目
すると、ΔZ=1mmの時、時間差は0.234μsで
ある。よって、打ち出しパルスのパルス幅を0.234
μs以下にするとΔZ=1mmの場合、2つの波の干渉
は起こらないことになる。As an example, the radius R of the spherical surface is R = 2 mm, the sound velocity of the lens material is C L = 11000 m / s, and the sound velocity of water is C W = 1500.
m / s, sound velocity of surface wave C R = 3000 m / s, axial length L 1 =
FIG. 8 shows an example of calculating the time difference with respect to the defocus amount ΔZ in the case of 11 mm. The numbers in the figure are the orders of multiple reflection and are shown up to the third order. From the figure, it can be seen that the propagation time difference increases for the same defocus amount as the order increases. Also, focusing on the line of order 1, when ΔZ = 1 mm, the time difference is 0.234 μs. Therefore, the pulse width of the launch pulse is set to 0.234.
If μs or less, the interference of two waves does not occur when ΔZ = 1 mm.
【0028】(3)、分離のための手段。
本実施例では、先ず、試料18を焦点位置からレンズに
近づくようにデフォーカス(距離Δz)する。このデフ
ォーカス量ΔZは、図8に示すように大きい程よいが、
パルス発振器1の発振パルス(打ち出しパルス)のパル
ス幅は、デフォーカス量ΔZの位置での多重エコーの時
間(t1−t2)よりも小さいように、ΔZとパルス幅と
は選ぶ必要がある。更に、ΔZの位置で発振パルスの周
波数fを、小さい値から大きい値へ変更しながら直達波
としての反射信号のみを選択し、反射率を求める。ここ
で、反射信号のエコー次数は事前に決めておく。かくし
て、反射率の最初に現われる極小値を見つけ出し、[数
4][数5]に従って、膜厚を測定する。以上の膜厚測
定のための手順は、操作者の指示とコンピュータ4の指
示と処理とによってなされる。(3) Means for separation. In this embodiment, first, the sample 18 is defocused (distance Δz) so as to approach the lens from the focal position. The larger the defocus amount ΔZ is as shown in FIG. 8, the better.
ΔZ and the pulse width must be selected so that the pulse width of the oscillation pulse (launching pulse) of the pulse oscillator 1 is smaller than the time (t 1 −t 2 ) of the multiple echo at the position of the defocus amount ΔZ. . Further, while changing the frequency f of the oscillation pulse from the small value to the large value at the position of ΔZ, only the reflected signal as the direct wave is selected and the reflectance is obtained. Here, the echo order of the reflected signal is determined in advance. Thus, the minimum value of the reflectance that appears first is found, and the film thickness is measured according to [Equation 4] and [Equation 5]. The above procedure for measuring the film thickness is performed by the operator's instruction, the instruction of the computer 4, and the processing.
【0029】[0029]
【発明の効果】焦点型探触子を用いて直達波のみの反射
エコーから膜厚測定が可能になった。更に、焦点型であ
るため、フラット型に比べて膜厚測定における測定位置
の分解能を向上できた。The film thickness can be measured from the reflection echo of only the direct wave using the focus type probe. Further, since it is a focus type, the resolution of the measurement position in film thickness measurement can be improved as compared with the flat type.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の膜厚測定装置の実施例図である。FIG. 1 is an embodiment of a film thickness measuring device of the present invention.
【図2】レンズエコーと反射エコーとの出現の様子を示
す図である。FIG. 2 is a diagram showing how a lens echo and a reflection echo appear.
【図3】レンズエコーと多重反射エコーとの出現の様子
を示す図である。FIG. 3 is a diagram showing how a lens echo and multiple reflection echoes appear.
【図4】従来のフラット型探触子を用いての膜厚測定例
を示す図であるFIG. 4 is a diagram showing an example of film thickness measurement using a conventional flat probe.
【図5】膜厚測定のための各層でのインピーダンスを示
す図である。FIG. 5 is a diagram showing impedance in each layer for film thickness measurement.
【図6】d/λと反射率との関係を示す図である。FIG. 6 is a diagram showing a relationship between d / λ and reflectance.
【図7】本発明での多重反射エコーでの時間差を説明す
る図である。FIG. 7 is a diagram illustrating a time difference in multiple reflection echo according to the present invention.
【図8】本発明の実施例でのデフォーカス量ΔZと時間
差との具体例を示す図である。FIG. 8 is a diagram showing a specific example of a defocus amount ΔZ and a time difference in the embodiment of the present invention.
1 高周波パルス発振器 4 コンピュータ 6 焦点型探触子 16 試料 17 ステージ 1 High frequency pulse oscillator 4 computers 6 Focus type probe 16 samples 17 stages
Claims (3)
し、試料から反射してきた超音波の周波数特性から薄膜
の厚さを求める膜厚測定方法において、探触子として焦
点型探触子を使用し、該焦点型探触子の焦点より内側に
試料を設置した状態において試料から反射してきた反射
波の周波数特性を求め、この周波数特性から薄膜の膜厚
を求めることを特徴とする膜厚測定方法。1. A focus type probe as a probe in a film thickness measuring method in which ultrasonic waves are radiated to a sample having a thin film on its surface and the thickness of the thin film is obtained from the frequency characteristics of the ultrasonic waves reflected from the sample. Is used to obtain the frequency characteristic of the reflected wave reflected from the sample in the state where the sample is installed inside the focus of the focus type probe, and the film thickness of the thin film is obtained from this frequency characteristic. Thickness measurement method.
