JPS58118958A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS58118958A
JPS58118958A JP57000344A JP34482A JPS58118958A JP S58118958 A JPS58118958 A JP S58118958A JP 57000344 A JP57000344 A JP 57000344A JP 34482 A JP34482 A JP 34482A JP S58118958 A JPS58118958 A JP S58118958A
Authority
JP
Japan
Prior art keywords
sample
microscope
ultrasonic
mechanical scanning
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57000344A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanda
浩 神田
Kiyoshi Ishikawa
潔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57000344A priority Critical patent/JPS58118958A/en
Publication of JPS58118958A publication Critical patent/JPS58118958A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To simultaneously obtain an optical microscope image having the same field of view as an ultrasonic microscope image, by simultaneously picturizing the same part of a sample on the surface side and the reverse side of the sample by use of an optical microscope and an ultrasonic microscope, respectively. CONSTITUTION:From the surface side of a sample 260, a focusing light beam 320 is irradiated, its reflected ray is detected by a photodiode 305, is converted to an electric signal, the signal is processed by a receiver 370 for light, and after that, it is Z-inputted (luminance input) to a cathode-ray tube 390. Also, to the reverse side of the sample 260, a focusing ultrasonic beam 325 is irradiated through water 330, a reflected acoustic wave from the sample 260 is detected by a piezoelectric sensor 341, is converted to an electric signal, the signal is processed by a receiver 360 for acoustic wave, and after that, it is Z-inputted to a cathode ray tube 400. A stage 385 for supporting the sample 260 is two-dimensionally scanned on the (x)-(y) surface by a mechanical scanning part 380, and an (x)-(y) synchronizing signal which has synchronized with this scanning is supplied in common to the cathode-ray tube 390 for light and the cathode-ray tube 400 for acoustic wave.

Description

【発明の詳細な説明】 本発明は機緘走査型顕微優において特に光と音と同時に
用いる顕微優に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mechanical scanning microscope, particularly to a microscope that uses light and sound simultaneously.

物体の微細構造を観察する努力は、過去において光や電
子線等を用いて精力的に行なわれて1!!た。
Efforts to observe the fine structure of objects have been made in the past using light, electron beams, etc.1! ! Ta.

近年において医学界において人体の内部構造を観察する
のに有効な波動として応用さnている超音波は光や電子
線には不可能な光学的に不透明な物体をも透過する性質
を待っており、その周波数が高ければ高い程より微細な
対象物まで描き出す事が可能である。その上、超音波が
取り出す情報は対象物の弾性、密度、粘性等の力学的性
質を反映しているため、光や電子線では得られない内部
の構造までみる事が出来る。
Ultrasound, which has recently been applied in the medical world as an effective wave for observing the internal structure of the human body, has the property of being able to penetrate optically opaque objects, something that light and electron beams cannot. The higher the frequency, the more minute objects can be drawn. Furthermore, since the information extracted by ultrasound reflects the mechanical properties of the object, such as elasticity, density, and viscosity, it is possible to see internal structures that cannot be obtained with light or electron beams.

近年、音波周波数IGH!従って水中での音波要約1ミ
クロンメータに及ぶ超高周波を利用して上記の超音波の
性質を生かし念音波顕微優が検討されている。この超音
波顕微値は、原理的には約1μm位1で細く絞った超音
波ビームによって試料面を2次元に機械的に走査し、試
料によって生ずる散乱9反射、透過減衰といったしよう
乱音波を集音して電気信号に変換し、その信号をCRT
上に上記機械走査と同期して2次元表示する事により顕
微優償を得るのである。本発明では試料からの反射超音
波を利用する反射型超音波顕微伊を利用するので第1図
を用いてその基本構成を説明する。
In recent years, the sound wave frequency IGH! Therefore, a telephonic ultrasound microscope is being considered that takes advantage of the above-mentioned properties of ultrasonic waves by making use of ultra-high frequencies of up to 1 micron meter in sound waves in water. In principle, this ultrasonic microscopic value is obtained by mechanically scanning the sample surface two-dimensionally with an ultrasonic beam narrowed to approximately 1 μm, and collecting disturbing sound waves such as scattering, reflection, and transmission attenuation caused by the sample. Converts the sound into an electrical signal and transmits the signal to a CRT
By displaying the image in two dimensions in synchronization with the above-mentioned mechanical scanning, microscopic advantages can be obtained. Since the present invention utilizes a reflection type ultrasonic microscope that utilizes reflected ultrasonic waves from a sample, its basic configuration will be explained using FIG. 1.

