JPS6150061A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS6150061A
JPS6150061A JP60158203A JP15820385A JPS6150061A JP S6150061 A JPS6150061 A JP S6150061A JP 60158203 A JP60158203 A JP 60158203A JP 15820385 A JP15820385 A JP 15820385A JP S6150061 A JPS6150061 A JP S6150061A
Authority
JP
Japan
Prior art keywords
sample
terminal
sample stage
ultrasonic
electrical connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60158203A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60158203A priority Critical patent/JPS6150061A/en
Publication of JPS6150061A publication Critical patent/JPS6150061A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Abstract

PURPOSE:To take out a lead without hampering the movement of a sample base, by retaining a liquid metal between a terminal plate of the sample based held with a static air bearing and probes provided on a support plate to make an electrical connection. CONSTITUTION:The surface of a sample base 16 is covered with an insulator 19, on which terminals 20 are arranged. Probes 21 mounted on a support plate 22 is mounted on a guide 14 at the position facing the respective terminals 20 and the tip of the probes 21 form a concave with the V-shaped cross-section. The tip of the probes 21 is held with a fine gap from the top of the terminal 20 and a liquid metal 23 is inserted therebetween to make an electrical connection.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、試料の機械的走査により!fjt像を行なう
超音波顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is based on mechanical scanning of a sample! The present invention relates to an ultrasonic microscope that performs fjt imaging.

〔発明の背景〕[Background of the invention]

近年IGHzに及ぶ超音周波の音波の発生検出が可能と
なったので、水中で約1μmの音波長が実現できること
になり、その結果、高い分解能の音波撮像装置が得られ
ることが特開昭50−116058号などで提案されて
いる。即ち、凹面レンズを用いて集束音波ビームを作り
、1μmに及ぶ高い分解能を実現するのである。
In recent years, it has become possible to detect the generation of ultrasonic sound waves with ultrasonic frequencies up to IGHz, so it has become possible to realize sound wavelengths of about 1 μm underwater, and as a result, a high-resolution sonic imaging device can be obtained. -116058, etc. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm.

上記ビーム中に試料をそう人し、試料による反射超音波
を検出して試料の微細領域の弾性的性質を解明したり、
或は試料を機械的に2次元に走査しながら、この信号の
強度をブラウン管の輝度信号として表示すれば、試料の
微細痛造を拡大してみることができる。
By placing a sample in the beam and detecting the ultrasonic waves reflected by the sample, we can elucidate the elastic properties of minute regions of the sample.
Alternatively, if the sample is mechanically scanned in two dimensions and the intensity of this signal is displayed as a brightness signal on a cathode ray tube, it is possible to magnify the minute pain structures in the sample.

第1図は、その超音波顕微鏡の主要構成部を示す図であ
る。超音波の集束及び送受は球面レンズ1により行って
いるが、その構造は円柱状の熔融石英等をもちいた物質
の一面を光学研磨し、そのの上に圧電薄膜(ZnO)2
を上下電極3によすはさむ、このようにサンドウィッチ
構造になっている圧電薄膜2に、パルス発振器4から発
生されたパルス5を印加して、超音波6を発生させる。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is performed by a spherical lens 1, and its structure consists of optically polishing one side of a material made of cylindrical fused silica, etc., and then placing a piezoelectric thin film (ZnO) 2 on top of it.
A pulse 5 generated from a pulse oscillator 4 is applied to the piezoelectric thin film 2 having a sandwich structure, which is sandwiched between the upper and lower electrodes 3, to generate an ultrasonic wave 6.

また、他端部は口径0.1mmφ〜1.0■φ程度の凹
面状の半球穴が形成されており、この半球穴と試料との
間には、超音波6を試料7に伝播させるための媒質(例
えば水)8が満されている。
In addition, a concave hemispherical hole with a diameter of about 0.1 mmφ to 1.0 mmφ is formed at the other end, and between this hemispherical hole and the sample, there is a hole for propagating the ultrasonic wave 6 to the sample 7. medium (eg water) 8 is filled.

