JPS5950937B2 - ultrasound microscope - Google Patents

ultrasound microscope

Info

Publication number
JPS5950937B2
JPS5950937B2 JP54036657A JP3665779A JPS5950937B2 JP S5950937 B2 JPS5950937 B2 JP S5950937B2 JP 54036657 A JP54036657 A JP 54036657A JP 3665779 A JP3665779 A JP 3665779A JP S5950937 B2 JPS5950937 B2 JP S5950937B2
Authority
JP
Japan
Prior art keywords
ultrasonic
sample
signal
focusing lens
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54036657A
Other languages
Japanese (ja)
Other versions
JPS55128152A (en
Inventor
良 藤本
勲 籾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP54036657A priority Critical patent/JPS5950937B2/en
Publication of JPS55128152A publication Critical patent/JPS55128152A/en
Publication of JPS5950937B2 publication Critical patent/JPS5950937B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】 本発明は超音波顕微鏡に使用される超音波集束レンズの
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an ultrasound focusing lens used in an ultrasound microscope.

光の代りに超音波を用いて物体の微視的な構造を観察し
ようという考えが古くからあり、最近機械走査形超音波
顕微鏡が開発された。
The idea of using ultrasound instead of light to observe the microscopic structure of objects has been around for a long time, and mechanical scanning ultrasound microscopes have recently been developed.

この超音波顕微鏡は、原理的には細く絞つた超高周波超
音波ビームによつて試料面を機械的に走査し、その試料
により散乱された超音波を集音して電気信号に変換し、
その信号を陰極線管の表示面に二次元的に表示し、顕微
鏡像を得るのである。構成としては超音波の検出の仕方
によつて、すなわち試料内で散乱あるいは減衰しながら
透過してきた超音波を検出する場合と、試料内の音響的
性質の差によつて反射してきた超音波を検出する場合と
によつて、透過型と反射型とに分けられる。第1図は反
射型の超音波顕微鏡の原理図で、高周波発振器1からの
信号は方向性結合器2により送受兼用トランスデユーザ
3へ供給される。
In principle, this ultrasonic microscope mechanically scans the sample surface with a narrowly focused ultrahigh-frequency ultrasonic beam, collects the ultrasonic waves scattered by the sample, and converts them into electrical signals.
The signals are displayed two-dimensionally on the display screen of a cathode ray tube to obtain a microscopic image. The configuration depends on the method of detecting the ultrasonic waves, that is, detecting the ultrasonic waves that have passed through the sample while being scattered or attenuated, and detecting the ultrasonic waves that have been reflected due to differences in the acoustic properties within the sample. Depending on the case of detection, there are two types: transmission type and reflection type. FIG. 1 is a diagram showing the principle of a reflection-type ultrasound microscope, in which a signal from a high-frequency oscillator 1 is supplied to a transducer 3 for transmitting and receiving purposes by a directional coupler 2.

この信号は超音波に変換されてこれが貼着された送受波
兼用のサフアイヤ等の超音波伝搬媒体材から成る超音波
集束レンズ4の一面より内部に放射される。該超音波集
束レンズ4の他端は球面状にえぐられて球面レンズ部4
aとされ、球面レンズ部4aと対向して試料保持板5が
記されている。超音波集束レンズ4と前記保持板5との
間には水からなる音場媒体6が介在され、前記球面レン
ズ部4aの焦点において試料7が保持板5に取付けられ
る。保持板5は走査査装置8でX及びY方向に移される
。走査装置8は走査回路9により制御される。前記トラ
ンスデユーサ3より超音波集束レンズ4に入射された超
音波は集束されて試料7へ到達する。その反射波は再び
超音波集束レンズ4で集音され、トランスデユーサ3で
電気信号に変換されて、前記方向性結合器2を通つて表
示装置」0へ供給される。ところが、実際には試料7表
面で反射した反射波だけでなく、第2図、第3図に示す
ように超音波集束レンズ4における球面レンズ部4aの
境界面での反射波がトランスデユーサ3により電気信号
として取り出されてしまう。
This signal is converted into an ultrasonic wave and is radiated inside from one surface of an ultrasonic focusing lens 4 made of an ultrasonic propagation medium material such as sapphire for both transmitting and receiving waves. The other end of the ultrasonic focusing lens 4 is hollowed out into a spherical shape to form a spherical lens portion 4.
a, and a sample holding plate 5 is shown facing the spherical lens portion 4a. A sound field medium 6 made of water is interposed between the ultrasonic focusing lens 4 and the holding plate 5, and the sample 7 is attached to the holding plate 5 at the focal point of the spherical lens portion 4a. The holding plate 5 is moved by a scanning device 8 in the X and Y directions. The scanning device 8 is controlled by a scanning circuit 9. The ultrasonic waves incident on the ultrasonic focusing lens 4 from the transducer 3 are focused and reach the sample 7. The reflected wave is again collected by the ultrasonic focusing lens 4, converted into an electrical signal by the transducer 3, and supplied to the display device "0" through the directional coupler 2. However, in reality, not only the reflected waves reflected from the surface of the sample 7 but also the reflected waves from the boundary surface of the spherical lens portion 4a of the ultrasonic focusing lens 4 are reflected by the transducer 3 as shown in FIGS. 2 and 3. is extracted as an electrical signal.