し、試料から反射してきた超音波の周波数特性から薄膜
の厚さを求める膜厚測定装置において、周波数可変の打
ち出しパルス源と、該周波数を可変にしてのパルスに従
って超音波を、焦点より内側に設置した試料に向けて放
射する焦点型探触子と、試料からの反射波の中で直達反
射波のみを表面弾性波との時間差を利用して抽出する手
段と、パルス周波数と直達波の反射信号(反射率)との
関係を参照して反射信号の極小値となるパルス周波数を
求め、このパルス周波数と音速とから薄膜の厚さを算出
する手段と、より成る膜厚測定装置。2. A film thickness measuring apparatus for irradiating a sample having a thin film on its surface with ultrasonic waves, and determining the thickness of the thin film from the frequency characteristics of the ultrasonic waves reflected from the sample, wherein a variable frequency punching pulse source and The time difference between the focus probe that emits ultrasonic waves toward the sample placed inside the focal point according to the pulse with variable frequency and only the direct reflected wave among the reflected waves from the sample and the surface acoustic wave. The pulse frequency that is the minimum value of the reflected signal is found by referring to the relationship between the pulse frequency and the reflected signal (reflectance) of the direct wave, and the thin film thickness is calculated from this pulse frequency and sound velocity. And a film thickness measuring device comprising:
から内側設置位置までの距離ΔZでの前記時間差よりも
小さい値としてなる、請求項2の膜厚測定装置。3. The film thickness measuring apparatus according to claim 2, wherein the pulse width that gives the pulse frequency is a value smaller than the time difference at the distance ΔZ from the focus to the inner installation position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20492291A JPH0526655A (en) | 1991-07-19 | 1991-07-19 | Film thickness measuring method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20492291A JPH0526655A (en) | 1991-07-19 | 1991-07-19 | Film thickness measuring method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0526655A true JPH0526655A (en) | 1993-02-02 |
Family
ID=16498592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20492291A Pending JPH0526655A (en) | 1991-07-19 | 1991-07-19 | Film thickness measuring method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0526655A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6250160B1 (en) | 1993-09-28 | 2001-06-26 | Defelsko Corporation | High resolution ultrasonic thickness gauge |
JP2010243176A (en) * | 2009-04-01 | 2010-10-28 | Kanto Auto Works Ltd | Method and device for measuring film thickness |
JP2017072412A (en) * | 2015-10-05 | 2017-04-13 | 国立研究開発法人 海上・港湾・航空技術研究所 | Non-contact type thickness measurement method of in-liquid steel structure |
-
1991
- 1991-07-19 JP JP20492291A patent/JPH0526655A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6250160B1 (en) | 1993-09-28 | 2001-06-26 | Defelsko Corporation | High resolution ultrasonic thickness gauge |
US6282962B1 (en) | 1993-09-28 | 2001-09-04 | Defelsko Corporation | High resolution ultrasonic thickness gauge |
JP2010243176A (en) * | 2009-04-01 | 2010-10-28 | Kanto Auto Works Ltd | Method and device for measuring film thickness |
JP2017072412A (en) * | 2015-10-05 | 2017-04-13 | 国立研究開発法人 海上・港湾・航空技術研究所 | Non-contact type thickness measurement method of in-liquid steel structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4503708A (en) | Reflection acoustic microscope for precision differential phase imaging | |
JPH0136584B2 (en) | ||
US20220283125A1 (en) | Ultrasonic Inspection System and Ultrasonic Inspection Method | |
CN110779990B (en) | Laser ultrasonic three-dimensional positioning quantitative detection method for multiple defects in material | |
Hayashi | Imaging defects in a plate with complex geometries | |
US4694699A (en) | Acoustic microscopy | |
Dixon et al. | The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse | |
US4995260A (en) | Nondestructive material characterization | |
KR20020050833A (en) | Apparatus and method of noncontact measurement of crystal grain size | |
JPH0526655A (en) | Film thickness measuring method and device | |
US5285260A (en) | Spectroscopic imaging system with ultrasonic detection of absorption of modulated electromagnetic radiation | |
JPH05149931A (en) | Method and apparatus for measuring sound speed and density | |
Jia et al. | Characterization of pulsed ultrasound using optical detection in Raman-Nath regime | |
JP2587732B2 (en) | Laser beam position detection method | |
Titov et al. | Study of the Ultrasonic Field in an Acousto-Optic Crystal Using Acoustic Methods | |
JP3261827B2 (en) | Ultrasound spectrum microscope | |
Titov et al. | The velocity and attenuation of outgoing surface acoustic waves measured using an ultrasonic microscope with two focusing transducers | |
JPS59192907A (en) | Measuring method of thickness | |
JP2545974B2 (en) | Spectrum ultrasound microscope | |
Monchalin | Optical generation and detection of ultrasound | |
JPH06281634A (en) | Ultrasonic probe | |
JPH0658915A (en) | Physically property measuring device | |
JPH0510620B2 (en) | ||
Litniewski | On the possibility of the visualization of the velocity distribution in biological samples using SAM | |
JPS6196452A (en) | Sound speed/attenuation measuring method of surface elastic wave |