超音波を発生検出するトランスデユーサは、圧電薄膜2
0、音響レンズ40から主として構成されている。音響
レンズ40(例えば、サファイア。
The transducer that generates and detects ultrasonic waves is a piezoelectric thin film 2.
0. It mainly consists of an acoustic lens 40. Acoustic lens 40 (eg, sapphire.

熔融石英の円柱状結晶)は、その一端面41は光学研磨
された平面であり、他端面には半径0.1〜1mm程度
の半球穴42が形成されている。端面41に蒸着された
上部電極10、圧電薄膜2o及び下部電極30からなる
層構造の上下電極間に、RFパルス発振器100の出力
を印加すれば、上記圧電薄膜によりレンズ結晶40内に
平面波のRFパルス超音波80が放射される。この平面
超音波は上記半球穴42と媒質50(一般に水が用いら
れる)との界面で形成された正の音響球面レンズにより
所定焦点におかれた試料60上に集束てれる。
One end surface 41 of the cylindrical crystal of fused silica is an optically polished flat surface, and a hemispherical hole 42 with a radius of approximately 0.1 to 1 mm is formed in the other end surface. When the output of the RF pulse oscillator 100 is applied between the upper and lower electrodes of the layered structure consisting of the upper electrode 10 , the piezoelectric thin film 2 o and the lower electrode 30 deposited on the end surface 41 , the piezoelectric thin film generates a plane wave RF inside the lens crystal 40 . Pulsed ultrasound waves 80 are emitted. This plane ultrasonic wave is focused onto a sample 60 at a predetermined focus by a positive acoustic spherical lens formed at the interface between the hemispherical hole 42 and a medium 50 (generally water is used).

試料60によって反射された超音波は同じトランスデユ
ーサで集音されRFパルス電気信号として受信機110
に入り、ダイオード検波後ビデオ信号としてブラウン管
130のZ入力として用いられる。
The ultrasonic waves reflected by the sample 60 are collected by the same transducer and sent to the receiver 110 as an RF pulse electric signal.
After diode detection, the video signal is used as the Z input of the cathode ray tube 130.

試料60は試料ステージ70の上に貼付されておりx−
y面内の2次機械走査系120によって2次元機械振動
を行うようになっており、この走査と同期してブラウン
管の電子ビームを走査すれば顕微mr*が得られるわけ
である。
The sample 60 is pasted on the sample stage 70 and x-
Two-dimensional mechanical vibration is performed by a secondary mechanical scanning system 120 in the y-plane, and if the electron beam of the cathode ray tube is scanned in synchronization with this scanning, the microscopic mr* can be obtained.

さて、このような音波顕微−は音波の反射が弾性的性質
を反映する事を利用しているのに対し、光学顕微伊では
光学的屈折率を反映している。従って試料の同一部位を
観察した場合、超音波顕微#J儂と光学顕微画情と比較
する事が、医学、生物学、工学などの分野でどうしても
必要である。
Now, while such a sonic microscope utilizes the fact that the reflection of sound waves reflects the elastic properties, an optical microscope reflects the optical refractive index. Therefore, when observing the same part of a sample, it is absolutely necessary in fields such as medicine, biology, and engineering to compare the images with the ultrasonic microscope #J and the optical microscope images.

