JPH023454B2 - - Google Patents

Info

Publication number
JPH023454B2
JPH023454B2 JP15853582A JP15853582A JPH023454B2 JP H023454 B2 JPH023454 B2 JP H023454B2 JP 15853582 A JP15853582 A JP 15853582A JP 15853582 A JP15853582 A JP 15853582A JP H023454 B2 JPH023454 B2 JP H023454B2
Authority
JP
Japan
Prior art keywords
sample
wave
ultrasonic
sound speed
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15853582A
Other languages
Japanese (ja)
Other versions
JPS5946824A (en
Inventor
Ichiji Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15853582A priority Critical patent/JPS5946824A/en
Publication of JPS5946824A publication Critical patent/JPS5946824A/en
Publication of JPH023454B2 publication Critical patent/JPH023454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H5/00Measuring propagation velocity of ultrasonic, sonic or infrasonic waves, e.g. of pressure waves

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、固定表面への薄膜の蒸着、表面処
理、表面欠陥等による表面弾性波の音速変化を測
定する方法に関するものである。 このような表面弾性波の音速変化を、超音波顕
微鏡において用いるような超音波レンズによる漏
洩表面弾性波(Leaky Surface Acoustic
Wave)の励起検出効果を利用して測定する方法
が、最近報告されている。この方法は、超音波レ
ンズを試料表面に対して垂直方向に移動させて、
反射波振幅Vを試料表面とレンズ焦点との間の距
離zの関数として測定し、得られたV(z)曲線
に現われる周期的極小の間隔Δzから表面弾性波
の音速υRを求めるもので、固体表面の微小領域の
弾性的性質の測定を可能にするため、新しい非破
壊検査法として注目されている。 しかしながら、上記音速υRの測定にはマイクロ
メータ等によりレンズを試料表面に対して垂直の
方向に機械的に移動する操作が必要であり、試料
上の1点の測定に少なくとも数秒の時間を必要と
するばかりでなく、機械的な精度も問題となる。
それ故、試料上の多数の点で音速υRを測定してそ
の分布を調べる場合や、時々刻々変化する表面状
態のリアルタイム計測を行う場合には、迅速性の
点で問題がある。 本発明は、このような問題点を克服するため、
継続時間の短いパルス状超音波を励起する超音波
レンズを用い、電気的信号の処理を行うだけで機
械的な移動の必要をなくすことにより、漏洩表面
弾性波の音速υRを非常に迅速に、しかも精度よく
測定できるようにしたものである。 即ち、本発明の音速測定法は、超音波レンズを
通してパルス状の超音波を試料内に位置する焦点
に収束するように放射させ、試料表面で鏡面反射
し戻る成分と、試料表面を漏洩表面弾性波として
伝わつた後に戻る成分及び超音波レンズで内部反
射して戻る成分との帰戻の時間差に基づいて、そ
の試料についての表面弾性波の音速を求めること
を特徴とするものである。 以下に図面を参照して本発明の方法をさらに詳
細に説明する。 第1図において、1は超音波顕微鏡において用
いているのと同様の超音波レンズで、単結晶アル
ミナまたは溶融石英等からなる円筒部1aの先端
面に凹球面状に凹み1bと設け、上面に設けた圧
電トランスデユーサ2で励起した縦波を試料3に
対向させた凹球面において屈折させることにより
焦点Oに収束させるように構成している。圧電ト
ランスデユーサ2に接続した送受波器は、継続時
間の短いパルス状の超音波を励起すると共に、圧
電トランスデユーサ2を通して反射波を受波する
もので、この送受波器には後述するパルス状の反
射波の時間間隔を測定するための時間間隔測定器
を接続している。 なお、試料3における特定の場所で表面弾性波
の音速を測定する場合には、超音波レンズ1をそ
の軸線方向等に移動させる必要はないが、試料上
の多数の点で音速υRを測定してその分布を調べる
場合などには、試料表面に沿つて2次元的に走査
するような手段を付設するのが望ましい。 このような構成を有する測定装置においては、
送受波器から超音波レンズ1を通してパルス状の
超音波を放射すると、それらは次のような複数の
成分に分かれる。 まず、超音波レンズ1の中心を通つてE点から
カプラー4として用いている水等の液体中を通
り、試料3の表面のF点で鏡面反射して戻ること
により、EFE―→の経路をたどる鏡面反射波の成分
(以下、S波と呼ぶ。)が存在する。漏洩表面弾性
波となる成分(以下、L波と呼ぶ。)は、超音波
レンズ1の中心から離れた部分を通つて凹球面の
A点で屈折し、カプラー4内を経て試料3の表面
におけるB点に達し、ここで試料表面に平行に、
しかも試料の表面近傍のみを伝わる表面弾性波に
変換され、B点からF点を経てC点に達すると、
再びカプラー4中に放出され、D点からレンズ1
に入つてトランスデユーサ2に戻る。本発明で
は、このL波がBFC―→において表面弾性波となつ
て試料表面を伝わる音速υRを求めることになり、
この音速υRが試料表面近傍の欠陥とか表面処理に
よつて変化した情報をもつている。また、超音波
レンズ1のE点で内部反射して戻る成分である内
部反射波(以下、I波と呼ぶ。)も存在する。 第2図は、上述したI波、S波及びL波が圧電
トランスデユーサ2に帰戻する時間的関係を示す
もので、I波とS波が圧電トランスデユーサ2に
達する時間差をΔtO、S波とL波の同時間差を
ΔtRとすると、これらは、 ΔtO=2(f−z)/υO…… (1) ΔtR=2z/υO(1−√1−O 2 R 2)…… (2) で与えられる。但し、fはレンズ焦点距離、υO
カプラー4として用いる液体中の音速である。 ここで、試料表面とレンズ焦点間の距離zは、
試料表面の凹凸によつて変化し、従つて試料の凹
凸が未知である場合には上記(2)式により時間差
ΔtRから音速υRを求めることができない。そのた
め、(1)(2)式によりzを消去すると、 υR=〔ΔtR/υO(f−υOΔtO/2)− ΔtR 2/4(f−υOΔtO/2)2-1/2……(3) となり、即ち試料表面の凹凸とは無関係に時間差
測定だけで音速υRが求められる。 このような本発明の測定方法においては、時間
間隔測定に超音波レンズ等の機械的移動を伴わ
ず、電気的信号の処理のみで実行できるため、極
めて短時間に、しかも精度よく音速υRを測定する
ことができる。 次に実施例を示す。 第1図り示すような装置において、広帯域圧電
トランスデユーサとして、厚さ30μmのPVDFフ
イルムを用い、レンズ材質には溶融石英を用い
た。焦点距離fは4mm、カプラーとしては水を用
い、その音速は1486m/sである。S波とI波及
びL波の時間間隔の測定は、それぞれのパルスの
立ち上がりの時刻を基準に行つた。 測定は、SKD11鋼、ソーダガラス、Si(111)
面、Si(100)面、MgO(100)面、サフアイヤ
(0001)面を対象とし、その測定値を音速υRの文
献値との比較において第1表に示す。
The present invention relates to a method for measuring changes in the sound speed of surface acoustic waves due to thin film deposition on a fixed surface, surface treatment, surface defects, etc. This change in the sound speed of surface acoustic waves can be detected by leaky surface acoustic waves (Leaky Surface Acoustic Waves) produced by ultrasonic lenses used in ultrasonic microscopes.
A measurement method that utilizes the excitation detection effect of waves has recently been reported. This method moves the ultrasonic lens perpendicular to the sample surface,
The reflected wave amplitude V is measured as a function of the distance z between the sample surface and the lens focal point, and the sound speed υ R of the surface acoustic wave is determined from the periodic minimum interval Δz appearing on the obtained V(z) curve. , which is attracting attention as a new non-destructive testing method because it enables the measurement of elastic properties of minute regions on solid surfaces. However, to measure the sound velocity υ R , it is necessary to mechanically move the lens in a direction perpendicular to the sample surface using a micrometer, etc., and it takes at least several seconds to measure one point on the sample. In addition to this, mechanical accuracy is also an issue.
Therefore, there is a problem in terms of speed when measuring the sound velocity υ R at a large number of points on a sample and examining its distribution, or when performing real-time measurement of a surface condition that changes from time to time. In order to overcome such problems, the present invention has the following features:
By using an ultrasonic lens that excites short-duration pulsed ultrasonic waves and eliminating the need for mechanical movement by simply processing electrical signals, the sound speed υ R of leaky surface acoustic waves can be reduced very quickly. Moreover, it is designed to be able to measure with high precision. In other words, the sound velocity measurement method of the present invention radiates pulsed ultrasonic waves through an ultrasonic lens so as to converge on a focal point located within the sample, and the components that are specularly reflected back at the sample surface and the leakage surface elasticity of the sample surface are The method is characterized in that the speed of sound of the surface acoustic wave for the sample is determined based on the return time difference between the component that returns after being transmitted as a wave and the component that returns after being internally reflected by an ultrasonic lens. The method of the present invention will be explained in more detail below with reference to the drawings. In Fig. 1, reference numeral 1 denotes an ultrasonic lens similar to that used in ultrasonic microscopes, and a cylindrical part 1a made of single crystal alumina or fused silica has a concave spherical recess 1b on the tip surface. The longitudinal wave excited by the provided piezoelectric transducer 2 is refracted at a concave spherical surface facing the sample 3, so that it is converged to a focal point O. The transducer connected to the piezoelectric transducer 2 excites short-duration pulsed ultrasonic waves and receives reflected waves through the piezoelectric transducer 2. A time interval measuring device is connected to measure the time interval of pulsed reflected waves. Note that when measuring the sound speed of a surface acoustic wave at a specific location on the sample 3, it is not necessary to move the ultrasonic lens 1 in the axial direction, etc., but it is necessary to measure the sound speed υ R at many points on the sample. In order to examine the distribution of the sample, it is desirable to provide a means for two-dimensional scanning along the sample surface. In a measuring device having such a configuration,
When pulsed ultrasonic waves are emitted from the transducer through the ultrasonic lens 1, they are separated into the following components. First, it passes through the center of the ultrasonic lens 1 from point E, passes through a liquid such as water used as coupler 4, and returns through specular reflection at point F on the surface of sample 3, thereby tracing the path of EFE-→. There is a specularly reflected wave component (hereinafter referred to as an S wave) that is traced. A component that becomes a leaky surface acoustic wave (hereinafter referred to as an L wave) passes through a portion away from the center of the ultrasonic lens 1, is refracted at point A of the concave spherical surface, passes through the coupler 4, and is refracted at the surface of the sample 3. point B is reached, where parallel to the sample surface,
Moreover, it is converted into a surface acoustic wave that propagates only near the surface of the sample, and when it reaches point C from point B through point F,
It is emitted into the coupler 4 again, and from the point D to the lens 1.
and return to transducer 2. In the present invention, the sound speed υ R at which this L wave becomes a surface acoustic wave at BFC-→ and travels on the sample surface is determined.
This sound velocity υ R contains information that has changed due to defects near the sample surface or surface treatment. There is also an internally reflected wave (hereinafter referred to as I wave) which is a component that is internally reflected at point E of the ultrasonic lens 1 and returns. FIG. 2 shows the time relationship in which the above-mentioned I wave, S wave, and L wave return to the piezoelectric transducer 2. The time difference between the I wave and the S wave reaching the piezoelectric transducer 2 is Δt O , the same time difference between S wave and L wave is Δt R , these are as follows: Δt O =2(f−z)/υ O …… (1) Δt R =2z/υ O (1−√1− O 2 R 2 )... is given by (2). However, f is the lens focal length, and υ O is the sound speed in the liquid used as the coupler 4. Here, the distance z between the sample surface and the lens focus is
It changes depending on the unevenness of the sample surface, so if the unevenness of the sample is unknown, the sound speed υ R cannot be determined from the time difference Δt R using equation (2) above. Therefore, by eliminating z using equations (1) and (2), υ R = [Δt RO (f−υ O Δt O /2) − Δt R 2 /4 (f−υ O Δt O /2) 2-1/2 ...(3) That is, the sound speed υ R can be determined only by time difference measurement, regardless of the unevenness of the sample surface. In the measurement method of the present invention, the time interval measurement does not involve mechanical movement of an ultrasonic lens, etc., and can be performed only by processing electrical signals, so it is possible to measure the sound speed υ R in an extremely short time and with high precision. can be measured. Next, examples will be shown. In the apparatus shown in the first figure, a 30 μm thick PVDF film was used as the broadband piezoelectric transducer, and fused silica was used as the lens material. The focal length f is 4 mm, water is used as the coupler, and the sound speed is 1486 m/s. The time intervals between the S wave, I wave, and L wave were measured based on the rising time of each pulse. Measurement is SKD11 steel, soda glass, Si (111)
Table 1 shows a comparison of the measured values of the sound velocity υ R with the literature values for the Si (100) surface, the MgO (100) surface, and the Saffire (0001) surface.