圧電薄膜2によって発生した超音波6は円柱の中を平面
波となって伝播する。この平面波が半球穴に達すると石
英(音速6000m/s)と水(音速1500m/s)
との音速の差により屈折作用が生じ、試料7面上に集束
した超音波6を照射することができる。逆に試料7から
反長されてくる超音波は球面レンズにより集音整相され
、平面波となって圧電薄膜2に達し、ここでRF信号9
に変換される。このRF信号9を受信器10で受信し、
ここでダイオード検波してビデオ信号11に変換し、C
RTディスプレイ12の入力信として用いている。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave reaches the hemispherical hole, quartz (sound speed 6000 m/s) and water (sound speed 1500 m/s)
A refraction effect occurs due to the difference in the speed of sound between the sample 7 and the sample 7, and the focused ultrasonic waves 6 can be irradiated onto the surface of the sample 7. On the contrary, the ultrasonic waves coming from the sample 7 are collected and phased by the spherical lens, become plane waves, and reach the piezoelectric thin film 2, where the RF signal 9
is converted to This RF signal 9 is received by a receiver 10,
Here, it is detected by diode and converted into video signal 11, and C
It is used as an input signal for the RT display 12.

この様に構成された装置において、試料7が試料台駆動
電源13によりx−y平面内で2次元に走査していると
試料の走査にともなう試料面からの反射強弱が2次元的
にCRT面1面上2示される。
In the apparatus configured in this manner, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample scans changes two-dimensionally from the CRT surface. Shown 2 on page 1.

試F)7の走査速度は高速であるほど、一画面を形成す
る時間が短時間ですみ、操作性の向上につながるが、従
来、一般に使用されている試料7の走査方法は機械的に
行っているために走査速度も、X軸走査を数10)(z
、y軸走査を約10秒程度で行っている。
The faster the scanning speed for sample F) 7, the shorter the time it takes to form one screen, which leads to improved operability. Because of this, the scanning speed is also lower than the
, the y-axis scan takes about 10 seconds.

上述の如く、x−y平面に走査している試料に。As described above, on the sample being scanned in the x-y plane.

超音波を照射し、試料から反射してくる超音波を使って
画像表示する装置において、試料の近傍あるいは内部に
弾性的性質の変化があれば、その都度反射してくる超音
波には振幅や位相の変化が生ずる。この位相は球面レン
ズと試料との距離が敏感に影響するので、走査している
試料面と超音波ビームの焦点面とは空間的に、いつも同
一位相条件に保つよう構成されなければならず、試料の
走査には、その精度が問題となってくるが、このような
装置に適した試料移動台として、静圧空気軸受の使用が
考えられている。この静圧空気軸受の特徴は軸受と試料
台との間に供給される義気の静圧力で試料台を支持する
方法であるので、1iiIIl受の摩擦抵抗が少なく、
摩耗のないことがあげられる。
In a device that irradiates ultrasonic waves and displays images using the ultrasonic waves reflected from a sample, if there is a change in elastic properties near or inside the sample, the reflected ultrasonic waves will have different amplitudes and A change in phase occurs. Since this phase is sensitively affected by the distance between the spherical lens and the sample, the scanning sample surface and the focal plane of the ultrasonic beam must be configured so that they are always kept in the same spatial phase condition. Accuracy is a problem when scanning a sample, and the use of a hydrostatic air bearing is being considered as a sample moving table suitable for such an apparatus. The feature of this static pressure air bearing is that the sample stand is supported by the static pressure of the air supplied between the bearing and the sample stand, so the frictional resistance of the bearing is small.
There is no wear and tear.

さらに試料台と軸受面のわずかな凹凸にも影響されるこ
となく平滑に移動する。
Furthermore, it moves smoothly without being affected by slight irregularities on the sample stage and bearing surface.

第2図(a)及び(b)は上述の静圧空気軸受を使用し
た試料移動台の構成を示すもので、第2図(b)は第2
図(a)の断面図である。図において、14はガイド部
である。ガイド部には圧縮空気吐出口15が所定の位置
に取りつけられており、この圧縮空気吐出口15から吐
出される圧縮空気により試料台16を保持する。17は
圧縮空気取入口である。また、18は試料台16の駆動
軸である。
Figures 2 (a) and (b) show the configuration of a sample moving table using the above-mentioned static pressure air bearing, and Figure 2 (b) shows the structure of the sample moving stage using the above-mentioned static pressure air bearing.
It is a sectional view of figure (a). In the figure, 14 is a guide portion. A compressed air outlet 15 is attached to the guide portion at a predetermined position, and the sample stage 16 is held by the compressed air discharged from the compressed air outlet 15. 17 is a compressed air intake port. Further, 18 is a drive shaft of the sample stage 16.