第3図のaは高周波発振器1の送信パルスが方向性結合
器2から洩れた洩れ信号B,,b。,b。,b”はそれ
ぞれ前記球面レンズ部4aの境界面と超音波集束レンズ
4の一面との間での多重反射による第1、第2、第3、
第4の反射信号、cは試料7から反射した試料信号であ
る。そこで、超音波集束レンズ4内での多重反射による
これらの反射信号b、〜B,と試料7からの試料信号c
とが重なると、それらの位相関係により重畳されたり、
あるいは打消し合つて出力の振幅が試料信号cの強度に
よるものとはならない。従つて、試料信号cは前記第1
〜第4の反射信号B,〜B。の間に現出させる必要があ
る。本発明は上記の点に鑑み、超音波集束レンズの構造
を予め所定の寸法に設定することにより、試料信号を反
射信号と異なる位置に現出し得るようにしたものである
。以下、本発明を図面により説明すると、第2図に超音
波集束レンズ4及び該レンズ4から試料7面までの寸法
がそれぞれ示されており、図面中lは超音波集束レンズ
4の一面から球面レンズ部4aの頂点4bまでの高さ、
dは球面レンズ部4aの頂点4bから試料7面までの距
離、rは球面レンズ部4aの半径、C1及びC2は超音
波集束レンズ4内及び音場媒体6中における超音波の速
度である。
In FIG. 3, a is a leakage signal B, b, in which the transmission pulse of the high-frequency oscillator 1 leaks from the directional coupler 2. , b. , b'' are the first, second, third, and
The fourth reflected signal, c, is the sample signal reflected from the sample 7. Therefore, these reflected signals b, ~B, due to multiple reflections within the ultrasonic focusing lens 4 and the sample signal c from the sample 7
If they overlap, they will be superimposed due to their phase relationship,
Alternatively, they cancel each other out, so that the amplitude of the output does not depend on the intensity of the sample signal c. Therefore, the sample signal c is
~Fourth reflected signal B, ~B. It needs to appear between. In view of the above points, the present invention enables the sample signal to appear at a different position from the reflected signal by setting the structure of the ultrasonic focusing lens to predetermined dimensions in advance. Hereinafter, the present invention will be explained with reference to the drawings. Fig. 2 shows the dimensions of the ultrasonic focusing lens 4 and the distance from the lens 4 to the surface of the sample 7. The height of the lens portion 4a to the apex 4b,
d is the distance from the vertex 4b of the spherical lens section 4a to the surface of the sample 7, r is the radius of the spherical lens section 4a, and C1 and C2 are the velocities of the ultrasonic waves within the ultrasound focusing lens 4 and the sound field medium 6.

今、第4図に反射信号及び試料信号を理想化して示すと
、B,〜B。は第1〜第4の反射信号で、該信号B,〜
B。はT,時間の周期を有する減衰信号である。なお、
そのパルス幅は例えば△t時間とする。cは試料7面か
ら反射された試料信号で、該信号cは高周波発振器1か
らパルスが送信されてT2時間後に表われたものとする
。これらの時間tlとt”は超音波集束レンズ4の寸法
及びそれらの音速から下記の式で示すことができる。T
,= 21/C,・・・ (イ)T。
Now, when the reflected signal and sample signal are idealized and shown in FIG. 4, B, ~B. are the first to fourth reflected signals, and the signals B, ~
B. is a decaying signal with a period of T, time. In addition,
The pulse width is, for example, Δt time. It is assumed that c is a sample signal reflected from the surface of the sample 7, and the signal c appears after a time T2 after the pulse is transmitted from the high frequency oscillator 1. These times tl and t'' can be expressed by the following formula from the dimensions of the ultrasonic focusing lens 4 and their sound speeds.T
,=21/C,... (a)T.