【表】 上記第1表からわかるように、音速値2940m/
sから5660m/sの範囲で誤差4%以内の測定を
行うことができた。
[Table] As can be seen from Table 1 above, the sound speed value is 2940m/
We were able to perform measurements within a 4% error range in the range from 5,660 m/s to 5,660 m/s.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の構成
図、第2図は各反射波の時間的関係を示す線図で
ある。 1……超音波レンズ、3……試料。
FIG. 1 is a block diagram of an apparatus for implementing the method of the present invention, and FIG. 2 is a diagram showing the temporal relationship of each reflected wave. 1... Ultrasonic lens, 3... Sample.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波レンズを通してパルス状の超音波を試
料内に位置する焦点に収束するように放射させ、
試料表面で鏡面反射して戻る成分と、試料表面を
漏洩表面弾性波として伝わつた後に戻る成分及び
超音波レンズで内部反射して戻る成分との帰戻の
時間差に基づいて、その試料についての表面弾性
波の音速を求めることを特徴とする表面弾性波の
音速測定法。
1 Emit pulsed ultrasonic waves through an ultrasonic lens so as to converge on a focal point located within the sample,
Based on the return time difference between the component that returns after specular reflection on the sample surface, the component that returns after propagating through the sample surface as a leaky surface acoustic wave, and the component that returns after being internally reflected by the ultrasonic lens, the surface of the sample is determined. A method for measuring the sound speed of surface acoustic waves, which is characterized by determining the sound speed of elastic waves.
JP15853582A 1982-09-11 1982-09-11 Measuring method of sound velocity of surface acoustic wave Granted JPS5946824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15853582A JPS5946824A (en) 1982-09-11 1982-09-11 Measuring method of sound velocity of surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15853582A JPS5946824A (en) 1982-09-11 1982-09-11 Measuring method of sound velocity of surface acoustic wave

