JPS60171456A - Treatment of specimen for ultrasonic microscope - Google Patents

Treatment of specimen for ultrasonic microscope

Info

Publication number
JPS60171456A
JPS60171456A JP59027043A JP2704384A JPS60171456A JP S60171456 A JPS60171456 A JP S60171456A JP 59027043 A JP59027043 A JP 59027043A JP 2704384 A JP2704384 A JP 2704384A JP S60171456 A JPS60171456 A JP S60171456A
Authority
JP
Japan
Prior art keywords
specimen
sample
container
observation
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027043A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59027043A priority Critical patent/JPS60171456A/en
Publication of JPS60171456A publication Critical patent/JPS60171456A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To contrive to simplify the observation of a specimen by avoiding the contact of a sonic wave propagation medium with the specimen, and the taking- out of the specimen after observation, by receiving the specimen in a freely deformable membrane container and evacuating said container to certainly contact the specimen with the container. CONSTITUTION:A specimen 7 is inserted into a container made of a polymer material and the container is evacuated and sealed to be brought to a vacuum pack state. Next, a piezoelectric membrane 2 is placed on one surface of a columnar spherical lens 1 made of quartz so as to be held between upper and lower electrodes 3 and an ultrasonic wave 6 is generated by the pulse 5 from a pulse oscillator 4 and focused onto the surface of the specimen 7 through a medium 8 to irradiate the same. Subsequently, the reflected wave is focused and phased by the spherical lens 1 and an RF signal 9 is taken out through the piezoelectric membrane 3. Then, the specimen 7 is scanned two-dimensionally in an X-Y plane by a specimen drive power source 13 and the intensity of reflection from the specimen surface is displayed by the picture of CRT display 12.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波顕微鏡等および類似装置の試料保持法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sample holding method for ultrasonic microscopes and similar devices.

〔発明の背景〕[Background of the invention]

近年IGHzに及ぶ超高周波の音波の発生検出が可能と
なったので、水中で約1μmの音波長が実現できること
になり、その結果、高い分解能の音波撮像装置が得られ
るようになった。即ち、凹面レンズを用いて集束音波ビ
ームを作り、1μm(1) に及ぶ高い分解能を実現するのである。
In recent years, it has become possible to generate and detect ultrahigh frequency sound waves up to IGHz, making it possible to realize sound wavelengths of about 1 μm underwater, and as a result, it has become possible to obtain high-resolution sound wave imaging devices. That is, a concave lens is used to create a focused acoustic beam, achieving a high resolution of 1 μm(1).

上記ビーム中に試料をそう人し、試料による反射超音波
を検出して試料の微細領域の弾性的性質を解明したり、
或は試料を機械的に2次元に走査しながら、この信号の
強度をブラウン管の輝度信号として表示すれば、試料の
微細構造を拡大してみることができる。
By placing a sample in the beam and detecting the ultrasonic waves reflected by the sample, we can elucidate the elastic properties of minute regions of the sample.
Alternatively, if the sample is mechanically scanned in two dimensions and the intensity of this signal is displayed as a brightness signal on a cathode ray tube, the fine structure of the sample can be enlarged.

第1図は、その超音波顕微鏡の主要構成部を示する図で
ある。超音波の集束及び送受は球面レンズlにより行っ
ているが、その構造は円柱状の溶融石英等をもちいた物
質の一面を光学研磨し、その上に圧電薄膜(ZnO)2
を上下電極3によりはさむ、このようにサンドウィッチ
構造になっている圧電薄膜2に、パルス発振器4から発
生されたパルス5を印加して、超音波6を発生させる。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is carried out by a spherical lens l, whose structure consists of optically polishing one side of a material made of cylindrical fused silica, etc., on which a piezoelectric thin film (ZnO) 2 is placed.
A pulse 5 generated from a pulse oscillator 4 is applied to the piezoelectric thin film 2 having a sandwich structure, which is sandwiched between the upper and lower electrodes 3 to generate an ultrasonic wave 6.

また、他端部は口径0.1 wnφ〜1.0■φ程度の
凹面状の半球穴が形成されており、この半球穴と試料と
の間には、超音波6を試料7に伝播させるための媒質(
例えば水)8が満されている。
In addition, a concave hemispherical hole with a diameter of approximately 0.1 wnφ to 1.0■φ is formed at the other end, and between this hemispherical hole and the sample, an ultrasonic wave 6 is propagated to the sample 7. medium for (
For example, water) 8 is filled.

