JPH0658222B2 - Ultrasonic microscope lens - Google Patents

Ultrasonic microscope lens

Info

Publication number
JPH0658222B2
JPH0658222B2 JP59202270A JP20227084A JPH0658222B2 JP H0658222 B2 JPH0658222 B2 JP H0658222B2 JP 59202270 A JP59202270 A JP 59202270A JP 20227084 A JP20227084 A JP 20227084A JP H0658222 B2 JPH0658222 B2 JP H0658222B2
Authority
JP
Japan
Prior art keywords
ultrasonic
film
substrate
ultrasonic wave
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59202270A
Other languages
Japanese (ja)
Other versions
JPS6179158A (en
Inventor
祐輔 塚原
栄治 竹内
栄作 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP59202270A priority Critical patent/JPH0658222B2/en
Publication of JPS6179158A publication Critical patent/JPS6179158A/en
Publication of JPH0658222B2 publication Critical patent/JPH0658222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は基板上に形成された膜の厚み測定に適した超音
波顕微鏡レンズに関するものである。
TECHNICAL FIELD The present invention relates to an ultrasonic microscope lens suitable for measuring the thickness of a film formed on a substrate.

従来の技術 近年開発された超音波顕微鏡は、圧電体に高周波電気パ
ルスを印加して超音波を発生させ、それを音響レンズに
よって収束させて試料表面に照射しながら音響レンズあ
るいは試料をX−Y走査して、その時の試料面からの反
射超音波あるいは試料を透過した透過超音波の強度ある
いは位相を音響レンズと圧電体で受信しX−Y走査と同
期して記録することにより、試料表面および試料の表面
直下の弾性的情報を画像として得るものである。
2. Description of the Related Art An ultrasonic microscope developed in recent years applies high-frequency electric pulses to a piezoelectric body to generate ultrasonic waves, converges the ultrasonic waves with an acoustic lens, and irradiates the surface of the sample with the acoustic lens or the XY sample. By scanning, the intensity or phase of the reflected ultrasonic wave from the sample surface or the transmitted ultrasonic wave transmitted through the sample at that time is received by the acoustic lens and the piezoelectric body and recorded in synchronization with the XY scanning. The elastic information immediately below the surface of the sample is obtained as an image.

ここで音響レンズの役割は圧電体によって発生された超
音波ビームを試料表面上の微小領域に収束させて超音波
顕微鏡画像の分解能を向上させることにある。この目的
のために用いられる音響レンズとしては、代表的にはサ
ファイア、石英ガラスなどの円柱上の一方の端面に圧電
体を密着させ、他方の端面に凹球面をもうけたものがあ
り、ここでは圧電体によって発生した超音波の円柱内を
平面波として進行し、凹球面に達するとそこで屈折して
試料表面の微小領域に収束する。また同様の円柱の一端
面に凹球面をもうけ、更にその面にそって圧電体を密着
させて凹球面の圧電体を作り、これによって直接に収束
球面波を発生させることを目的とした超音波顕微鏡レン
ズも発表されている。これはいずれも超音波ビームを試
料表面の微小領域に収束させて高分解能を得ることを目
的としているが、超音波顕微鏡による測定方法の一つで
ある、いわゆるV(Z)曲線法の際にも用いられる。これ
は、試料あるいは音響レンズをX−Y走査せずに試料面
上の一定位置に固定したまま試料面と音響レンズとの距
離を変化させてその時の試料面からの反射超音波の強度
変化を記録すると、試料の材料に特有の周期で強度が周
期的に変化することが観察されることから、同方法によ
って得られた記録の周期から試料表面および表面直下の
弾性的特徴を測定するものである。この反射強度の周期
的な変化は、凹球面レンズから発生した収束超音波のう
ち、垂直入射成分といわゆるレーリー角度を試料面に入
射した成分との干渉によって生ずるものであり、その周
期は試料表面近傍のレーリー波の音速に依存する。
Here, the role of the acoustic lens is to focus the ultrasonic beam generated by the piezoelectric body on a minute region on the sample surface to improve the resolution of the ultrasonic microscope image. As an acoustic lens used for this purpose, there is typically one in which a piezoelectric body is adhered to one end surface of a cylinder such as sapphire or quartz glass and a concave spherical surface is provided on the other end surface. The ultrasonic wave generated by the piezoelectric body travels in the cylinder as a plane wave, and when it reaches a concave spherical surface, it is refracted there and converges on a minute area on the sample surface. In addition, a concave spherical surface is provided on one end surface of a similar cylinder, and a piezoelectric body is further adhered along the surface to form a concave spherical piezoelectric body, which is used to directly generate a convergent spherical wave. Microscope lenses have also been announced. All of these aims at converging the ultrasonic beam to a minute area on the sample surface to obtain high resolution. However, in the so-called V (Z) curve method, which is one of the measuring methods using an ultrasonic microscope. Is also used. This is because the distance between the sample surface and the acoustic lens is changed while the sample or the acoustic lens is fixed at a fixed position on the sample surface without XY scanning, and the intensity change of the reflected ultrasonic wave from the sample surface at that time is changed. When recording, it is observed that the intensity changes periodically with a period peculiar to the material of the sample, so it is possible to measure the elastic characteristics of the sample surface and immediately below the surface from the recording period obtained by the same method. is there. This periodic change in the reflection intensity is caused by the interference between the vertically incident component and the so-called Rayleigh angle incident component on the sample surface of the converged ultrasonic wave generated from the concave spherical lens. It depends on the speed of sound of nearby Rayleigh waves.