=21/C,+2d/C。・・ ・ ・ ・ ・ (口
)今、T2=Ktlとすると、上記式(イ)、(口)か
ら、l= Dc,/(k−1)C。・ ・ ・ ・ ・
・ (− −)となる。なお、前記dは球面レンズ部
4aの半径rによつてd=r/ (1−C。/C,)の
式で表わされる。ここで、試料信号cが各反射信号b、
〜B,の間に表わされるための条件は、試料信号cが表
示されるまでの時間T2をNt,+△t≦T2≦ (n
+1)T,−△t、 (nは正の整数)の範囲とすれば
良く、従つて、n+△t /cl≦k≦ (n+1)△
t/TO(nは正の整数)となる。kをこの範囲に設定
し且つ超音波集束レンズ4を上記式(−◆に当嵌るよう
に選べば、試料信号号cが反射信号B,〜B,に重なる
ことなく、各反射信号B,〜B,の間に現出させること
ができる。そこで、超音波集束レンズ4をサファイア、
音場媒体6を水とすると、音速C,及びC。
=21/C, +2d/C.・・ ・ ・ ・ (Ex) Now, if T2 = Ktl, then from the above equations (a) and (ex), l = Dc, / (k-1)C.・ ・ ・ ・ ・
・It becomes (− −). Note that d is expressed by the formula d=r/(1-C./C,) using the radius r of the spherical lens portion 4a. Here, the sample signal c is each reflected signal b,
〜B, is the condition that the time T2 until the sample signal c is displayed is Nt, +△t≦T2≦ (n
+1) T, -△t, (n is a positive integer), therefore, n+△t /cl≦k≦ (n+1)△
t/TO (n is a positive integer). If k is set within this range and the ultrasonic focusing lens 4 is selected to fit the above equation (-◆), the sample signal number c will not overlap the reflected signals B, ~B, and each reflected signal B, ~ B. Therefore, the ultrasonic focusing lens 4 can be made of sapphire,
When the sound field medium 6 is water, the sound speeds C and C.

はそれぞれ11.2mm/μSec及び土5mm/μS
ecで、d=r/(l−C。/ C,)の式からd =
1.155rとなる。よつて、例えばR,kを下記〔
表1〕に示すような値に設定すれば、上記式(−一)か
らlの値をそれぞれ決定することができる。叙上のよう
に、本発明は超音波集束レンズ4内部からの多重反射信
号bl〜B4の間に試料信号cを現出させたものである
ため、ブランキング回路を用いて反射信号B,〜B2を
消去することにより、求める試料信号cだけを明瞭な形
で得ることができる顕著な効果を奏する。
are 11.2mm/μSec and soil 5mm/μS, respectively.
ec, from the formula d=r/(l-C./C,), d=
It becomes 1.155r. Therefore, for example, R, k can be written as follows [
If the values shown in Table 1 are set, the values of l can be determined from the above equation (-1). As mentioned above, since the present invention makes the sample signal c appear between the multiple reflection signals bl to B4 from inside the ultrasonic focusing lens 4, the blanking circuit is used to generate the reflection signals B, . By erasing B2, there is a remarkable effect that only the desired sample signal c can be obtained in a clear form.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反射型超音波顕微鏡の原理を示す図、第2図は
超音波集束レンズと試料との関係を示す説明図、第3図
は反射信号と試料信号との出力波形を示す図、第4図は
第3図の出力波形を理想化して表わした説明図で゛ある
。 4・・・・・・;超音波集束レンズ、4a・・・・・・
球面レンズ部、4b・・・・・・頂点、6・・・・・・
音場媒体、7・・・・・・試料。
Fig. 1 is a diagram showing the principle of a reflection type ultrasound microscope, Fig. 2 is an explanatory diagram showing the relationship between the ultrasound focusing lens and the sample, and Fig. 3 is a diagram showing the output waveforms of the reflected signal and the sample signal. FIG. 4 is an explanatory diagram that idealizes and represents the output waveform of FIG. 3. 4...; Ultrasonic focusing lens, 4a...
Spherical lens part, 4b... Vertex, 6...
Sound field medium, 7... Sample.