圧電薄膜2によって発生した超音波6は円柱の(2) 中を平面波となって伝播する。この平面状が半球穴に達
すると石英(音速6000m / s )と水(音速1
500m / s )との音速の差により屈折作用が生
じ、試料7面上に集束した超音波6を照射することがで
きる。逆に試料7から反射されてくる超音波は球面レン
ズにより集音整相され、平面波となって圧電薄膜2に達
し、ここでR,F信号9に変換される。このRF信号9
を受信器10で受信し、ここでダイオード検波してビテ
オ信号11に変換し、CRTディスプレイ12の入力信
号として用いている。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder (2) as plane waves. When this plane reaches the hemispherical hole, quartz (sound velocity 6000m/s) and water (sound velocity 1
500 m/s), a refraction effect occurs, and a focused ultrasonic wave 6 can be irradiated onto the surface of the sample 7. Conversely, the ultrasonic waves reflected from the sample 7 are collected and phased by a spherical lens, become plane waves, reach the piezoelectric thin film 2, and are converted into R and F signals 9 here. This RF signal 9
is received by a receiver 10, where it is diode-detected and converted into a video signal 11, which is used as an input signal for a CRT display 12.

この様に構成された装置において、試料7が試料台駆動
電源13によりx−y平面内で2次元に走査していると
試料の走査にともなう試料面からの反射の強弱が2次元
的にCRT面12に表示される。
In the apparatus configured in this way, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample scans changes two-dimensionally. displayed on surface 12.

而して、一般に超音波は物体の表面で一部分は反射する
が、かなりの部分は物体が光学的に透明かどうかに関係
なく、その中にはいってゆき、物体内部に存在する硬さ
や、密度、粘性の違いや欠(3) 陥などを反映したエコーとなって返ってくる。この性質
を利用して試料内部の様相を検出できるのが超音波顕微
鏡である。
Generally speaking, a portion of ultrasonic waves is reflected by the surface of an object, but a large portion of the ultrasound waves enters the object, regardless of whether the object is optically transparent or not. , it returns as an echo reflecting differences in viscosity and deficiencies. Ultrasonic microscopes can utilize this property to detect aspects inside a sample.

この様に構成された装置において、試料を観察しようと
する場合、それが水溶性物質や錆の発生しやすい金属な
どの場合には、試料7が音波伝播媒質8(たとえば水)
に直接触れることをさけることが必要となっている。
In an apparatus configured in this way, when observing a sample, if the sample is a water-soluble substance or a metal that easily rusts, the sample 7 must be placed in a sound wave propagation medium 8 (for example, water).
It is necessary to avoid direct contact with the

このために現在使用されている試料処理方法は、試料表
面にたとえば高分子材料で出来た物質を塗付したり、蒸
着などを行なって試料表面とを覆い音波伝播媒質8との
接触を防いでいる。
The sample processing methods currently used for this purpose include coating the sample surface with a substance made of a polymeric material or performing vapor deposition to cover the sample surface and prevent contact with the sound wave propagation medium 8. There is.

しかし、このような場合の試料処理方法は作業が複雑で
あることや試料I@察後、処理した物質を取りのぞこう
とする場合、非常に困難であるために、試料を傷っけた
り、その表面を汚染してしまう結果になっている。
However, the sample processing method in such cases is complicated, and it is extremely difficult to remove the treated material after the sample is inspected, so it may damage the sample. , resulting in contamination of the surface.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題点に鑑み、観察中の音波伝播媒質
と試料との直接接触を容易に避けること(4) ができ、しかもwt察後に損傷なく試料を取り出すこと
のできる試料処理方法を提供するにある。
In view of the above-mentioned problems, the present invention provides a sample processing method that can easily avoid direct contact between the acoustic wave propagation medium and the sample during observation (4) and also allows the sample to be taken out without damage after observation. It is on offer.

〔発明の概要〕[Summary of the invention]

本発明の特徴は試料を変形自在な薄膜容器内に収容し、
その内部を排気し、試料と容器との接触を確実にした点
にある。
The feature of the present invention is that the sample is housed in a deformable thin film container,
The point is that the inside of the container is evacuated to ensure contact between the sample and the container.