この様に、従来用いられてきた超音波顕微鏡用の音響レ
ンズは、球面収束超音波を発生させて試料表面に収束さ
せることに特徴があるものがほとんどである。
As described above, most acoustic lenses for ultrasonic microscopes that have been conventionally used are characterized in that spherical focused ultrasonic waves are generated and focused on the sample surface.

一方、球面収束超音波以外の超音波を発生させる超音波
顕微鏡レンズとして知られているものとして、特開昭5
8−166258号公報に記載の超音波顕微鏡レンズが
あげられる。これは、単結晶アルミナ又は溶融石英から
なる円筒の先端に円錐状の凹みを設けて、屈折した収束
ビームがその円錐の中心線上の線分上に焦点を結ぶよう
にその円錐面を設定しておく一方、上記円筒の先端面に
対向する基端面に圧電薄膜を設けたことを特徴とする超
音波顕微鏡レンズである。その目的とするところは、従
来の凹球面レンズでは、超音波ビームを小さく収束させ
ることにより高分解が得られるがその反面焦点深度が浅
く試料表面から下の観察をする場合、深さ方向に次第に
焦点位置を変えていかねばならなず、工業製品の非破壊
検査では欠陥の有無の検出に能率がよくないため、分解
能は低下しても焦点深度を深くして、深さ方向に焦点を
移動することなく試料表面および表面近傍の欠陥を検出
しようとすることにある。この目的が示す通り、このレ
ンズにおいては照射された超音波ビームのうち試料表面
から内部に入射し内在欠陥によって反射されたものだけ
を受信する必要があるため表面で反射された成分が直接
受信されないように吸音体を設けることが不可欠となっ
ている。以上に述べたように従来の超音波顕微鏡レンズ
は、試料表面あるいは内部のスポットまたは線分上に超
音波を収束させてそこからの反射超音波の強度あるいは
位相を観察する目的で構成されたものである。
On the other hand, as what is known as an ultrasonic microscope lens for generating ultrasonic waves other than spherically focused ultrasonic waves, Japanese Patent Laid-Open No. Sho 5 (1999)
The ultrasonic microscope lens described in JP-A 8-166258 can be used. This is done by setting a conical recess at the tip of a cylinder made of single crystal alumina or fused silica, and setting the conical surface so that the refracted convergent beam is focused on the line segment on the center line of the cone. On the other hand, the ultrasonic microscope lens is characterized in that a piezoelectric thin film is provided on the base end face facing the front end face of the cylinder. The objective is to achieve high resolution by converging the ultrasonic beam small in the conventional concave spherical lens, but on the other hand, the depth of focus is shallow and when observing below the sample surface, it gradually increases in the depth direction. The focus position must be changed, and non-destructive inspection of industrial products is not efficient in detecting the presence or absence of defects, so the depth of focus is increased and the focus is moved in the depth direction even if the resolution is reduced. Without trying to detect defects on the surface of the sample and near the surface. As this purpose shows, in this lens, it is necessary to receive only the irradiated ultrasonic beam that is incident on the inside of the sample from the surface of the sample and reflected by internal defects, so the component reflected by the surface is not directly received. It is indispensable to provide a sound absorber. As described above, the conventional ultrasonic microscope lens is configured for the purpose of observing the intensity or phase of the reflected ultrasonic wave from the ultrasonic wave by converging the ultrasonic wave on the spot or line segment on the sample surface or inside. Is.