このため従来は、超音波顕微鏡で観察した標本をその走
査装置から取りはずして、それをあらためて光学顕微鏡
の試料台にのせて観察してい念。
For this reason, conventionally, a specimen observed with an ultrasonic microscope was removed from the scanning device and placed on the sample stage of an optical microscope for observation.

この時、広い櫟本面から超音波顕微画イ象と同一視野を
探すのはかなりの労を要してい九。一方、逆に標本面中
の観察したい視野を光学顕微鏡であらかじめ決めておく
場合にも、同一視野の超音波顕微画像を探すのにもかな
りの労を要していた。
At this time, it takes considerable effort to find the same field of view as the ultrasonic microscopic image from a wide area. On the other hand, even when determining in advance the field of view on the specimen surface to be observed using an optical microscope, it takes considerable effort to search for ultrasound microscopic images of the same field of view.

この事情に、光゛学顕微画像と音波顕微画flを独立に
映償化しようとする限り避は得ないものである。
This situation is unavoidable as long as the optical microscopic image and the sonic microscopic image fl are attempted to be filmed independently.

本発明の目的は以上の点ftaみてなされたもので、超
音波顕微画像と同一視野の光学顕微画像を同時に得る事
が出来る手段を提供する事にある。
The object of the present invention has been achieved in view of the above points, and is to provide a means that can simultaneously obtain an ultrasonic microscopic image and an optical microscopic image of the same field of view.

本発明を第2図を用いて説明する。すなわち、試料20
0の同一部位上例えば表からは光学顕微鏡210で、裏
からは音波顕微@11220で観察する事にある。光学
顕微曖軸と音波顕微鏡の軸を一致させておけば試料の同
一部位を同時に観察出来るah明らかであろう。この構
成は音波を利用して始めて意味のあるものである事をこ
こで強調しておきたい。すなわちもし光学的に不透明な
試料200を表と裏から光学的に観察してもそれぞれ4
1面と41面という異なる面の画像が得られるだけであ
るが、本発明によれば41面を表から光で観察した画像
が得られ、41面を裏側から音で観察した画イ象が得ら
れるのである。これは、音波で の最大の特徴〆ある性質、光学的に不透明な試料内部に
も伝播し得るという性質によるのである。
The present invention will be explained using FIG. 2. That is, sample 20
For example, the same part of 0 can be observed using an optical microscope 210 from the front and a sonic microscope @11220 from the back. It is obvious that the same part of the sample can be observed at the same time if the axis of the optical microscope and the axis of the sonic microscope are made to coincide. I would like to emphasize here that this configuration only becomes meaningful when sound waves are used. In other words, if you optically observe the optically opaque sample 200 from the front and back, each
However, according to the present invention, an image of the 41st surface observed by light from the front can be obtained, and an image obtained by observing the 41st surface from the back with sound can be obtained. You can get it. This is due to the most distinctive characteristic of sound waves, which is that they can propagate even inside an optically opaque sample.

超音波顕微鏡においては、その焦点を試料内の任意のス
ライス面に設足する事によって(音響し/ズを試料に近
すけたり離したりする事により行なわれる)、焦点深度
の厚みのスライス画fat−得る事が出来るのである。
In an ultrasonic microscope, by setting the focal point on an arbitrary slice plane within the sample (this is done by moving the acoustic beam closer to or farther away from the sample), a slice image with a thickness equal to the focal depth can be obtained. -You can get it.

本発明によれげ41図の光学僧に対して、音波像として
は41面の画像。
According to the present invention, 41 planes of sound wave images are obtained for the optical system shown in 41 figures.

41面の画像・・・・・・というように多数のlIi儂
を光学儂と同一部位でかつ同時に得る事が出来る。
It is possible to obtain a large number of images of 41 planes at the same site and at the same time as the optical image.

特に18面の場合は、同一部位の同一層の光学債と音波
像が同時にとれることKなる。
In particular, in the case of 18 surfaces, optical bonds and acoustic images of the same layer at the same site can be taken at the same time.

試料面に対し光と音を第2図のように互いに反対側に配
置する理由は、音波にとって良好な伝播媒質230は一
般に水であって光にとっては不都合な伝播媒質であり、
同時に元にとって良好な伝播媒質である空気240は音
にとっては極めて減衰の大きな不都合な伝播媒質である
という事情があるという事をここで付は加えておき逢い
The reason why light and sound are placed on opposite sides of the sample surface as shown in FIG. 2 is that the propagation medium 230 that is good for sound waves is generally water, but it is an unfavorable propagation medium for light.
At the same time, it should be added here that the air 240, which is originally a good propagation medium, is an inconvenient propagation medium for sound with extremely large attenuation.

次に、以上述べたように試料の表側と裏側にそれぞれ光
学顕微鏡と超音波顕微値を用いて、試料の同一部位全同
時に映像化する具体的な手段について実施例をもとに説
明する。
Next, as described above, a specific means for simultaneously imaging the same part of a sample using an optical microscope and an ultrasonic microscope on the front side and the back side of the sample will be explained based on an example.

ε 第3図は本発明ρ具現したる機械走査形顕微鐘の一実施
例である。この図において、300は光源、3111を
光学顕微祷のセンサ部で試料260の表側に集束光ビー
ム320を照射し、試料260からの反射光をフォトダ
イオード305検出して電気信号に変換し、光用受信機
370によって増巾、信号処理後音響偉を表示するブラ
ウン管390のZ入力(輝度入力)としている。又、3
50はRFパルス発信機で340は音波顕微鏡のセンサ
部であり、試料260の裏側に水330t−介して集束
超音波ビーム325を照射し、試料260からの反射音
波を圧電センサ341で検出して電気信号に変換し、音
波用受信機360によって増巾、信号処理後音響@を表
示するブラウン管400のZ入力としている。かかる構
成にて、試料260テ を支持する試料ス戸−ジ385を機械走査部380によ
ってx−y面内で2次元に機械走査し、この走査と同期
したX、Y同期信号を光用プラウ/管390と音用プラ
ウ/管400に共通に供給するのである。光学ビーム軸
と音響ビーム軸とを一致させておけば、試料の同一視野
を同時にしかも同期して光学顕微で象と音響顕微儂とが
得られる事は明らかであろう。
ε FIG. 3 is an embodiment of a mechanical scanning type microscope embodying the present invention ρ. In this figure, 300 is a light source, 3111 is a sensor part of an optical microscope that irradiates the front side of the sample 260 with a focused light beam 320, detects the reflected light from the sample 260 with a photodiode 305, converts it into an electrical signal, and converts it into an electrical signal. After amplification and signal processing by the receiver 370, the signal is used as the Z input (luminance input) of the cathode ray tube 390 that displays the acoustic intensity. Also, 3
50 is an RF pulse transmitter, 340 is a sensor section of a sonic microscope, which irradiates the back side of the sample 260 with a focused ultrasonic beam 325 through water 330t, and detects the reflected sound waves from the sample 260 with a piezoelectric sensor 341. The signal is converted into an electrical signal, amplified by a sound wave receiver 360, and after signal processing is used as the Z input of a cathode ray tube 400 that displays the sound. With this configuration, the sample door 385 supporting the sample 260 is mechanically scanned two-dimensionally within the x-y plane by the mechanical scanning unit 380, and X and Y synchronization signals synchronized with this scanning are sent to the optical plow. /pipe 390 and sound plow/pipe 400 in common. It is clear that if the optical beam axis and the acoustic beam axis are aligned, it is possible to obtain the same field of view of the sample at the same time and in synchronization with the optical microscope and the acoustic microscope.