Publications (2)

Publication Number Publication Date
JPS5946824A JPS5946824A (en) 1984-03-16
JPH023454B2 true JPH023454B2 (en) 1990-01-23

Family

ID=15673841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15853582A Granted JPS5946824A (en) 1982-09-11 1982-09-11 Measuring method of sound velocity of surface acoustic wave

Country Status (1)

Country Link
JP (1) JPS5946824A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759127B2 (en) * 1988-06-30 1998-05-28 本多電子株式会社 Ultrasonic cleaning equipment

Also Published As

Publication number Publication date
JPS5946824A (en) 1984-03-16

Similar Documents

Publication Publication Date Title
US2592134A (en) Method of supersonic inspection
CN110672047B (en) Laser ultrasonic measurement method for thickness of high-temperature metal material
JPH0136584B2 (en)
US4524621A (en) Method for measurement of velocity of surface acoustic wave
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
US4730494A (en) Method for examining a surface of a sample by means of ultrasound
US3379902A (en) Ultrasonic testing apparatus
JP2001208729A (en) Defect detector
JPH023454B2 (en)
Salim Visualization and modal analysis of guided
US5585563A (en) Non-contact thickness measurement using UTG
JPH0348153A (en) Decision of strength of ceramic junction
US2725491A (en) Adapter for adjustably mounting angle search unit on contact shoe for ultrasonic shear-wave testing of tubular articles
JPS61160053A (en) Ultrasonic flaw detection test
GB1222355A (en) Probes for use in ultrasonic flaw detection
Bond Ultrasonic transduction (transducer elements)
JPH05149931A (en) Method and apparatus for measuring sound speed and density
Dewhurst et al. A study of Lamb wave interaction with defects in sheet materials using a differential fibre-optic beam deflection technique
JPH0526655A (en) Film thickness measuring method and device
Monchalin Optical generation and detection of ultrasound
JPS606858A (en) Measuring method of sonic velocity and attenuation of surface acoustic wave
SU1569696A1 (en) Transducer for ultrasonic inspection
JPH02110366A (en) Focal point probe
Jung et al. Non-contact sound speed measurement by optical probing of beam deflection due to sound wave
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope