JPS58132655A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS58132655A
JPS58132655A JP57014984A JP1498482A JPS58132655A JP S58132655 A JPS58132655 A JP S58132655A JP 57014984 A JP57014984 A JP 57014984A JP 1498482 A JP1498482 A JP 1498482A JP S58132655 A JPS58132655 A JP S58132655A
Authority
JP
Japan
Prior art keywords
sample
plate
ultrasonic
holding plate
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57014984A
Other languages
Japanese (ja)
Other versions
JPH0233984B2 (en
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57014984A priority Critical patent/JPS58132655A/en
Publication of JPS58132655A publication Critical patent/JPS58132655A/en
Publication of JPH0233984B2 publication Critical patent/JPH0233984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To perform an efficient work to set a sample, by holding a part of a sample, having an arbitrary shape, in parallel to a scanning surface of a sample table. CONSTITUTION:Holes 16, wherein a plurality of samples are attached, are provided in a sample holding plate 15 which is ground into a parallel plate. The plate 15 is placed on a surface of a stand 17 having a surface ground into a mirror surface, a sample 7 is placed in the hole 16, and if, after the sample 7 and the plate 15 are secured to each other with an adhesive 18, the plate 15 is turned over, the A-surface of the sample 7 is secured flush with the plate 15. If the sample 7 is attached to a sample table 14, it permits the scanning surface of the table 14 to easily coincide with an observing surface A of the sample 7 for securing.

Description

【発明の詳細な説明】 本発明は、超音波w4*鏡、特に所定試料全研磨するこ
とのできる超音波顕微&郷に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic W4* mirror, particularly an ultrasonic microscope capable of completely polishing a given sample.

近年IGH2に及ぶ超高周波の音波の発生検出が可能と
なったので、水中で約1μmの音波長が実現できること
になり、その結果、鍋い分解能の音波偉1#装置が得ら
れるようになった。即ち、凹面レンズを用いて集束f阪
ビームを作り、1μmに及ふ萬い分解能を実現するので
ある。
In recent years, it has become possible to generate and detect ultrahigh-frequency sound waves as high as IGH2, making it possible to achieve sound wavelengths of approximately 1 μm underwater, and as a result, it has become possible to obtain a sonic wave 1# device with a pan-sized resolution. . That is, a concave lens is used to create a focused f-beam, and a resolution of up to 1 μm is achieved.

上記ビーム中に医科全そう人し、試料による反射超音波
を検出して試料の砿細領域の弾性的性實を解明したり、
J12は試料を機械的に2次元に走査しながら、この信
号の強度をブラウン管の輝度信号として表示すれば、試
料の微a構造を拡大してみることができる。
A medical specialist will be placed in the beam to detect the ultrasound waves reflected by the sample and elucidate the elasticity of the thin region of the sample.
J12 mechanically scans the sample in two dimensions and displays the intensity of this signal as a brightness signal on a cathode ray tube, allowing the micro-a structure of the sample to be enlarged.

第1図は、その超音波顕微鏡の主要構成部を示す図であ
る。超音波の集束及び送受は球面レンズ1により行って
いるが、その構造は円柱状の熔融石英等をもちいた物質
の一面を光学研磨し、その上に圧電薄膜(ZnO)2を
上下電極3によりはさむ、このようにサンドウィッチ構
造になっている圧電薄膜2に、パルス発揚器4から発生
されたパルス5を印加して、超音波6tl−発生させる
。また、他端部は口径0.1 vmφ〜1.Owφ程度
の凹l状の半球穴が形成されており、この半球穴と試料
との間には、超音波6を試料7に伝倚させるための媒質
(例えは水)8が満されている。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is performed by a spherical lens 1, and its structure consists of optically polishing one side of a material made of cylindrical fused silica, etc., and placing a piezoelectric thin film (ZnO) 2 on top of it with upper and lower electrodes 3. A pulse 5 generated from a pulse generator 4 is applied to the piezoelectric thin film 2 having a sandwich structure as described above to generate an ultrasonic wave 6tl. The other end has a diameter of 0.1 vmφ to 1. A concave L-shaped hemispherical hole of approximately Owφ is formed, and a medium (for example, water) 8 is filled between this hemispherical hole and the sample to transmit the ultrasonic waves 6 to the sample 7. .

