JPS6188144A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS6188144A
JPS6188144A JP60231116A JP23111685A JPS6188144A JP S6188144 A JPS6188144 A JP S6188144A JP 60231116 A JP60231116 A JP 60231116A JP 23111685 A JP23111685 A JP 23111685A JP S6188144 A JPS6188144 A JP S6188144A
Authority
JP
Japan
Prior art keywords
sample
ultrasonic
microscope
stylus
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60231116A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60231116A priority Critical patent/JPS6188144A/en
Publication of JPS6188144A publication Critical patent/JPS6188144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect an observing position easily even if a sample is removed from an ultrasonic microscope by forming a means for forming a flaw which is a mark on a part of the sample in a visual field of the microscope. CONSTITUTION:When an ultrasonic wave 6 generated by applying a pulse 5 from a pulse oscillator 4 to a piezoelectric thin film 2 is transmitted through a cylinder of a spherical lens 1 as a plane wave and reached to a semispherical hole, refraction is generated due to the difference between the sound speeds of quartz and water 8 and the covered ultrasonic waves are irradiated on the surface of the sample 7. The reflected ultrasonic wave is reached to a piezoelectric thin film 2 through the spherical lens 1, an RF signal 9 is received by a receiver 10 and the intensity of the reflection from the surface of the sample 7 which may be generated in accordance with scanning by a sample board driving power supply 13 is displayed on a CRT surface 12. On the other hand, a contact stylus 15 fitted to a fitting board 14 is brought into contact with an optional position on the surface of the sample 7 and a high-voltage pulse is applied to a piezoelectric oscillator 17, so that the point of the stylus 15 is oscillated and the mark can be formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、音波レンズと試料間を機械的に走査する手段
を具備した超音波顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic microscope equipped with a means for mechanically scanning between an acoustic lens and a sample.

〔発明の背景〕[Background of the invention]

近年I G Hzに及ぶ超高層°波の音波の発生検出が
可能となったので、水中で約1μmの音波長が実現でき
ることになり、その結果、高い分解能の音波撮像装置が
得られるようになった。即ち、凹面レンズを用いて集束
音波ビームを作り、1μmに及ぶ高い分解能を実現する
のである。
In recent years, it has become possible to detect the generation of ultrahigh-frequency sound waves up to I GHz, making it possible to realize sound wavelengths of approximately 1 μm underwater, and as a result, it has become possible to obtain high-resolution sonic imaging devices. Ta. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm.

上記ビーム中に試料をそう入し、試料による反射超音波
を検出して試料の微細領域の弾圧的性質を解明したり、
或いは試料を機械的に2次元に走査しながら、 この信
号の強度をブラウン管の輝度信号として表示すれば、試
料の微細構造を拡大してみることができることが特開昭
50−116058号に示されている。
By inserting a sample into the beam and detecting the reflected ultrasound waves from the sample, we can elucidate the elastic properties of the microscopic region of the sample.
Alternatively, it was shown in JP-A-50-116058 that by mechanically scanning a sample in two dimensions and displaying the intensity of this signal as a brightness signal on a cathode ray tube, it is possible to enlarge the fine structure of the sample. ing.

第1図は、その超音波顕微鏡の主要構成部を示す図であ
る。超音波の集束及び送受は球面レンズ1により行って
いるが、その構造は円柱状の熔融石芙等をもちいた物質
の一面を光学研磨し、その上に圧電薄膜(Zz○)2を
上下電極3によりはさむ、このようにサンドウィッチ構
造になっている圧電薄膜2に、パルス発振器4から発生
されたパルス5を印加して、超音波6を発生させる。ま
た、他端部は口径0 、1 m mφ〜1 、0 m 
mφ程度の凹面状の半球穴が形成されており、この半球
穴と試料との間には、超音波6を試料7に伝播させるた
めの媒質(例えば水)8が満されている。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is performed by a spherical lens 1, and its structure consists of optically polishing one side of a material made of cylindrical molten stone, etc., and piezoelectric thin films (ZZ○) 2 are placed on top and bottom electrodes. A pulse 5 generated from a pulse oscillator 4 is applied to the piezoelectric thin film 2 sandwiched between the two piezoelectric thin films 2 having a sandwich structure as described above, thereby generating an ultrasonic wave 6. In addition, the other end has a diameter of 0,1 mm mφ~1,0 m
A concave hemispherical hole of about mφ is formed, and a medium (for example, water) 8 for propagating the ultrasonic wave 6 to the sample 7 is filled between the hemispherical hole and the sample.

