JPH0210379B2 - - Google Patents

Info

Publication number
JPH0210379B2
JPH0210379B2 JP60237282A JP23728285A JPH0210379B2 JP H0210379 B2 JPH0210379 B2 JP H0210379B2 JP 60237282 A JP60237282 A JP 60237282A JP 23728285 A JP23728285 A JP 23728285A JP H0210379 B2 JPH0210379 B2 JP H0210379B2
Authority
JP
Japan
Prior art keywords
sample
sound wave
ultrasonic
lens
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60237282A
Other languages
Japanese (ja)
Other versions
JPS61105457A (en
Inventor
Kyoshi Ishikawa
Hiroshi Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60237282A priority Critical patent/JPS61105457A/en
Publication of JPS61105457A publication Critical patent/JPS61105457A/en
Publication of JPH0210379B2 publication Critical patent/JPH0210379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波顕微鏡に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an ultrasound microscope.

〔発明の概要〕[Summary of the invention]

近年1GHzに及ぶ超音周波の音波の発生検出が
可能となつたので、水中で約1μmの音波長が実
現できることになり、その結果、高い分解能の音
波撮像装置が得られるようになつた。即ち、凹面
レンズを用いて集束音波ビームを作り、1μmに
及ぶ高い分解能を実現するのである。
In recent years, it has become possible to generate and detect sound waves with ultrasonic frequencies up to 1 GHz, making it possible to realize sound wavelengths of approximately 1 μm underwater, and as a result, it has become possible to obtain high-resolution sound wave imaging devices. In other words, a concave lens is used to create a focused acoustic beam, achieving a high resolution of 1 μm.

上記ビーム中に試料をそう入し、試料による反
射超音波を検出して試料の微細領域の弾性的性質
を解明したり、或は試料を機械的に2次元に走査
しながら、この信号の強度をブラウン管の輝度信
号として表示すれば、試料の微細構造を拡大して
みることができる。この例は例えば特開昭50−
116058号に示される。
By inserting a sample into the beam and detecting the reflected ultrasonic waves from the sample, we can elucidate the elastic properties of minute regions of the sample, or while mechanically scanning the sample in two dimensions, we can measure the intensity of this signal. By displaying this as a brightness signal on a cathode ray tube, it is possible to magnify the fine structure of the sample. This example is, for example,
No. 116058.

第1図は、その超音波顕微鏡の主要構成部を示
す図である。超音波の集束及び送受は球面レンズ
1により行つているが、その構造は円柱状の熔融
石英等をもちいた物質の一面を光学研磨し、その
上に上下電極3によりはさまれたZnOなどの圧電
薄膜2を形成する。このようにサンドウイツチ構
造になつている圧電薄膜2に、パルス発振器4か
ら発生されたパルス5を印加して、超音波6を発
生させる。また、他端部は口径0.1mmφ〜1.0mmφ
程度の凹面状の半球穴が形成されており、この半
球穴と試料との間には、超音波6を試料7に伝播
させるための媒質(例えば水)8が満されてい
る。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is carried out by a spherical lens 1, whose structure consists of optically polished one side of a material made of cylindrical fused silica, etc., and a layer of ZnO etc. sandwiched between the upper and lower electrodes 3. A piezoelectric thin film 2 is formed. A pulse 5 generated from a pulse oscillator 4 is applied to the piezoelectric thin film 2 having a sandwich structure as described above, thereby generating an ultrasonic wave 6. Also, the other end has a diameter of 0.1mmφ to 1.0mmφ
A concave hemispherical hole is formed, and a medium (for example, water) 8 is filled between the hemispherical hole and the sample for propagating the ultrasonic waves 6 to the sample 7.