圧電薄膜2によって発生した超音波6は円柱の中を平面
波となって伝播する。この平面波が半球穴に達すると石
英(f波6000m/S)と水(音速1500m、/、
)との音速の差により屈折作用が生じ、試料7面上に集
束した超音波6を照射することができる。逆に試料7が
ら反射されてくる超音波は球面レンズにより集音整相さ
n1平面波となって圧電薄膜2に達し、ここでRF信号
9に変換される。このRF信号9を受信器1oで受信し
、ここでダイオード検波してビデオ信号11に変換し、
CRTディスプレイ12の入力信号として用いている。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave reaches the hemispherical hole, quartz (f-wave 6000 m/s) and water (sound speed 1500 m/s,
) A refraction effect occurs due to the difference in the sound speed between the sample 7 and the sample 7, and a focused ultrasonic wave 6 can be irradiated onto the surface of the sample 7. On the other hand, the ultrasonic waves reflected from the sample 7 are collected by a spherical lens and turned into plane waves with a phase adjustment of n1, reaching the piezoelectric thin film 2, where they are converted into an RF signal 9. This RF signal 9 is received by a receiver 1o, where it is diode-detected and converted into a video signal 11,
It is used as an input signal for the CRT display 12.

この様に構成された装置において、試料7が試料台駆動
電源13によりx −y平面内で2次元に走査している
と試料の走査にともなう試料面からの反射の強弱が2次
元的にCRT面1面圧2示される。
In the apparatus configured in this way, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample scans changes two-dimensionally. Surface 1 surface pressure 2 is shown.

而して、一般に超音波は物体の表面で一部分は反射する
が、かなりの部分は物体が光学的に透明かどうかに関係
なく、その中にはいってゆき、物体内部に存在する硬さ
や、密度、粘性の違いや欠陥などを反映したエコーとな
って返ってくる。この性質を利用して試料内部の様相を
検出できるのが超音波顕微鏡である。
Generally speaking, a portion of ultrasonic waves is reflected by the surface of an object, but a large portion of the ultrasound waves enters the object, regardless of whether the object is optically transparent or not. , it returns as an echo reflecting differences in viscosity and defects. Ultrasonic microscopes can utilize this property to detect aspects inside a sample.

このような%黴をもつ超音波顕微鏡を龜ちいて、試料t
−察する場合、試料の試料台14への固定の方法は第2
図(Jl)に示すように試料7のWR察面Aが試料台1
4のx −y走査面Bと平行に固定されることが望まし
い。なぜならば、若し試料7の観察面人が第2図世)に
示すように試料台14の走査面Bに対して傾いている場
合には焦点面が試料7を横ぎる個所は点線Cで示すよう
な状態となり、表面Aから一様な深さのところを観察す
ることは第2図(11)の如く固定することは容易であ
るが、第3図に示すような形状の試料7のA面を観察し
ようとする場合には、試料台14とA面とを平行に固定
することは、なかなか容易でなく、何回か固定を調節し
なおしながら、最適条件をみいたしているのが現状であ
り、試料の設定に時間を費いやしてしまう。
The ultrasonic microscope with such % mold was opened and the sample t
- If the sample is to be fixed on the sample stage 14, the second method is
As shown in the figure (Jl), WR observation surface A of sample 7 is on sample stage 1.
It is desirable to fix it parallel to the x-y scanning plane B of 4. This is because if the observation plane of sample 7 is tilted with respect to scanning plane B of sample stage 14 as shown in Figure 2), the point where the focal plane crosses sample 7 is indicated by dotted line C. In order to observe the uniform depth from the surface A, it is easy to fix the sample 7 as shown in Fig. 2 (11). When trying to observe the A side, it is not easy to fix the sample stage 14 and the A side parallel to each other, so it is necessary to readjust the fixation several times to find the optimal conditions. This is the current situation, and it takes time to set up the sample.

本発明は上述の間組点を解決するためになされたもので
、超音波顕微鏡等の試料台にもちいて最適な試料保持装
置を提供するものである。
The present invention was made in order to solve the above-mentioned problem of interpolation, and provides an optimal sample holding device for use on a sample stage of an ultrasonic microscope or the like.