この方法によると、薄膜容器は大気圧で試料表面に圧潰
するので、超音波顕微鏡での試料の観察に支障がない上
、観察後は試料に何ら損傷を加えることなく、試料を薄
膜容器から容易にとり出すことができる。
According to this method, the thin film container is crushed against the sample surface under atmospheric pressure, so there is no problem in observing the sample with an ultrasonic microscope, and after observation, the sample can be easily removed from the thin film container without causing any damage to the sample. It can be taken out.

〔発明の実施例〕[Embodiments of the invention]

以下、図をもちいてその実施例を示す。 Examples will be shown below using figures.

第2図(a)は試料7を音波伝播媒質8より隔離するた
めの薄膜容器14である。
FIG. 2(a) shows a thin film container 14 for isolating the sample 7 from the sound wave propagation medium 8.

まずこの容器14内に(b)に如く試料7髪挿入する。First, sample 7 hairs are inserted into this container 14 as shown in (b).

つぎに容器14に排気口15を取りつける。Next, an exhaust port 15 is attached to the container 14.

この排気口15の先端には排気ポンプ18が取りつけで
ある。
An exhaust pump 18 is attached to the tip of this exhaust port 15.

したがって、この排気ポンプ18により容器(5) 14の内部を排気すると、試料8と容器14とは密着し
、(c)のような状態になる。この状態で容器14と排
気口15との間を封じ切ってしまうと、容器内はたえず
減圧状態が保たれた状態で保持される。
Therefore, when the inside of the container (5) 14 is evacuated by the exhaust pump 18, the sample 8 and the container 14 come into close contact with each other, resulting in a state as shown in (c). If the space between the container 14 and the exhaust port 15 is sealed in this state, the inside of the container is constantly maintained at a reduced pressure state.

これで試料の処理は完了する。(c)で示した真空パッ
ク状態の試料7を試料台に載置すれば従来の試料観察と
同様に観察を行うことができる。
This completes sample processing. If the vacuum-packed sample 7 shown in (c) is placed on the sample stage, it can be observed in the same manner as conventional sample observation.

容器14に使用する材料としては、高分子材料や薄膜ゴ
ムなどを使用すればよく、その厚さは、使用超音波周波
数により、適当にえらべば良い。
The material used for the container 14 may be a polymeric material, a thin film rubber, or the like, and its thickness may be appropriately selected depending on the ultrasonic frequency used.

以上の説明は、反射型の試料走査型超音波顕微鏡につい
て述べたが、試料が固定されており、音響レンズ部が走
査するセンサ走査型の超音波顕微鏡にも使用できること
はもちろんのこと、音響レンズを2個対向して配置し、
その焦域に試料を挿入し、1個の音響レンズで音波を送
信し、他の音響レンズで試料を透過してきた超音波を受
信する透過型においても充分使用できる。
The above explanation was about a reflection-type sample-scanning ultrasound microscope, but it can also be used for a sensor-scanning ultrasound microscope in which the sample is fixed and the acoustic lens section scans. Place two facing each other,
It can also be used satisfactorily in a transmission type in which a sample is inserted into the focal region, one acoustic lens transmits sound waves, and another acoustic lens receives the ultrasonic waves that have passed through the sample.

第3図はその一実施例として透過型のセンサ走(6) 査型超音波顕微鏡を示す。図ではセンサ部は容器19の
内部に配置し、容器19内には、音波伝播媒質8を満た
す。真空パックされた試料7を試料台18より保持して
、音響レンズ16.17の焦域にくるよう配置を調節す
る。この状態でセンサ部をX、Y方向に所定な走査を行
なえば試料の透過像を得ることができる。
FIG. 3 shows a transmission-type sensor scanning (6) scanning ultrasonic microscope as an example thereof. In the figure, the sensor section is arranged inside a container 19, and the container 19 is filled with a sound wave propagation medium 8. The vacuum-packed sample 7 is held from the sample stage 18 and its arrangement is adjusted so that it is in the focal range of the acoustic lenses 16 and 17. In this state, if the sensor section is scanned in a predetermined manner in the X and Y directions, a transmission image of the sample can be obtained.