このようにtIW成された試料台を使用することにより
、走査中の試料の上下動を0゜03μm以下が実現され
、超音波顕微鏡等の試料台として極めて安定に動作する
のである。
By using a sample stage with tIW as described above, the vertical movement of the sample during scanning can be kept to 0.03 μm or less, and it can operate extremely stably as a sample stage for ultrasonic microscopes and the like.

上述の超音波顕微鏡で試料を観察する場合、観察中の試
料温度を精度よく測定したい要求や、試料近傍に設けた
ヒーターにより試料を加熱したい要求などが生ずる。ま
た、ICデバイスなどを動作させ、各部の温度がどのよ
うに変るかを観測したいなどの要求がある。
When observing a sample with the above-mentioned ultrasonic microscope, there are demands to accurately measure the temperature of the sample during observation, and to heat the sample with a heater provided near the sample. There is also a demand to operate IC devices and observe how the temperature of each part changes.

このように要求を満足するためには試料周辺から多数の
リード線を設けることが必要となってくる。
In order to satisfy these requirements, it is necessary to provide a large number of lead wires from the periphery of the sample.

しかしながら、静圧空気軸受を採用し、無摺動で安定に
走査することが特徴である試料台から多数のリード線を
取りだすことは、リード線あ剛性により、試料台の動き
に支障をきたす結果となる。
However, taking out a large number of lead wires from the sample stage, which uses a static pressure air bearing and is characterized by stable scanning without sliding, results in problems with the movement of the sample stage due to the rigidity of the lead wires. becomes.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題、をm決するためのもので試料
台の動きに支障ない超音波顕微鏡を提案するものである
The present invention is intended to resolve such problems and proposes an ultrasonic microscope that does not interfere with the movement of the sample stage.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、走査中の試料台の一部に設けた端子板
とこれに対向する位置に設けた接触子との間を液体金a
(例えば水銀)を介して電気的接続を行なうようにした
植成にある。
A feature of the present invention is that liquid gold a
(e.g. mercury) to make the electrical connection.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図にもとづいて本発明の実施例にいて述べる
Embodiments of the present invention will be described below based on FIG.

試料台16の面上を絶縁物19で覆いさらにその上面複
数個の端子20を配列する。それぞれの端子20の上面
は同一平面に仕上げられている。
The surface of the sample stage 16 is covered with an insulator 19, and a plurality of terminals 20 are arranged on the upper surface. The upper surface of each terminal 20 is finished to be the same plane.

また、ガイド部14からは支持板22にとりつけられた
接触子21が、それぞれ端子20に対向する位置にとり
つけられている。接触子21の先端部はV字状の断面形
状をもった凹面になっている。
Further, contacts 21 attached to a support plate 22 are attached from the guide portion 14 at positions facing the terminals 20, respectively. The tip of the contactor 21 has a concave surface with a V-shaped cross section.

接触子21の先端と、端子20の上面とは、わずかな間
隙が保たれるようになっており、両者の間に液体金屓2
3を挿入し電気的接続を可能なようにしである。
A slight gap is maintained between the tip of the contactor 21 and the upper surface of the terminal 20, and a liquid metal layer 2 is kept between them.
3 to enable electrical connection.

端子20の形状は試料台16の走査範囲よりも大きくし
ておけば、走査中においても、端子20から接触子21
がはずれるようなことはなく、安定に動作することがで
きる。
If the shape of the terminal 20 is made larger than the scanning range of the sample stage 16, even during scanning, the contact 21 can be moved from the terminal 20.
It does not come off and can operate stably.

このことは図では省略したが、試料台上にPZT等の圧
電素子をおき、この圧電素子に電圧印加することにより
伸縮することを利用して、試料に応力を印加することが
可能な試料台も容易に実現できる。
Although this is omitted in the diagram, a piezoelectric element such as PZT is placed on the sample stage, and stress can be applied to the sample by utilizing the expansion and contraction caused by applying voltage to the piezoelectric element. can also be easily achieved.

また、このような構成の試料台上に例えば試料25を取
りつけた場合、リード線26で試料25と端子20とを
接続すれば、試料台外部へリードLA24を介して、情
報を伝達することができる。
Furthermore, when the sample 25 is mounted on a sample stand with such a configuration, if the sample 25 and the terminal 20 are connected with the lead wire 26, information can be transmitted to the outside of the sample stand via the lead LA24. can.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明は簡単な構成ではあるが。 As mentioned above, although the present invention has a simple configuration.