第4図は本発明の一実施例の構成を示す図である。平行
平板に研磨された試料保持板15には複数個の試料を取
りつけるための穴16tl−設ける。
FIG. 4 is a diagram showing the configuration of an embodiment of the present invention. The sample holding plate 15, which is polished into a parallel flat plate, is provided with holes 16tl for attaching a plurality of samples.

以下試料保持板15に試料7を固定する手順について述
べる。第5図体)K示す如く、表面が鏡面に研磨された
支持台17の面上に試料保持板15を載置する。この状
態で第5図(b)に示すように試料7f:穴16内に設
置する、この場合試料7のA面が支持台17に接するよ
う設置する。つぎに第5図(C)に示すごとく接着材1
8により試料7と、試料保持板15とを固定する。接着
材18が硬化したのち、試料保持板15t−うち返すと
第5図(d)のごとく、試料保持板15と試料7のA面
は、同一平面上に固定されることになる。
The procedure for fixing the sample 7 to the sample holding plate 15 will be described below. As shown in FIG. In this state, the sample 7f is placed in the hole 16 as shown in FIG. Next, as shown in Figure 5(C), adhesive 1
8 fixes the sample 7 and the sample holding plate 15. After the adhesive 18 has hardened, the sample holding plate 15t is turned over, so that the sample holding plate 15 and the A side of the sample 7 are fixed on the same plane as shown in FIG. 5(d).

上述の方法で試料7を試料保持板15に固定したものを
試料台14に取りつければ試料台14の走査面と試料7
の観察面Aとは容易に一致させて固定することができる
・ このように試料保持板15を使用すれば、試料7の形状
は観察面のみが平担に仕上けてあれば良いことになる。
If the sample 7 fixed to the sample holding plate 15 by the method described above is attached to the sample stand 14, the scanning surface of the sample stand 14 and the sample 7
It can be easily fixed in alignment with the observation surface A of the sample 7. If the sample holding plate 15 is used in this way, the shape of the sample 7 only needs to be flat on the observation surface. .

以上述べた方法は、試料7の観察すべき面が平担になっ
ている場合の試料の装着方法について述べ九が、これは
必ずしもその必JjIはなく、第6図に示す形状の試料
7において以下に述べる方法で容易に試料7の観察面と
試料台14の走査面とを一致させることが可能である。
The method described above describes how to mount a sample when the surface of the sample 7 to be observed is flat, but this is not necessarily the case, and when the sample 7 has the shape shown in FIG. The observation surface of the sample 7 and the scanning surface of the sample stage 14 can be easily matched by the method described below.

すなわち、第7図(a)に示すごとく、あらかじめ試料
7を試料保持板15に接着材18により固定する。つぎ
に第7図世)に示すように試料保持板15と試料7とを
同一に研磨すると、(例えば図において点線に示した位
置まで)観察すべきA面は試料保持板15と平行に研磨
さnるために、この結果は第5図(d)に述べた状態と
同一結果となる。
That is, as shown in FIG. 7(a), the sample 7 is fixed in advance to the sample holding plate 15 with an adhesive 18. Next, as shown in Figure 7), when the sample holding plate 15 and the sample 7 are polished identically, the A side to be observed (for example, up to the position indicated by the dotted line in the figure) is polished parallel to the sample holding plate 15. Therefore, this result is the same as the situation described in FIG. 5(d).

第8図(a)はさらに第1図の構成の超音波顕微鏡の一
部に研磨装置19(第、8図の)に示す)を設けた一実
施例を示す。
FIG. 8(a) shows an embodiment in which a polishing device 19 (shown in FIG. 8) is further provided in a part of the ultrasonic microscope having the configuration shown in FIG.