本実施例においては、レーザ光と集束光学レンズ及び光
ダイオード検出器を用いた光学系を採用しているが、代
りにいわゆる通常の光学顕微鏡を用いてもよい。この場
合は、機械走査すれば音顕實が得られ、又機械走査を停
止すれば光学儂が得られるわけである。光学顕微鏡の視
野の大いさと同一の視野の音sg1を観察するには、機
械走査の走査中を調整すればよい。
In this embodiment, an optical system using a laser beam, a focusing optical lens, and a photodiode detector is employed, but a so-called ordinary optical microscope may be used instead. In this case, if mechanical scanning is performed, the acoustic truth can be obtained, and if the mechanical scanning is stopped, the optical truth can be obtained. In order to observe the sound sg1 in the same field of view as the field of view of the optical microscope, it is only necessary to adjust the scanning period of the mechanical scan.

なお、音波伝達媒質330としては、従来用いられてい
る水を用いる代りに、水銀等の液体金属を用いてもよい
Note that as the sound wave transmission medium 330, a liquid metal such as mercury may be used instead of water, which is conventionally used.

即ち一般にウェハの厚みのうちシリコン基板の部分が一
番厚く、従ってウエノ・の裏側から表面の多1−構造を
観察するには、音響球面レンズ220は一定のワーキン
グディスタンスが必要で、レンズと試料間をうめる媒質
210の超音波減衰が無視出来ないから、減衰が水に比
べて少なく音響的な整合のよい水銀等の液体金属を用い
るのである。
In other words, the silicon substrate is generally the thickest part of the wafer. Therefore, in order to observe the multilayer structure on the surface from the back side of the wafer, the acoustic spherical lens 220 requires a certain working distance, and the distance between the lens and the sample is Since the ultrasonic attenuation of the medium 210 filling the gap cannot be ignored, a liquid metal such as mercury is used, which has less attenuation than water and has good acoustic matching.

又、一般にウェハの裏面のシリコン面190は研磨され
ておらず、この面での超音波の散乱が音波償の画質を劣
化させる原因となるのであるが、液体金属とシリコンは
音響インピーダンスが良く似ており又面1体であるため
、シリコン面190の凹凸を埋めることから、この面で
の音波の散乱を無視しつる程減少させる事が出来るから
である。又、もしウェハの裏面のシリコン基板を研磨や
化学的エツチング等によって充分に薄くかつ平坦面に出
来る場合には、従来通りワーキングディスタンス従って
し/ズロ径の小さな音響球面レンズを用い〜媒質として
水を用いてよい。
Additionally, the silicon surface 190 on the back side of the wafer is generally not polished, and the scattering of ultrasonic waves on this surface causes deterioration of the image quality of acoustic compensation, but liquid metal and silicon have very similar acoustic impedances. This is because since it is a single surface, the unevenness of the silicon surface 190 is filled in, so that the scattering of sound waves on this surface can be ignored and reduced to a negligible extent. In addition, if the silicon substrate on the back side of the wafer can be made sufficiently thin and flat by polishing or chemical etching, the working distance can be adjusted as usual, and an acoustic spherical lens with a small offset diameter can be used ~ with water as the medium. May be used.

以上述べたように、本発明によれば 1) ウエノ・の多層構造が光学的に透明で、光学顕微
−により各層を重つ念画像として観察出来る場合は、音
波顕微鏡により裏面より各層個別に焦点を合わせて得ら
れるスライス潰ヲ表面からみた光学儂と同時に観察比較
する事が出来ること、 2) ウェハの多層構造の表面が光学的に不透明で、光
学的には表面構造しか観察出来ない場合には、ウェハの
表面下の層は音波顕微鏡でのみ観察出来る理であるが、
この場合にも光学僧は音波顕微鏡が現在試料のどの視野
を表示しているかの参照画僧として利用出来ること、 等の効果音生み、超音波顕微鏡等当業界への寄与は極め
て大である。
As described above, according to the present invention, 1) If the multilayer structure of Ueno is optically transparent and each layer can be observed as a focused image using an optical microscope, each layer can be individually focused from the back side using a sonic microscope. 2) When the surface of the multilayer structure of the wafer is optically opaque and only the surface structure can be observed optically, This is because the layers below the wafer surface can only be observed using a sonic microscope.
In this case as well, the optical microscope can be used as a reference image to show which field of the sample the sonic microscope is currently displaying, and the contribution to the field of ultrasonic microscopes, such as producing sound effects such as these, is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波顕微値の概略構成を示す図、第2
図は本発明を説明するための図、第3図茅 j 図 第 Z 図 第す図
Figure 1 is a diagram showing the schematic configuration of conventional ultrasonic microscopic values, Figure 2
The figures are for explaining the present invention.