発明が解決しようとする問題点 本発明者らは、固体基板上に形成された膜に対して超音
波を照射した場合、基板、膜の材料に固有の入射角で照
射された超音波は材料と膜厚に固有の周波数においてそ
の反射率が極小値をとることを見い出し、この現象を利
用して膜厚を測定する方法を発明し、既に出願済みであ
る。この出願に係る測定方法は、固体基板上に層状に形
成されたメッキ、コーティング、クラッド、塗装などに
より形成した膜の膜厚を超音波によって測定する方法に
おいて、超音波伝搬用の液体から基板に入射する超音波
の入射角が基板、液体および膜の物質に固有の値で、か
つ超音波の波長(入)と膜厚(d)の比が基板、液体およ
び膜の物質に固有の値(H)のとき、超音波の反射率が低
下することを利用して、反射波の強度が低下する超音波
の波長(入)を測定し、下記(A)式 d=入・H……(A) によって膜厚(d)を求めることを特徴とする膜厚測定方
法であるが、その際必要とされる超音波ビームは基板と
膜によって定まる系に固有の入射角で試料に入射するも
のでなければならない。また測定の対象となるのは試料
表面における反射率の周波数依存性なので、試料表面に
照射された超音波のうち表面で反射されたもののみを受
信しなければならない。つまりこの膜厚測定方法におい
ては、所定の入射角の超音波を試料表面に照射し、その
表面における反射波を受信しなければならず、前に示し
た従来の超音波顕微鏡レンズではその目的にかなわな
い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The inventors of the present invention have found that when a film formed on a solid substrate is irradiated with ultrasonic waves, the ultrasonic waves irradiated at the incident angle peculiar to the material of the substrate and the film are materials. It was found that the reflectance has a minimum value at a frequency peculiar to the film thickness, and a method for measuring the film thickness by utilizing this phenomenon was invented, and an application has already been filed. The measuring method according to this application is a method of measuring the film thickness of a film formed by plating, coating, clad, coating, etc. formed in layers on a solid substrate by ultrasonic waves, in which a liquid for ultrasonic wave propagation to a substrate is used. The incident angle of the incident ultrasonic wave is a value peculiar to the substance of the substrate, liquid and film, and the ratio of the wavelength (in) of the ultrasonic wave to the film thickness (d) is a value peculiar to the substance of the substrate, liquid and film ( In the case of (H), the wavelength (on) of the ultrasonic wave at which the intensity of the reflected wave is reduced is measured by utilizing the fact that the reflectance of the ultrasonic wave is reduced, and the following formula (A) d = on · H …… ( This is a film thickness measurement method characterized in that the film thickness (d) is obtained by A), but the ultrasonic beam required at that time is incident on the sample at an incident angle peculiar to the system defined by the substrate and film. Must. Further, what is to be measured is the frequency dependence of the reflectance on the sample surface, and therefore, only the ultrasonic waves reflected on the surface of the ultrasonic waves applied to the sample surface must be received. In other words, in this film thickness measuring method, it is necessary to irradiate the surface of the sample with an ultrasonic wave of a predetermined incident angle and receive the reflected wave from the surface, which is the purpose of the conventional ultrasonic microscope lens shown above. Can not compete.