静圧空気軸受等で非接触に支持されている試料台の動き
には何等支障をあたえることなく、試料台上に設けた端
子に電気的接続を行うことができる特徴をもっている。
It has the feature that electrical connections can be made to terminals provided on the sample stand without any hindrance to the movement of the sample stand, which is supported in a non-contact manner by hydrostatic air bearings or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波顕微鏡の構成を示す図、第2図は静圧軸
受の主要構成を示す図、第3図は本発明の一実施例を示
す図である。 fJ 1 口 ′fJ 2 口 (久)
FIG. 1 is a diagram showing the configuration of an ultrasonic microscope, FIG. 2 is a diagram showing the main configuration of a hydrostatic bearing, and FIG. 3 is a diagram showing an embodiment of the present invention. fJ 1 mouth'fJ 2 mouth (ku)

Claims (1)

【特許請求の範囲】[Claims] 1、液体の媒質を介して所定焦点の超音波ビームを試料
に照射し、前記試料からのじよう乱音波を検出する手段
と、前記試料を保持する試料台と、前記試料台を機械走
査する走査手段を有し、機械走査に伴なう前記じよう乱
音波の振幅もしくは位相の変化により前記試料の撮像を
行なう超音波顕微鏡において、前記試料台は静圧空気軸
受により無摺動で保持されるとともに外部から電気的接
続を行なうための端子板を備え、固定部分には上記第1
の端子板の端子に対向する接触子を備え、前記端子と前
記接触子の間には液体金属が保持され、該液体金属を介
して前記試料台への外部からの電気的接続がなされるこ
とを特徴とする超音波顕微鏡。
1. A means for irradiating a sample with an ultrasonic beam of a predetermined focus through a liquid medium and detecting a turbulent sound wave from the sample, a sample stage for holding the sample, and mechanical scanning of the sample stage. In an ultrasonic microscope that has a scanning means and images the sample by changing the amplitude or phase of the disturbed sound waves accompanying mechanical scanning, the sample stage is held without sliding by a hydrostatic air bearing. It is also equipped with a terminal board for electrical connection from the outside, and the fixed part has the above-mentioned first part.
a contactor facing the terminal of the terminal plate, a liquid metal is held between the terminal and the contactor, and an electrical connection is made from the outside to the sample stage via the liquid metal. An ultrasonic microscope featuring:
JP60158203A 1985-07-19 1985-07-19 Ultrasonic microscope Pending JPS6150061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158203A JPS6150061A (en) 1985-07-19 1985-07-19 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158203A JPS6150061A (en) 1985-07-19 1985-07-19 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS6150061A true JPS6150061A (en) 1986-03-12

Family

ID=15666532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158203A Pending JPS6150061A (en) 1985-07-19 1985-07-19 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS6150061A (en)

Similar Documents

Publication Publication Date Title
JP3766210B2 (en) 3D ultrasonic imaging device
US4510810A (en) Ultrasonic microscope
EP0318283A2 (en) Apparatus for investigating a sample with ultrasound
JPH0136584B2 (en)
JPH0254503B2 (en)
JP6397600B1 (en) POSITION CONTROL DEVICE, POSITION CONTROL METHOD, AND ULTRASONIC VIDEO SYSTEM
US4694699A (en) Acoustic microscopy
JPS59160754A (en) Scan type acoustic microscope
JPH0324982B2 (en)
JPS6150061A (en) Ultrasonic microscope
JPH0330105B2 (en)
JPH0427501B2 (en)
FR2570199A1 (en) ACOUSTIC MICROSCOPE FOR DEEP ANALYSIS OF AN OBJECT HAVING ASPHERICAL LENSES
US4446738A (en) Acoustic scanning microscope
JPH0158457B2 (en)
JPS6222838Y2 (en)
JPH0158456B2 (en)
JPH0210379B2 (en)
JPS5811849A (en) Ultrasonic microscope
JPS6188144A (en) Ultrasonic microscope
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPS6144346A (en) Ultrasonic microscope
JPS5926283Y2 (en) Ultrasonic microscope scanning device
JPS58132656A (en) Ultrasonic microscope
JPH0233984B2 (en)