圧電薄膜2によって発生した超音波6は円柱の中を平面
波となって伝播する。この平面波が半球穴に達すると石
英(音速6000m/s)と水(音速1500 m /
 s )との音速の差により屈折作用が生じ、試料7面
上に集束した超ζ?波6を照射することができる。逆に
試料7から反射されてくる超音波は球面レンズにより集
音整相され、平面波となって圧電薄膜2に達し、ここで
RF信号9に変換される。このような音波レンズを有す
る超音波トランデューサにより得るRF信号9を受信器
10で受信し、ここでダイオード検波してビデオ信号1
1に変換し、CRTディスプレイ12の入力信号として
用いているに の様に構成された装置において、試料7が試料台駆動電
源13によりx−y平面内で2次元に走査していると試
料の走査にともなう試料面からの反射の強弱が2次元的
にCRT面12に表示される。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave reaches the hemispherical hole, quartz (velocity of sound 6000 m/s) and water (velocity of sound 1500 m/s)
Due to the difference in sound speed with s ), a refraction effect occurs, and the superζ? Wave 6 can be irradiated. Conversely, the ultrasonic waves reflected from the sample 7 are collected and phased by a spherical lens, become plane waves, reach the piezoelectric thin film 2, and are converted into an RF signal 9 here. The RF signal 9 obtained by the ultrasonic transducer having such a sonic lens is received by the receiver 10, which performs diode detection and generates the video signal 1.
1 and used as an input signal for the CRT display 12. When the sample 7 is scanned two-dimensionally within the x-y plane by the sample stage drive power supply 13, the The intensity of reflection from the sample surface during scanning is displayed two-dimensionally on the CRT surface 12.

この超音波顕微鏡は医学、生物学分野では、電子顕微鏡
の試料のように乾燥させたり、光学顕微鏡のように染布
する必要がなく、生きたままの細胞の構造や組織の観察
に利用されている。また工学、理学分野では、金属組織
の観察や物質の同定、半導体デバイスの表面下の観察を
主とした微小領域非破壊検査など幅広い応用が期待され
ている。
This ultrasonic microscope is used in the medical and biological fields to observe the structure and tissue of living cells, as it does not require drying the sample like an electron microscope or dyeing it like an optical microscope. There is. In addition, it is expected to have a wide range of applications in the fields of engineering and science, such as observation of metal structures, identification of substances, and non-destructive inspection of small areas mainly for observation of the subsurface of semiconductor devices.

このような装置を用いて、表面が光学研摩された試料の
内部に存在する欠陥や介在物や結晶粒界などをa察する
場合が多くある。しかし、超音波顕微鏡で描写される映
像がはたして、試料内部の情報を的確に反映してくれて
いるものであるかを別な手法の観測手段をもちいて確認
したい要求が多くある。
Such an apparatus is often used to detect defects, inclusions, grain boundaries, etc. present inside a sample whose surface has been optically polished. However, there are many requests to use other observation methods to confirm whether the images depicted by an ultrasonic microscope accurately reflect the information inside the sample.

たとえば、超音波顕微鏡で析出物とおもわれる部分をエ
ツチング処理して、光学顕微鏡により観察し2両者の結
果を比較検討したいなどの場合である。
For example, a case may be made in which a portion thought to be a precipitate is etched using an ultrasonic microscope, then observed using an optical microscope, and the results of the two methods are compared.

このような場合、超音波顕微鏡で観察した場所と同一個
所をエツチング処理したのち光学顕微鏡で[6するのは
その視野を探すのに多くの時間を費してしまう。特に試
料表面が光学研摩されている場合には試料面上に目印と
なるところがないために同一場所をさがすのは不可能に
近い作業である。
In such a case, etching the same area observed with an ultrasonic microscope and then etching it with an optical microscope will waste a lot of time searching for that field of view. Especially when the sample surface is optically polished, it is almost impossible to find the same spot because there are no landmarks on the sample surface.

〔発明の目的〕[Purpose of the invention]

本発明は超音波顕微鏡から試料をはずしても観察してい
た位置をみつけだすことができる手段を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a means by which the observed position can be found even after removing a sample from an ultrasonic microscope.

〔発明の概要〕[Summary of the invention]

本発明は、このような問題を解決するため、超音波顕微
鏡の視野内の試料の一部分に目印となる傷などをつける
手段を設けた点に特徴を有する。
In order to solve this problem, the present invention is characterized in that it is provided with a means for making a mark or the like on a part of the sample within the field of view of the ultrasonic microscope.