問題点を解決するための手段 本発明は、以上の如き問題点を解決するため、前記の測
定原理に基づいて基板上の膜の厚さを測定する際に、基
板と膜の材料によって決まる系に固有の入射角をもった
超音波ビームを試料面に照射でき、表面から反射した超
音波を受信することが出来るようにした超音波顕微鏡レ
ンズを提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a system determined by the material of the substrate and the film when measuring the thickness of the film on the substrate based on the above measurement principle. The present invention provides an ultrasonic microscope lens capable of irradiating an ultrasonic wave beam having an incident angle peculiar to the sample surface and receiving an ultrasonic wave reflected from the surface.

発明の詳述 以下、図面を参照にして本発明を詳細に説明する。第1
図は本発明に係る超音波顕微鏡レンズ及びその使用例の
説明図で、第2図は膜が形成された基板上に入射した超
音波の挙動を示す説明図である。第2図からも理解され
るように、液体11から入射した超音波ビーム14は入射角
16で膜面に入射し、透過波と入射波とに分かれ、超音波
反射ビーム15は入射角16と同じ角度16′で照射される。
このとき、前述したように、膜12と基板13の材料によっ
て決まる固有の入射角で入射した超音波においては、超
音波の周波数と膜厚の積が材料によって決まる固有の値
をとるとき反射率が極小になることがある。この現象は
本発明者等が見い出したものであり、第3図にこの現象
を42%ニッケル合金表面に金メッキを施した試料(メ
ッキ膜厚は0μm、2μm、3μm、4μm)に入射す
る超音波の入射角に対する反射率の変化の度合を金メッ
キ膜厚のそれぞれについて示してある。図面からもわか
るように、42%ニッケル合金の基板に金メッキ膜を施
した試料の場合、入射角が32°のとき膜厚3μmで反
射率が極小になる。ただし、この例では周波数は100MHZ
である。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail with reference to the drawings. First
The figure is an explanatory view of an ultrasonic microscope lens according to the present invention and an example of use thereof, and FIG. 2 is an explanatory view showing behavior of ultrasonic waves incident on a substrate on which a film is formed. As can be understood from FIG. 2, the ultrasonic beam 14 incident from the liquid 11 has an incident angle of
It is incident on the film surface at 16 and is divided into a transmitted wave and an incident wave, and the ultrasonic reflected beam 15 is irradiated at the same angle 16 ′ as the incident angle 16.
At this time, as described above, the reflectance when the product of the frequency of the ultrasonic wave and the film thickness has a specific value determined by the material, in the ultrasonic wave incident at the specific incident angle determined by the material of the film 12 and the substrate 13. May be extremely small. This phenomenon has been discovered by the present inventors, and the ultrasonic wave incident on a sample (plating film thickness is 0 μm, 2 μm, 3 μm, 4 μm) in which gold is plated on the surface of 42% nickel alloy is shown in FIG. The degree of change in reflectance with respect to the incident angle of is shown for each gold plating film thickness. As can be seen from the drawing, in the case of a sample in which a 42% nickel alloy substrate is coated with a gold plating film, the reflectance is minimal at a film thickness of 3 μm when the incident angle is 32 °. However, the frequency is 100MHz in this example.
Is.

