JPS6196452A - Sound speed/attenuation measuring method of surface elastic wave - Google Patents

Sound speed/attenuation measuring method of surface elastic wave

Info

Publication number
JPS6196452A
JPS6196452A JP59219133A JP21913384A JPS6196452A JP S6196452 A JPS6196452 A JP S6196452A JP 59219133 A JP59219133 A JP 59219133A JP 21913384 A JP21913384 A JP 21913384A JP S6196452 A JPS6196452 A JP S6196452A
Authority
JP
Japan
Prior art keywords
sample
reflected
lens
wave
curve data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59219133A
Other languages
Japanese (ja)
Inventor
Ichiji Yamanaka
一司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59219133A priority Critical patent/JPS6196452A/en
Publication of JPS6196452A publication Critical patent/JPS6196452A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Abstract

PURPOSE:To measure the sound speed of a surface elastic wave and its attenuation highly accurately by extracting only the amplitude of a reflected ultrasonic wave reflected from a sample and averaging the amplitude. CONSTITUTION:An ultrasonic lens 1 is arranged on the upper part of a measuring point F of the sample 4, and while changing a distance (z) between the focus 0 of the lens 1 and the point F of the sample 4, a piezo-electric transducer 7 is excited by a high frequency pulse echo sounder transducer to generate an ultrasonic wave and the ultrasonic wave is irradiated to the sample 4 through the lens 1 and a coupler 5. The reflected light reflected from the sample 4 is converted into an electric signal through the coupler 5, the lens 1 and the transducer 7 and the electric signal is sent to an electric computer through said pulse transmitter/receiver to record the Vz curve data of the amplitude of the reflected wave from the sample to the distance (z). Said operation is repeated plural times to obtain N Vz curve data. Similarly, reference Vz' curve data for the smooth surface of a reference sample such as lead is obtained. Operation based upon a specific formula is executed on the basis of the Vz and Vz' curve data and the sound speed of the surface elastic wave and its attenuation can be found out from the obtained power spectrum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、材料の表面欠陥等を検査・評価するのに好適
な表面弾性波の音速・減衰測定方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the sound velocity and attenuation of surface acoustic waves suitable for inspecting and evaluating surface defects of materials.

従来の技術 超音波m微鏡により、超音波レンズの焦点と試料表面と
の距離zを変えながら1反射波の振幅Vを上記距ftz
の関数として測定し、これによって得られたV (z)
曲線のパ・ワースベクトルを取り、そのピークを与える
波数とそのピークの幅から、表面弾性波のa速と減衰を
測定する方法は、既に提案されている。また、上記試料
を照射する超音波ビームとして、試料にあたる面積の大
きい直線状集束ビームを用いて、1回のV (z)曲線
の測定で実質的に平均を行う方法も提案されている。
Conventional technologyUsing an ultrasonic microscope, while changing the distance z between the focal point of the ultrasonic lens and the sample surface, the amplitude V of one reflected wave is adjusted to the above distance ftz.
The resulting V (z) is measured as a function of
A method has already been proposed in which the a-velocity and attenuation of a surface acoustic wave are measured by taking the power vector of a curve and from the wave number giving its peak and the width of the peak. Furthermore, a method has been proposed in which a linear focused beam that hits the sample with a large area is used as the ultrasonic beam that irradiates the sample, and the V (z) curve is substantially averaged in one measurement.

しかしながら、上記既提案の方法は、超音波の反射波を
その振幅だけでなく位相も含む形で平均化するものであ
り、そのため試料の不均質性が大きい場合1例えば試料
表面が加工面や摺動面である場合には、その影響を強く
受けて、■(2)曲線の周期的変動の大きさが著しく小
さく、また不規則になる傾向があり、そのため測定精度
に問題がぁる。また、上記方法では平均化の効果が照射
面積の大きさから自然に得られるものにすぎない。
However, the previously proposed method averages the reflected ultrasonic waves in a form that includes not only the amplitude but also the phase. In the case of a dynamic surface, it is strongly influenced by (2) periodic fluctuations in the curve, which tend to be extremely small and irregular, which poses a problem in measurement accuracy. Furthermore, in the above method, the effect of averaging is simply obtained naturally from the size of the irradiated area.

発明が解決しようとする問題点 本発明は、試料から反射する反射超音波の振幅のみを抽
出して平均化することにより、試料表面の不均質性によ
る反射波位相の乱れの影響を軽微にし、精度よく表面弾
性波の音速・減衰を測定する方法を提供するものである
Problems to be Solved by the Invention The present invention minimizes the influence of disturbances in the reflected wave phase due to non-uniformity of the sample surface by extracting and averaging only the amplitude of the reflected ultrasonic waves reflected from the sample. The present invention provides a method for accurately measuring the sound velocity and attenuation of surface acoustic waves.

問題点を解決するための手段、作用 上記目的を達成するため、本発明の方法は、超音波顕微
鏡により、試料における多数の測定点においてそれぞれ
V (z)曲線データを求め、それらのV (z) ’
曲線データをフーリエ変換し、絶対値の二乗を計算した
後、加算平均することにより、平均化されたパワースペ
クトルデータを求め、このパワースペクトルデータに基
づいて表面弾性波の音速減衰を求めることを特徴とする
ものである。
Means and Effect for Solving the Problems In order to achieve the above object, the method of the present invention uses an ultrasonic microscope to obtain V (z) curve data at each of a large number of measurement points on a sample, and calculates the V (z )'
The feature is that the curve data is Fourier-transformed, the square of the absolute value is calculated, and then averaged to obtain averaged power spectrum data, and based on this power spectrum data, the sound speed attenuation of the surface acoustic wave is determined. That is.

このような本発明の方法においては、試料からの反射超
音波の振幅のみが抽出して平均化され。
In such a method of the present invention, only the amplitude of the reflected ultrasound waves from the sample is extracted and averaged.

それにより試料における不均質性による反射波位相の乱
れの影響が比較的軽微ですみ、そのため高精度に表面弾
性波のざ速・減衰を測定することができる。
As a result, the influence of disturbances in the phase of reflected waves due to inhomogeneity in the sample is relatively small, and therefore the velocity and attenuation of surface acoustic waves can be measured with high precision.

本発明の方法をさらに詳細に説明すると1本発明者は、
粗い表面での集束超音波の反射の様子を調べるために、
中心周波数30 MHzのインパルス集束超音波を、焦
点より0.81近くに置かれたソーダガラスに入射させ
、反射波を銭察した。#100のSiC耐水研摩紙で表
面を粗くした場合の表面粗さは 5.34m Rmax
、一方1表面弾性波の波長は100 #L1程度であっ
た0反射波は直接反射波と表面弾性波とに時間的に分離
されるが、鏡面では。
To explain the method of the present invention in more detail, 1 the inventors:
To investigate the reflection of focused ultrasound on rough surfaces,
Impulse focused ultrasound with a center frequency of 30 MHz was incident on a soda glass placed 0.81 mm from the focal point, and the reflected waves were observed. The surface roughness when roughened with #100 SiC water-resistant abrasive paper is 5.34m Rmax
, On the other hand, the wavelength of the 1 surface acoustic wave is about 100 #L1.The 0 reflected wave is temporally separated into the directly reflected wave and the surface acoustic wave, but on a mirror surface.

これらの波形は場所によらなかった。これに対し、粗い
面では1表面弾性波成分は鏡面の場合よりわずかに振幅
が小さいだけで、場所による変動は殆どなかったが、直
接反射波は場所により振幅が大きく変動した。これは、
第2図に模式的に示したように、直接反射波は試料表面
の1点での散乱により生じ2表面の不均質性をそのまま
反映するのに対し1表面弾性波は一定距離伝播するため
に、場所的な変動が平均化されるためであろうと考えら
れる。
These waveforms were independent of location. On the other hand, for a rough surface, the amplitude of one surface acoustic wave component was only slightly smaller than that for a mirror surface, and there was almost no variation depending on the location, but the amplitude of the directly reflected wave varied greatly depending on the location. this is,
As shown schematically in Figure 2, directly reflected waves are generated by scattering at one point on the sample surface, and reflect the heterogeneity of the surface as they are, whereas surface acoustic waves propagate over a fixed distance. This is thought to be due to the fact that local variations are averaged out.

と記の考察から、インパルスでなくバースト信号を用い
るV (z)曲線法においても1表面弾性波の波長が表
面粗さより十分大きければ、直接反射波の不規則性のた
めに、V(z)曲線の形が乱れる場合でも、異なる場所
での加算平均によって直接反射波の不規則性を除くこと
により1表面弾性波の音速減衰測定が可能になることが
わかった。
From the above considerations, even in the V(z) curve method that uses burst signals instead of impulses, if the wavelength of the surface acoustic wave is sufficiently larger than the surface roughness, V(z) It was found that even when the shape of the curve is disordered, it is possible to measure the sound velocity attenuation of a single surface acoustic wave by removing irregularities in the directly reflected waves by averaging at different locations.

第1図は、上記のような本発明の測定方法の実施に使用
する装置を示し、1は超音波顕微鏡における超音波レン
ズで、単結晶アルミナまたは溶融石英等で構成した円筒
部2の先端面を凹球面3とし、この凹球面3と試料4と
の間に水等の液体によるカプラー5を介在させると共に
、上記凹球面3と反対側の基端面8に、細い集束ビーム
状の超ぎ波を発生させる圧′心トランスデユーサ7を付
設し、このトランスデユーサ7に高周波パルス送受波器
を接続し、その°送受波器から圧電トランスデユーサ7
に電気的パルス信号を送信すると共に、この送受波器に
よって圧電トランスデユーサ7からの電気的パルス信号
を受信可能に構成し。
FIG. 1 shows an apparatus used for carrying out the measurement method of the present invention as described above, in which 1 is an ultrasonic lens in an ultrasonic microscope, and the tip surface of a cylindrical part 2 made of single crystal alumina, fused silica, etc. is a concave spherical surface 3, a coupler 5 made of liquid such as water is interposed between this concave spherical surface 3 and the sample 4, and a thin focused beam-shaped superwave is provided on the proximal end surface 8 on the opposite side to the concave spherical surface 3. A pressure core transducer 7 is attached to generate pressure, a high frequency pulse transducer is connected to this transducer 7, and the piezoelectric transducer 7 is connected from the transducer to the transducer 7.
The transducer is configured to transmit an electrical pulse signal to the piezoelectric transducer 7 and to receive an electrical pulse signal from the piezoelectric transducer 7.

さらに上記送受波器に画像記録表示部及び電子計32機
を接続している。
Furthermore, an image recording and display unit and a total of 32 electronic devices are connected to the transducer.

なお、上記超音波顕微鏡には、汎用の超音波顕微鏡にお
けると同様のレンズ走査機構を設け、レンズlを試料4
に垂直な軸に沿って試料4に接離可能にすると共に、こ
のレンズ1を試料4に平行な面に沿って平行移動可能に
構成される。
The ultrasonic microscope described above is equipped with a lens scanning mechanism similar to that in a general-purpose ultrasonic microscope, and the lens l is placed on the sample 4.
The lens 1 is configured to be able to move toward and away from the sample 4 along an axis perpendicular to , and to be able to move in parallel along a plane parallel to the sample 4.

本発明の測定方法は上記構成の′!1tWkにより以下
のようにして実施される。
The measuring method of the present invention has the above configuration. This is implemented by 1tWk as follows.

先ず、ag波レンズ1を試料番における測定点Fの上方
に位置させ、その超音波レンズlを上下方向にのみ変位
させながら、即ち超音波レンズlの焦点0と試料4上の
点Fとの間の距離2を変えながら、送受波器により・圧
電トランスデユーサ7を励起して細い集束ビーム状の超
音波を生じさせ、それを超音波レンズl及びカプラー5
を通して試$44に照射させる。そして、試料4から反
射する反射波を、上記とは逆に、カプラー5及び超音波
レンズ1を通してトランスデユーサ7に伝え、トランス
デユーサ7からの電気信号を上記送受波器を通して電子
計算機に送り、試料4からの反射波における振幅の距離
zに対する依存性を表わすV (Z)曲線データを記録
させる。
First, the ag wave lens 1 is positioned above the measurement point F in the sample number, and while the ultrasonic lens l is displaced only in the vertical direction, that is, the distance between the focal point 0 of the ultrasonic lens l and the point F on the sample 4 is While changing the distance 2 between
Let it irradiate for $44 through the lens. Contrary to the above, the reflected wave reflected from the sample 4 is transmitted to the transducer 7 through the coupler 5 and the ultrasonic lens 1, and the electrical signal from the transducer 7 is transmitted to the computer through the transducer. , V (Z) curve data representing the dependence of the amplitude of the reflected wave from the sample 4 on the distance z is recorded.

さらに、超音波レンズ1を試料4における他の測定場所
に移動させて、上記測定操作を行い、新たなV (z)
曲線を得る。これを複数回繰返すことにより1例えばN
個のV (z)曲線データを得る。
Furthermore, the ultrasonic lens 1 is moved to another measurement location on the sample 4, the above measurement operation is performed, and a new V (z)
get a curve. By repeating this several times, 1, for example, N
V (z) curve data are obtained.

また、上記と同様の測定操作を、、J:記試料4に代え
て、鉛等の表面弾性波が励起されにくい標準試料の平滑
な表面について行い、それにより、下記と同様に、l(
l!Iの標準V (z)曲線データを得る。
In addition, the same measurement operation as above was performed on the smooth surface of a standard sample such as lead, in which surface acoustic waves are difficult to be excited, in place of sample 4, and as a result, l(
l! Obtain standard V(z) curve data for I.

このようにして得られた試料礁におけるN個のv(2)
曲線データから、標準試料における標準V (z)曲線
データをバックグランドとして減算スルコトニヨリ、 
N(11)Vi(z) (i ! l 、 2 、 @
・、N)曲線データを求め、それらのデータから下記の
(1)式による演算を行って、平均化されたパワースペ
クトルF (k)を求める。
N v(2) in the sample reef thus obtained
From the curve data, subtract the standard V(z) curve data in the standard sample as the background.
N(11)Vi(z) (i ! l , 2 , @
・, N) Obtain curve data, and calculate the averaged power spectrum F (k) from the data using the following equation (1).

ここで。here.

k:波数 ム、 z+ : V(z)曲線の測定範囲である。k: wave number z+: This is the measurement range of the V(z) curve.

上記(1)式による演算は、試料4における各V (z
)曲線データのそれぞれについてフーリエ変換すること
によりパワースペクトルを求め、その後平均化する信号
処理を表わすものである。
The calculation using equation (1) above is performed for each V (z
) represents signal processing in which a power spectrum is obtained by Fourier transforming each curve data and then averaged.

次に、このようにして得られた。パワースペクトIしの
ピークの最大f11を与える波1にのfri k層と。
Then obtained in this way. With the fri k layer on wave 1 giving the maximum f11 of the peak of the power spectrum I.

ピークの裾にあるバックグランドが影響を与えない!囲
でなるべく大きなTの値とを選んで、パワースペクトル
Fが最大値の1分の1になる所の輻Δkを求める。これ
らの値を用いて1表面弾性波の音速vμ減衰αは次の式
より求められる。
The background at the hem of the peak has no effect! Select a value of T that is as large as possible from the above, and find the radiation Δk where the power spectrum F becomes one-half of the maximum value. Using these values, the sound velocity vμ attenuation α of one surface acoustic wave can be obtained from the following equation.

COjθ、xt−に、voハtc r       (
2)V、x Vo/5inO,(3) a−Δ”k/2(T−1j’         (4)
α = 入、/2tc  tan  O,(a/2+ 
 ay/cosθ、)      (5)ここで、 θ、二表面弾性波励起の臨界角 vo:カプラー中の+1速 f:a音波のT74波数 入、二表面弾性波の波長 αw:カプラー中の減R定数 である。
COjθ, xt−, vohatcr (
2) V, x Vo/5inO, (3) a-Δ”k/2(T-1j' (4)
α = Enter, /2tc tan O, (a/2+
ay/cos θ, ) (5) where, θ, critical angle of two-surface acoustic wave excitation vo: +1 speed f in coupler: T74 wave number of a sound wave, wavelength of two-surface acoustic wave αw: reduction R in coupler It is a constant.

実施例 試料として表面を不均質性とした2種類のもの、即ちソ
ーダガラスの表面を320番のSiC研摩紙で研摩して
Rmax 2.5GBm 、 Ra O,27p、とし
たもの、及びポリプロピレンの表面を、銅によって摺動
してその表面にF!I擦痕を形成したものを用いた。こ
れらの試料については、 200)I)lzの超音波顕
微鏡を用い、5G#L層間隔で20($9のV (z)
曲線を測定した。それらのうちの各4個を第3図A、H
に示している0図に見られるように、試料表面近傍の不
均質性を反映して、V(z)曲線は場所により不規則に
変動し、このままでは信頼できる表面弾性波音速Mgの
測定値を求めることはでさない。
Examples Two types of samples with non-uniform surfaces were used: a soda glass surface polished with No. 320 SiC abrasive paper to give Rmax of 2.5 GBm and Ra O of 27p, and a polypropylene surface. , by sliding it with copper and applying F! to its surface. A sample with I scratches formed thereon was used. For these samples, 20 ($9 V (z)
The curve was measured. Figure 3 A, H
As can be seen in Figure 0, the V(z) curve fluctuates irregularly depending on the location, reflecting the inhomogeneity near the sample surface, and as it is, the measured value of the surface acoustic wave sound velocity Mg is not reliable. You can't ask for it.

E記各試料について求めた各20個のV (z)曲線デ
ータのうちの5個、10個あるいは20個を用いて、上
記(1)式により平均化パワースペクトルを求めた結果
を1i114図A、Hに示す、これらの図から、試料と
してソーダガラス及びポリプロピレンのいずれを用いた
場合にあり、ても、単一のピークが得られ、またピーク
の形も試料として均質材料を用いた場合に得られるピー
クの形に近くなるのが理解される。
Figure A shows the results of calculating the averaged power spectrum using equation (1) above using 5, 10, or 20 of the 20 V (z) curve data obtained for each sample. , H. From these figures, a single peak is obtained regardless of whether soda glass or polypropylene is used as the sample, and the shape of the peak is also the same when a homogeneous material is used as the sample. It is understood that the shape is close to that of the obtained peak.

発明の効果 上記のように、本発明によれば、試料の不均質性が大き
い場合でもピークの明瞭なパワースペクトルを得ること
ができる。従りて、本発明によれば、ポーラスなセラミ
ックス、表面近傍に粗さや欠陥を持つ加工表面や摺動面
のような不均質材料表面の弾性的性質の評価が可能にな
る。
Effects of the Invention As described above, according to the present invention, a power spectrum with clear peaks can be obtained even when the sample is highly heterogeneous. Therefore, according to the present invention, it is possible to evaluate the elastic properties of the surface of a heterogeneous material such as a porous ceramic, a processed surface having roughness or defects near the surface, or a sliding surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用する装置の全体構成図、第
2図は粗い試料面での反射波についての模式的説明図、
fiIJ3図A、Bはそれぞれ異なる試料において測定
したV (z)曲線を示す線図、WS4図A、Bは上記
V (z)曲線に基づいて算出したパワースペクトルを
示す線図である。 4Φ・試料。 第 IFJ 第2図 OC 第3図 距# Z (fml 距離Z (/””)
Fig. 1 is an overall configuration diagram of the apparatus used to implement the present invention, Fig. 2 is a schematic explanatory diagram of reflected waves on a rough sample surface,
fiIJ3 diagrams A and B are diagrams showing V (z) curves measured in different samples, respectively, and WS4 diagrams A and B are diagrams showing power spectra calculated based on the above V (z) curves. 4Φ・Sample. IFJ Figure 2 OC Figure 3 Distance #Z (fml Distance Z (/””)