Claims (1)

【特許請求の範囲】 1 超音波伝搬媒体材の一端に球面レンズ部を設けてな
る超音波集束レンズにより、上記超音波伝搬媒体材の他
端に設けたトランスデューサにて発生した超音波ビーム
を音場媒体を介して試料に集束させると共に、この試料
からの反射波を上記超音波集束レンズにより集音した後
に電気信号に変換させるようにした超音波顕微鏡におい
て、l=dc_1/(t_2/t_1−1)c_2n+
△t/t_1≦t_2/t^1≦(n+1)−△t/t
_1ただし、l;超音波集束レンズのトランスデューサ
側の一端から球面レンズ部の頂点までの高さ d;球面レンズ部の頂点から試料ま での距離 c_1;超音波集束レンズ内の超音波の速度 c_2;音場媒体中の超音波の速度 t_1;球面レンズ部と音場媒体との境 界面と、超音波レンズの他端との 間での多重反射信号の周期 △t;この多重反射信号のパルス幅 t_2;トランスデューサに駆動信号が加えられてから
試料面で反射された 試料信号が検出するまでの時間 n;正の整数 上記の関係式を満たすことを特徴とする超音波顕微鏡。
[Scope of Claims] 1. An ultrasonic focusing lens having a spherical lens portion provided at one end of the ultrasonic propagation medium material converts the ultrasonic beam generated by the transducer provided at the other end of the ultrasonic propagation medium material into sound. In an ultrasonic microscope that focuses on a sample through a field medium and collects reflected waves from the sample using the ultrasonic focusing lens, it is converted into an electrical signal, l=dc_1/(t_2/t_1- 1) c_2n+
△t/t_1≦t_2/t^1≦(n+1)−△t/t
_1 However, l; Height d from one end of the ultrasonic focusing lens on the transducer side to the apex of the spherical lens portion; Distance from the apex of the spherical lens portion to the sample c_1; Speed of ultrasound within the ultrasonic focusing lens c_2; Speed of ultrasound in the sound field medium t_1; Period △t of the multiple reflection signal between the interface between the spherical lens part and the sound field medium and the other end of the ultrasound lens; Pulse width of this multiple reflection signal t_2: Time from when a drive signal is applied to the transducer until the sample signal reflected from the sample surface is detected n: Positive integer An ultrasonic microscope characterized in that it satisfies the above relational expression.
JP54036657A 1979-03-28 1979-03-28 ultrasound microscope Expired JPS5950937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54036657A JPS5950937B2 (en) 1979-03-28 1979-03-28 ultrasound microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54036657A JPS5950937B2 (en) 1979-03-28 1979-03-28 ultrasound microscope

Publications (2)

Publication Number Publication Date
JPS55128152A JPS55128152A (en) 1980-10-03
JPS5950937B2 true JPS5950937B2 (en) 1984-12-11

Family

ID=12475919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54036657A Expired JPS5950937B2 (en) 1979-03-28 1979-03-28 ultrasound microscope

Country Status (1)

Country Link
JP (1) JPS5950937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342657U (en) * 1986-09-05 1988-03-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300225B2 (en) * 2013-12-03 2018-03-28 東芝エネルギーシステムズ株式会社 Turbine blade inspection device and inspection method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342657U (en) * 1986-09-05 1988-03-22

Also Published As

Publication number Publication date
JPS55128152A (en) 1980-10-03

Similar Documents

Publication Publication Date Title
US4084582A (en) Ultrasonic imaging system
US4339952A (en) Cylindrical transducer ultrasonic scanner
US5991239A (en) Confocal acoustic force generator
JP4551524B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US4207901A (en) Ultrasound reflector
US4333474A (en) Ultrasonic imaging system
US4495817A (en) Ultrasonic imaging device
US10054676B2 (en) Acoustic camera
US4313444A (en) Method and apparatus for ultrasonic Doppler detection
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JPH0255949A (en) Ultrasonic microscope
US4491020A (en) Ultrasonic microscope
JPS5950937B2 (en) ultrasound microscope
JPS634142B2 (en)
JPS6036951A (en) Focusing ultrasonic transducer element
US3890829A (en) Method and apparatus for acoustical imaging
JPS5950936B2 (en) Ultrasonic microscope sample holding plate
SU1518784A1 (en) Method of forming acoustic images
JPS60242365A (en) Ultrasonic inspecting device
JPH0457975B2 (en)
JPS6333167Y2 (en)
JPS5822043A (en) Ultrasonic probe
JPS6154415B2 (en)
JPH0222343B2 (en)
JPS6322522Y2 (en)