従って、この膜厚測定方法において使用し得る超音波顕
微鏡レンズとしては、測定試料の基板と膜の構成材料に
よって決まる系に固有の入射角をもった超音波ビームを
試料面に照射でき、試料表面で反射した超音波を受信出
来る特性を有する必要がある。そこで本発明において
は、第1図に示すように、固体基板36上に形成された膜
37の膜厚測定に際し、超音波伝搬用の液体35から固体基
板36に入射する超音波38の入射角33が基板36、液体35お
よび膜37の物質に固有の値で、かつ超音波の波長(入)
と膜厚(d)の比が基板36、液体35および膜37の物質に
固有の値(H)のとき、超音波の反射率が低下することを
利用して、反射波の強度が低下する超音波の波長(入)
を測定し、下記(A)式 d=入・H……(A) によって膜厚を求める場合に使用する超音波顕微鏡レン
ズを、超音波伝搬材31の一端には圧電膜(32を、他端に
は円錐形の凹み39をそれぞれ設けると共に、円錐形の凹
み39の頂角34は液体35から固体基板36に入射する超音波
38が基板36、液体35および膜37の物質に固有の前記値で
入射するように設定したものとすることにより、叙述の
特性の付与を可能とした。
Therefore, as an ultrasonic microscope lens that can be used in this film thickness measuring method, the sample surface can be irradiated with an ultrasonic beam having an incident angle peculiar to the system determined by the substrate of the sample to be measured and the constituent material of the film. It is necessary to have the property of receiving the ultrasonic waves reflected by. Therefore, in the present invention, as shown in FIG. 1, a film formed on the solid substrate 36.
When measuring the film thickness of 37, the incident angle 33 of the ultrasonic wave 38 incident on the solid substrate 36 from the liquid 35 for ultrasonic wave propagation is a value specific to the substance of the substrate 36, the liquid 35 and the film 37, and the wavelength of the ultrasonic wave. (On)
When the ratio of the film thickness (d) to the substrate (36), the liquid (35) and the film (37) is specific to the substance (H), the intensity of the reflected wave is reduced by utilizing the fact that the reflectance of ultrasonic waves is reduced. Ultrasonic wavelength (on)
Is measured, and an ultrasonic microscope lens used when the film thickness is obtained by the following formula (A) d = on · H ... (A) is used. A piezoelectric film (32, The conical recess 39 is provided at each end, and the apex angle 34 of the conical recess 39 is the ultrasonic wave incident on the solid substrate 36 from the liquid 35.
By setting 38 so as to be incident on the substrate 36, the liquid 35, and the substance of the film 37 with the above-mentioned value peculiar to the substance, it is possible to impart the characteristics described above.

具体的には、第1図において、超音波38の試料面への入
射角をθ、超音波伝搬材料31の音速をCo、液体35の音速
をCfとすると、円錐形の凹み39の角度34をφとして の関係があるので、超音波伝搬材料31を溶融石英、液体
35を水、固体基板36を42%ニッケル合金、膜37を金、
入射角θを前記したように32°に設定すると、凹み39
の角度34は48.5°にすればよいことになる。前述の測定
系及び測定方法によって測定試料の膜厚測定を行なう場
合、 (周波数)×(膜厚)=300m/sのとき入射角32
°で反射率が極小となるので、32°の入射角の超音波
を発生できるようにした超音波顕微鏡レンズを使用し
て、発射強度の周波数依存性を測定して、反射強度が極
小となる周波数を求めれば(膜厚)=300/(周波
数)によって膜の厚さを測ることができる。
Specifically, in FIG. 1, when the incident angle of the ultrasonic wave 38 on the sample surface is θ, the sound speed of the ultrasonic wave propagation material 31 is Co, and the sound speed of the liquid 35 is Cf, the angle 34 of the conical recess 39 is As φ Therefore, the ultrasonic wave propagation material 31 is fused quartz, liquid.
35 for water, solid substrate 36 for 42% nickel alloy, film 37 for gold,
If the incident angle θ is set to 32 ° as described above, the recess 39
The angle 34 should be 48.5 °. When the film thickness of the measurement sample is measured by the above-described measuring system and measuring method, the incident angle is 32 when (frequency) × (film thickness) = 300 m / s.
Since the reflectance becomes minimal at °, the frequency dependence of the emission intensity is measured by using an ultrasonic microscope lens capable of generating ultrasonic waves with an incident angle of 32 °, and the reflectance becomes minimal. If the frequency is obtained, the film thickness can be measured by (film thickness) = 300 / (frequency).

一方、このような構成の超音波顕微鏡レンズに似ている
レンズとして、叙述したように、特開昭58−1662
58号公報に開示の超音波顕微鏡レンズがあるが、この
レンズは試料内部へ焦点深度の深いビームを入射させそ
の反射波を受信するためのものであり、それ故に試料表
面からの反射波が受信されることのないように超音波吸
収体を円錐形凹みの頂点部分に設置する構成で、かつ超
音波の入射角を特定しない構成となっており、その使用
目的及び構成の点で本発明に係る超音波顕微鏡とは全く
異なるものである。
On the other hand, as a lens similar to the ultrasonic microscope lens having such a configuration, as described above, JP-A-58-1662.
There is an ultrasonic microscope lens disclosed in Japanese Patent Laid-Open No. 58-58, but this lens is for making a beam with a deep depth of focus enter the inside of a sample and receiving the reflected wave thereof. Therefore, the reflected wave from the sample surface is received. It is configured to install the ultrasonic absorber at the apex of the conical recess so as not to be specified, and is not configured to specify the incident angle of the ultrasonic wave. It is completely different from such an acoustic microscope.

発明の効果 本発明は以上のような構成であるので、被測定体の基板
並びに膜の物質の組合せが定まり、さらに超音波伝搬用
液体が定まったら、それらのもつ固有の入射角で超音波
を照射して、その反射波の入射波に対する強度の比すな
わち反射率が極小となる周波数を周波数計測器で測定し
周波数を求め次に前記A式により被測定体の膜の膜厚を
算出する測定方法に適用すれば、基板上に形成された膜
の膜厚やその2次元的分布が短時間に、精度よく測定で
きるようになる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, when the combination of the substrate of the object to be measured and the material of the film is determined, and further the ultrasonic wave propagating liquid is determined, the ultrasonic wave is emitted at a unique incident angle of the ultrasonic wave. A measurement in which the ratio of the intensity of the reflected wave to the incident wave, that is, the frequency at which the reflectance becomes a minimum is measured with a frequency measuring instrument to obtain the frequency, and then the film thickness of the film of the object to be measured is calculated according to the formula A. When applied to the method, the film thickness of the film formed on the substrate and the two-dimensional distribution thereof can be measured accurately in a short time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る超音波顕微鏡レンズ及びその使用
を示す説明図、第2図は膜が形成された基板上に入射し
た超音波の挙動を示す説明図、第3図は試料に入射する
超音波の入射角に対する反射率の度合を示す説明図であ
る。 31…超音波伝搬材料、32…圧電膜 33…入射角、34…頂角、35…液体 36…固体基板、37…膜、38…超音波 39…凹み
FIG. 1 is an explanatory diagram showing an ultrasonic microscope lens according to the present invention and its use, FIG. 2 is an explanatory diagram showing behavior of ultrasonic waves incident on a substrate on which a film is formed, and FIG. 3 is incident on a sample. It is explanatory drawing which shows the degree of the reflectance with respect to the incident angle of the ultrasonic wave. 31 ... Ultrasonic wave propagating material, 32 ... Piezoelectric film 33 ... Incident angle, 34 ... Apex angle, 35 ... Liquid 36 ... Solid substrate, 37 ... Film, 38 ... Ultrasonic wave 39 ... Recess