Claims (1)

【特許請求の範囲】[Claims] 1、超音波顕微鏡により、試料における多数の測定点に
おいて、反射超音波の振幅を超音波レンズと試料間の距
離zの関数であるV(z)曲線データとして求め、それ
らのV(z)曲線データをフーリエ変換し、絶対値の二
乗を計算した後、加算平均することにより、平均化され
たパワースペクトルデータを求め、このパワースペクト
ルデータに基づいて表面弾性波の音速減衰を求めること
を特徴とする表面弾性波の音速・減衰測定方法。
1. Using an ultrasound microscope, determine the amplitude of reflected ultrasound at a number of measurement points on the sample as V(z) curve data, which is a function of the distance z between the ultrasound lens and the sample, and calculate those V(z) curves. The feature is that the data is Fourier transformed, the square of the absolute value is calculated, and then averaged to obtain averaged power spectrum data, and based on this power spectrum data, the sound speed attenuation of the surface acoustic wave is determined. A method for measuring the sound velocity and attenuation of surface acoustic waves.
JP59219133A 1984-10-18 1984-10-18 Sound speed/attenuation measuring method of surface elastic wave Pending JPS6196452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219133A JPS6196452A (en) 1984-10-18 1984-10-18 Sound speed/attenuation measuring method of surface elastic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219133A JPS6196452A (en) 1984-10-18 1984-10-18 Sound speed/attenuation measuring method of surface elastic wave

Publications (1)

Publication Number Publication Date
JPS6196452A true JPS6196452A (en) 1986-05-15

Family

ID=16730749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219133A Pending JPS6196452A (en) 1984-10-18 1984-10-18 Sound speed/attenuation measuring method of surface elastic wave

Country Status (1)

Country Link
JP (1) JPS6196452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393783A2 (en) * 1989-04-17 1990-10-24 Toshio Narita Method for the determination of strength of join between ceramic and non-ceramic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183364A (en) * 1983-04-03 1984-10-18 Noritoshi Nakabachi Ultrasonic microscope apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183364A (en) * 1983-04-03 1984-10-18 Noritoshi Nakabachi Ultrasonic microscope apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393783A2 (en) * 1989-04-17 1990-10-24 Toshio Narita Method for the determination of strength of join between ceramic and non-ceramic material
US5101663A (en) * 1989-04-17 1992-04-07 Hitachi Construction Machinery Co., Ltd. Method for the determination of strength of join between ceramic and non-ceramic

Similar Documents

Publication Publication Date Title
US4541281A (en) Ultrasonic microscope system
JPH0136584B2 (en)
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
US4694699A (en) Acoustic microscopy
US5406849A (en) Method and apparatus for detecting guided leaky waves in acoustic microscopy
JPH0421139B2 (en)
Costley Jr et al. Dispersion curve analysis of laser-generated Lamb waves
JP4196643B2 (en) Method and apparatus for imaging internal defect by ultrasonic wave
Dewhurst et al. Through-transmission ultrasonic imaging of sub-surface defects using non-contact laser techniques
JPS6196452A (en) Sound speed/attenuation measuring method of surface elastic wave
US4825423A (en) Method of measuring microcrack depth
JPH0376419B2 (en)
JP2524946B2 (en) Ultrasonic microscope equipment
JPH05149931A (en) Method and apparatus for measuring sound speed and density
JPH0376418B2 (en)
JPH0526655A (en) Film thickness measuring method and device
JP3261827B2 (en) Ultrasound spectrum microscope
JP2545974B2 (en) Spectrum ultrasound microscope
JP4392497B2 (en) Shape analysis method using ultrasonic interference fringes
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope
JP2718091B2 (en) Ultrasonic non-destructive inspection method and apparatus
JPH0658222B2 (en) Ultrasonic microscope lens
JPH023454B2 (en)
JPH0429976B2 (en)
JPH0235353A (en) Ultrasonic wave microscope