以下図にもとづいて本発明を詳細に述べる。The present invention will be described in detail below based on the figures.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の実施例の構成を示したもので、機械走
査型試料台あるいは球面レンズの所定の個所に取付台1
4により取りつけられた触針15はツマミ16あるいは
他の位置調整機構により試料台に搭載された試料の面上
の任意な場所に触針の先端を稼動させるとともに試料面
上の所定の位置に接触させることが可能になるようにな
っている。
Figure 2 shows the configuration of an embodiment of the present invention, in which a mounting base 1 is mounted at a predetermined location on a mechanical scanning sample stage or a spherical lens.
The tip of the stylus 15 attached to the stylus 4 is moved to any desired location on the surface of the sample mounted on the sample stage using the knob 16 or other position adjustment mechanism, and is brought into contact with a predetermined position on the sample surface. It is now possible to do so.

また触針の一部に圧電振動子17を設け、この圧電振動
子17に高圧パルスを印加することにより生ずる伸縮を
触針15に伝達させると触針15の先端は振動するため
に試料が硬質なものでも容易に目印をつけることができ
る。
In addition, a piezoelectric vibrator 17 is provided in a part of the stylus, and when the expansion and contraction caused by applying a high voltage pulse to the piezoelectric oscillator 17 is transmitted to the stylus 15, the tip of the stylus 15 vibrates, making the sample hard. You can easily mark things.

以上は試料面上のマークを触針により設ける方法につい
て述べたが、これに代る方法として細く絞ったレーザビ
ームを触針が導入されている方向から試料面上に照射し
、照射部分を局部的に熔融して、マークを記入する方法
でもよい。しかしこの場合には球面レンズと試料間にあ
る媒質は取りのぞいておく必要がある。
Above, we have described the method of making marks on the sample surface using a stylus, but an alternative method is to irradiate a narrowly focused laser beam onto the sample surface from the direction in which the stylus is introduced, and to localize the irradiated area. It is also possible to melt the material and write the mark on it. However, in this case, it is necessary to remove the medium between the spherical lens and the sample.

〔発明の効果〕〔Effect of the invention〕

このような簡単な構成の機構を超音波顕微鏡に設けるこ
とにより容易に同一視野をみいだすことが可能となる。
By providing such a simple mechanism in an ultrasonic microscope, it becomes possible to easily find the same field of view.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波顕微鏡の構成図、第2図は本発明
の一実施例の構成を示した図である。
FIG. 1 is a diagram showing the configuration of a conventional ultrasound microscope, and FIG. 2 is a diagram showing the configuration of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、音波伝搬体の端部に形成された所定焦点を有する音
波レンズを備えた超音波トランスデューサと、上記焦点
近傍に試料を保持する試料台と、上試料台を駆動走査す
る駆動手段とを有し、上記試料からのじょう乱音波によ
り、上記試料を撮影する超音波顕微鏡において、 上記試料台上にて上記試料の面上の観察視野内の任意の
場所にマークを挿入する手段を具備したことを特徴とす
る超音波顕微鏡。
[Claims] 1. An ultrasonic transducer equipped with a sonic lens having a predetermined focus formed at the end of a sound wave propagation body, a sample stage that holds a sample near the focal point, and an upper sample stage that drives and scans. In an ultrasonic microscope that photographs the sample using disturbed sound waves from the sample, inserting a mark on the sample stage at any location within the observation field on the surface of the sample. An ultrasonic microscope characterized by comprising means for
JP60231116A 1985-10-18 1985-10-18 Ultrasonic microscope Pending JPS6188144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231116A JPS6188144A (en) 1985-10-18 1985-10-18 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231116A JPS6188144A (en) 1985-10-18 1985-10-18 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS6188144A true JPS6188144A (en) 1986-05-06

Family

ID=16918541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231116A Pending JPS6188144A (en) 1985-10-18 1985-10-18 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS6188144A (en)

Similar Documents

Publication Publication Date Title
JPS589063A (en) Ultrasonic microscope
US4510810A (en) Ultrasonic microscope
JPS6070350A (en) Focal distance confirming method and apparatus therefor
JPH0330105B2 (en)
JPS6188144A (en) Ultrasonic microscope
SU832449A1 (en) Scanning acoustic microscope
JPH0427501B2 (en)
JPH0376419B2 (en)
JPS5815151A (en) Ultrasonic microscope
JPS58166258A (en) Ultrasonic microscopic lens
JPH0210379B2 (en)
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPS6222838Y2 (en)
JPS58118958A (en) Ultrasonic microscope
JPS58132655A (en) Ultrasonic microscope
JPS61111458A (en) Ultrasonic microscope
JPS6318919Y2 (en)
JPS585646A (en) Ultrasonic microscope
JPS6180043A (en) Ultrasonic microscope
JPS6342742B2 (en)
JPS60111152A (en) Ultrasonic microscope
JPS58132656A (en) Ultrasonic microscope
JPS60166858A (en) Ultrasonic microscope
JPS6150061A (en) Ultrasonic microscope
JPS60127456A (en) Ultrasonic microscope