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固体基板上に形成された膜の膜厚測定に際
し、超音波伝搬用の液体から固体基板に入射する超音波
の入射角が基板、液体および膜の物質に固有の値で、か
つ超音波の波長(入)と膜厚(d)の比が基板、液体およ
び膜の物質に固有の値(H)のとき、超音波の反射率が低
下することを利用して、反射波の強度が低下する超音波
の波長(入)を測定し、下記(A)式 d=入・H……(A) によって膜厚を求める場合に使用する超音波顕微鏡レン
ズにおいて、超音波伝搬材の一端には圧電膜が、他端に
は円錐形の凹みがそれぞれ設けてあると共に、該円錐形
の凹みの頂角は液体から固体基板に入射する超音波が基
板、液体および膜の物質に固有の前記値で入射するよう
に設定してあることを特徴とする超音波顕微鏡レンズ。
1. When measuring the film thickness of a film formed on a solid substrate, the incident angle of ultrasonic waves incident on the solid substrate from a liquid for ultrasonic wave propagation is a value specific to the substance of the substrate, liquid and film, Moreover, when the ratio of the wavelength (in) of the ultrasonic wave to the film thickness (d) is a value (H) peculiar to the substrate, the liquid and the material of the film, the reflected wave of the ultrasonic wave decreases In the ultrasonic microscope lens used when measuring the wavelength (in) of the ultrasonic wave at which the intensity of is decreased and determining the film thickness by the following formula (A) d = in.H ... (A), Has a piezoelectric film on one end and a conical recess on the other end, and the apex angle of the conical recess is such that the ultrasonic waves incident on the solid substrate from the liquid impinge on the substance of the substrate, liquid and film. An ultrasonic microscope lens, characterized in that it is set so as to be incident with the above-mentioned unique value.
JP59202270A 1984-09-27 1984-09-27 Ultrasonic microscope lens Expired - Lifetime JPH0658222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202270A JPH0658222B2 (en) 1984-09-27 1984-09-27 Ultrasonic microscope lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202270A JPH0658222B2 (en) 1984-09-27 1984-09-27 Ultrasonic microscope lens

Publications (2)

Publication Number Publication Date
JPS6179158A JPS6179158A (en) 1986-04-22
JPH0658222B2 true JPH0658222B2 (en) 1994-08-03

Family

ID=16454758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202270A Expired - Lifetime JPH0658222B2 (en) 1984-09-27 1984-09-27 Ultrasonic microscope lens

Country Status (1)

Country Link
JP (1) JPH0658222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331313U (en) * 1986-08-14 1988-02-29
JPS6331314U (en) * 1986-08-14 1988-02-29

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166258A (en) * 1982-03-27 1983-10-01 Agency Of Ind Science & Technol Ultrasonic microscopic lens
JPS59119222A (en) * 1982-12-25 1984-07-10 Toshiba Corp Acoustic velocity measuring method

Also Published As

Publication number Publication date
JPS6179158A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
JPH0136584B2 (en)
CN110779990B (en) Laser ultrasonic three-dimensional positioning quantitative detection method for multiple defects in material
US4694699A (en) Acoustic microscopy
JPH0421139B2 (en)
US4779241A (en) Acoustic lens arrangement
JPH0273151A (en) Ultrasonic probe
JPH0658222B2 (en) Ultrasonic microscope lens
JPH1078415A (en) Method and device for noncontact and non-destructive material evaluation, and method and device for elastic wave excitation
JPH0437379B2 (en)
Weise et al. Examination of the two-dimensional pupil function in coherent scanning microscopes using spherical particles
JPH0376419B2 (en)
JPH0518361B2 (en)
JPS6179157A (en) Ultrasonic microscope lens
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope
JPH05149931A (en) Method and apparatus for measuring sound speed and density
JP2545974B2 (en) Spectrum ultrasound microscope
KR101875058B1 (en) Apparatus for detecting characteristics and defect of thin-film
JPS6196452A (en) Sound speed/attenuation measuring method of surface elastic wave
JPH0526655A (en) Film thickness measuring method and device
JPH023454B2 (en)
JPH0481654A (en) Ultrasonic detector
JPH0365495B2 (en)
JP2580766B2 (en) Ultrasonic microscope lens and reflected wave sampling method using the lens
JPH07280781A (en) Ultrasonic microscopic apparatus
JP2021081361A (en) Laser beam reception device for reception, laser ultrasonic wave measurement device, and method for measuring laser ultrasonic wave

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term