このような構成であると、観察途中において、さらに深
部を観察したい場合には試料台14を研磨装置19まで
移動し、所定の厚さ研磨したのち試料台14を所定の位
置にもどして、蒙察を続けることも可能となる。
With this configuration, if you want to observe a deeper part during observation, move the sample stage 14 to the polishing device 19, polish it to a predetermined thickness, and then return the sample stage 14 to the predetermined position. It is also possible to continue monitoring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波顕微鏡の概略構成図、第2図は試料取付
は状態を示す図、第3図は試料の形状を示す図、第4図
は試料保持板の構造を示す図、第5図は試料保持板に試
料を取付ける順序を説明する図、第6図及び第7図は表
面が平担でない試料の場合の試料取付は法を示す図、第
8因は超音波8健鏡の周辺に試料研磨装置を設けた一実
施例を¥11   図 べ %2  図 (α) 4 (b) 児 3 図 %4  図 舅 5  図 (α) 6 (b)17 (d)′7 第 6 図 ’fi7  図 (OL) −グ(=玉T==剛− 第 δ 口 (0L) /        74 (8)
Figure 1 is a schematic configuration diagram of the ultrasonic microscope, Figure 2 is a diagram showing the state of sample mounting, Figure 3 is a diagram showing the shape of the sample, Figure 4 is a diagram showing the structure of the sample holding plate, and Figure 5 is a diagram showing the structure of the sample holding plate. The figure is a diagram explaining the order of attaching the sample to the sample holding plate. Figures 6 and 7 are diagrams showing how to attach the sample when the surface is not flat. An example in which a sample polishing device is installed in the vicinity is ¥11 Fig. % 2 Fig. (α) 4 (b) Child 3 Fig. % 4 Fig. 5 Fig. (α) 6 (b) 17 (d)'7 No. 6 Figure'fi7 Figure (OL) -G (=ball T==rigid- δth mouth (0L) / 74 (8)

Claims (1)

【特許請求の範囲】[Claims] 1、音波伝搬体と、この伝搬体の端部に形成さflかつ
所定焦点を有する音波レンズとからなり、上記焦点近傍
に設けられた所定試料からのしよう乱音波により、上記
試料を撮影する超音波顕微鏡において、任意形状の試料
の一部が試料台の走査面と平行に保持する手段を具備し
たことを%徴とした超音波顕微鏡。
1. An ultrasonic device consisting of a sound wave propagating body and a sound wave lens formed at the end of the propagating body and having a predetermined focal point, which photographs the sample using the disturbed sound waves emitted from the predetermined sample provided near the focal point. An ultrasonic microscope characterized by having a means for holding a part of an arbitrarily shaped sample parallel to the scanning plane of a sample stage.
JP57014984A 1982-02-03 1982-02-03 Ultrasonic microscope Granted JPS58132655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014984A JPS58132655A (en) 1982-02-03 1982-02-03 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014984A JPS58132655A (en) 1982-02-03 1982-02-03 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JPS58132655A true JPS58132655A (en) 1983-08-08
JPH0233984B2 JPH0233984B2 (en) 1990-07-31

Family

ID=11876218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014984A Granted JPS58132655A (en) 1982-02-03 1982-02-03 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS58132655A (en)

Also Published As

Publication number Publication date
JPH0233984B2 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
JPH0254503B2 (en)
JPS58122456A (en) Ultrasonic microscope
JPS5816672B2 (en) Onpaketsuzohou Oyobi Onpaketsuzoouchi
JPS59160755A (en) Acoustic microscope
CN105054895A (en) Integration scanning head for optics, ultrasonic and opto-acoustic multi-mode microscopic imaging
US4614410A (en) Ultrasonic microscope with optical microscope incorporated therein
JPS58132655A (en) Ultrasonic microscope
JPS6255099B2 (en)
JPS5815151A (en) Ultrasonic microscope
JPS6222838Y2 (en)
JPS6188144A (en) Ultrasonic microscope
JPS60355A (en) Ultrasonic microscope
JPS60111152A (en) Ultrasonic microscope
JPS61105457A (en) Ultrasonic microscope
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPS63269054A (en) Apparatus for confirming ultrasonic beam incident state
JPH0230769Y2 (en)
JPH0158458B2 (en)
JPS58166258A (en) Ultrasonic microscopic lens
JPS58118958A (en) Ultrasonic microscope
JPS6318919Y2 (en)
JPS6021447A (en) Automatic focusing apparatus of ultrasonic wave microscope
JPH0560733A (en) Ultrasonic microscope
JPS60127456A (en) Ultrasonic microscope
JPS58129246A (en) Ultrasonic microscope