Claims (1)

【特許請求の範囲】 1、試料の表面及び裏面をそれぞれ光学的及び音響的に
同時に観察する事を特徴とする機械走査顕微鋳。 2、表面は光学的に裏面は音響的に同時観察する11!
を特徴とする第1項記載の機械走査形顕微鋳。 3、音響媒質として水銀を用いたる事を特徴とする第1
項記載の機械走査形顕微優。 4、光学的綱察手段として機械走査形反射光顕微伊を用
いる事を特徴とする第1項記載の機械走査形顕微鋳。 5、f学的観察手段として金属光学類wI優を用いたる
事を特徴とする第1項記載の機械走査形顕微伊。
[Claims] 1. Mechanical scanning microcasting characterized by simultaneously observing the front and back surfaces of a sample both optically and acoustically. 2. Simultaneously observe the front surface optically and the back surface acoustically 11!
The mechanical scanning type microcasting according to item 1, characterized by: 3. The first device characterized by using mercury as an acoustic medium
Mechanical scanning microscope as described in section. 4. Mechanical scanning microcasting according to item 1, characterized in that a mechanical scanning reflected light microscope is used as the optical inspection means. 5. The mechanical scanning microscope according to item 1, characterized in that metal optics WI is used as the optical observation means.
JP57000344A 1982-01-06 1982-01-06 Ultrasonic microscope Pending JPS58118958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57000344A JPS58118958A (en) 1982-01-06 1982-01-06 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57000344A JPS58118958A (en) 1982-01-06 1982-01-06 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS58118958A true JPS58118958A (en) 1983-07-15

Family

ID=11471241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57000344A Pending JPS58118958A (en) 1982-01-06 1982-01-06 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS58118958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621531A (en) * 1983-11-02 1986-11-11 Olympus Optical Co., Ltd. Ultrasonic microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621531A (en) * 1983-11-02 1986-11-11 Olympus Optical Co., Ltd. Ultrasonic microscope

Similar Documents

Publication Publication Date Title
JPS58122456A (en) Ultrasonic microscope
JPS59196459A (en) Ultrasonic microscope
JPS6070350A (en) Focal distance confirming method and apparatus therefor
JPS60146152A (en) Ultrasonic microscope
JPS58118958A (en) Ultrasonic microscope
JPS6255099B2 (en)
JPS58196453A (en) Ultrasonic microscope
JPS585646A (en) Ultrasonic microscope
JPS5815151A (en) Ultrasonic microscope
JPH0230769Y2 (en)
JPS6188144A (en) Ultrasonic microscope
JPS58132656A (en) Ultrasonic microscope
JPS59114458A (en) Ultrasonic microscope
JPS60111152A (en) Ultrasonic microscope
JPS60171456A (en) Treatment of specimen for ultrasonic microscope
JPS58129246A (en) Ultrasonic microscope
JPS59119257A (en) Ultrasonic microscope
JPS5831200Y2 (en) ultrasonic focusing lens
JPH0338543B2 (en)
CN109374739A (en) A kind of ultrasonic microscope and method based on annular surface battle array
JPH0233984B2 (en)
JPS5887455A (en) Ultrasonic microscope
JPS60127456A (en) Ultrasonic microscope
JPS60355A (en) Ultrasonic microscope
JPS6098353A (en) Ultrasonic microscope