なお、容器14と、排気ポンプ18とを封じ切らないで
、接続した状態で連続排気しながら観察を行っても良い
Note that the observation may be performed while the container 14 and the exhaust pump 18 are connected and continuously evacuated without being sealed off.

また、第2図において、容器14の内壁と試料7表面が
音響的に確実に結合されるよう試料7の表面にゼリー状
の音波伝播体(登録高標Aquagonic; ULT
RAS 0UND TRN5Ml5SION GEl、
 PAIIKERLABORATORIES、INC,
)などを塗附すればその効果は一層高まる。
In addition, in FIG. 2, a jelly-like sound wave propagator (registered Aquagonic; ULT
RAS 0UND TRN5Ml5SION Gel,
PAIIKER LABORATORIES, INC.
) etc., the effect will be further enhanced.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、llI祭中に音波
伝播媒質と試料の直接接触を避けて何ら支障なく試料の
観察ができ、しかも観察後に試料を取(7) り出す際にも試料を損傷することなく容易に取り出す際
にも試料を損傷することなく容易に取り出すことができ
る極めて有効な試料処理ができる。
As described above, according to the present invention, it is possible to observe the sample without any trouble by avoiding direct contact between the acoustic wave propagation medium and the sample during the III festival, and also when taking out the sample after observation (7). Extremely effective sample processing can be performed in which the sample can be easily taken out without damaging it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波顕微鏡の構成を示す図、第2図。 第3図は本発明の実施例を示す図である。 7・・・試料、8・・・音波伝播媒質、14・・・容器
。 (8)
FIG. 1 is a diagram showing the configuration of an ultrasonic microscope, and FIG. 2 is a diagram showing the configuration of an ultrasound microscope. FIG. 3 is a diagram showing an embodiment of the present invention. 7... Sample, 8... Sound wave propagation medium, 14... Container. (8)

Claims (1)

【特許請求の範囲】[Claims] 1、音波伝搬体と、この伝搬体の端部に形成され、かつ
所定焦点を有する音波レンズとからなり、上記焦点近傍
に設けられた所定試料からのしよう乱音波により、上記
試料を撮影する超音波顕微鏡において、」二記試料薄膜
物質により被覆することを特徴とした超音波顕微鏡等の
試料処理方法。
1. An ultrasonic device consisting of a sound wave propagating body and a sound wave lens formed at the end of this propagating body and having a predetermined focal point, which photographs the sample using the disturbed sound waves emitted from the predetermined sample provided near the focal point. In a sonic microscope, a method for processing a sample such as an ultrasonic microscope characterized by coating the sample with a thin film substance.
JP59027043A 1984-02-17 1984-02-17 Treatment of specimen for ultrasonic microscope Pending JPS60171456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027043A JPS60171456A (en) 1984-02-17 1984-02-17 Treatment of specimen for ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027043A JPS60171456A (en) 1984-02-17 1984-02-17 Treatment of specimen for ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS60171456A true JPS60171456A (en) 1985-09-04

Family

ID=12210037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027043A Pending JPS60171456A (en) 1984-02-17 1984-02-17 Treatment of specimen for ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS60171456A (en)

Similar Documents

Publication Publication Date Title
JP2664443B2 (en) Equipment for examining samples with ultrasound
EP0084174A2 (en) Ultrasonic microscope
JPH0330105B2 (en)
JPS6070350A (en) Focal distance confirming method and apparatus therefor
JPS60171456A (en) Treatment of specimen for ultrasonic microscope
SU832449A1 (en) Scanning acoustic microscope
JPS585646A (en) Ultrasonic microscope
JPH0427501B2 (en)
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPS60111152A (en) Ultrasonic microscope
JPS58118958A (en) Ultrasonic microscope
JPS5815151A (en) Ultrasonic microscope
JPH0230769Y2 (en)
JPS58129354A (en) Ultrasonic microscope
JPH0465978B2 (en)
JPH0233984B2 (en)
JPS5831200Y2 (en) ultrasonic focusing lens
JPS6342742B2 (en)
JPS60129666A (en) Ultrasonic microscope
JPS58166258A (en) Ultrasonic microscopic lens
JPH0560733A (en) Ultrasonic microscope
JPH0158458B2 (en)
JPS58132656A (en) Ultrasonic microscope
JPS58196453A (en) Ultrasonic microscope
JPS6144346A (en) Ultrasonic microscope