圧電薄膜2によつて発生した超音波6は円柱の
中を平面波となつて伝播する。この平面波が半球
穴に達すると石英(音速5600m/s)と水(音速
1500m/s)との音速の差により屈折作用が生
じ、試料7面上に集束した超音波6を照射するこ
とができる。逆に試料7から反射されてくる超音
波は球面レンズにより集音整相され、平面波とな
つて圧電薄膜2に達し、ここでRF信号9に変換
される。このRF信号9を受信器10で受信し、
ここでダイオード検波してビデオ信号11に変換
し、CRTデイスプレイ12の入力信号として用
いている。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave reaches the hemispherical hole, quartz (velocity of sound 5600 m/s) and water (velocity of sound
1500 m/s), a refraction effect occurs, and a focused ultrasonic wave 6 can be irradiated onto the surface of the sample 7. Conversely, the ultrasound reflected from the sample 7 is collected and phased by a spherical lens, becomes a plane wave, reaches the piezoelectric thin film 2, and is converted into an RF signal 9 here. This RF signal 9 is received by a receiver 10,
Here, the signal is detected by a diode and converted into a video signal 11, which is used as an input signal for a CRT display 12.

この様に構成された装置において、試料7が試
料台駆動電源13によりx−y平面内で2次元に
走査していると試料の走査にともなう試料面から
の反射の強弱が2次元的にCRT面12に表示さ
れる。
In the apparatus configured in this way, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample scans changes two-dimensionally. displayed on screen 12.

而して、一般に超音波は物体の表面で一部分は
反射するが、かなりの部分は物体が光学的に透明
かどうかに関係なく、その中にはいつてゆき、物
体内部に存在する硬さや、密度、粘性の違いや欠
陥などを反映したエコーとなつて返つてくる。こ
の性質を利用して試料内部の様相を検出できるの
が超音波顕微鏡である。
Generally speaking, a portion of ultrasound waves is reflected from the surface of an object, but a large portion of the ultrasound waves are reflected within the object, regardless of whether the object is optically transparent or not. It returns as an echo that reflects differences in density, viscosity, and defects. Ultrasonic microscopes can utilize this property to detect aspects inside a sample.

上述のように構成された超音波顕微鏡を長時間
にわたつて移動させ、試料の観察を試みている
と、圧電物質から発生させる超音波の強度は装置
製作当初と変りないが、取得される信号強度が
徐々に減衰していることが判明した。
When attempting to observe a sample by moving the ultrasound microscope configured as described above over a long period of time, the intensity of the ultrasound generated from the piezoelectric material remains the same as when the device was first manufactured, but the signal acquired It was found that the intensity gradually decreased.

この原因を究明してみると球面レンズの凹面部
に、媒質中に含まれている不純物や、試料から放
射された物質(生物試料などの観察時に多い)な
どが付着するために凹球レンズ凹面境界での超音
波の減衰があることが判明した。
When we investigated the cause of this problem, we found that impurities contained in the medium and substances emitted from the sample (often used when observing biological samples) adhere to the concave surface of the spherical lens. It was found that there is attenuation of ultrasound waves at the boundary.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の点を鑑みてなされたもので、
その目的は球面レンズの凹面部に付着した物質を
とりのぞくことができ、常に高い信号強度で試料
の観察が行なえる超音波顕微鏡を提供するにあ
る。
The present invention has been made in view of the above points, and
The purpose is to provide an ultrasonic microscope that can remove substances adhering to the concave surface of a spherical lens, and that can always observe a sample with high signal strength.

〔発明の概要〕[Summary of the invention]

本発明は超音波深触子の凹面部に対向して、軟
弱繊維束よりなる洗浄用軟弱物質を対向して移動
可能に配置し、これに洗浄用液体及び圧縮空気を
供給するようにした構成に特徴を有する。
The present invention has a structure in which a cleaning soft material made of a soft fiber bundle is movably arranged opposite to the concave surface of an ultrasonic deep probe, and cleaning liquid and compressed air are supplied to the cleaning soft substance. It has the following characteristics.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示す図である。図
において、試料7を塔載する試料台の下部に軟弱
繊維束14を支持台15に固定する。また支持台
15にはパイプ16により、常時水などの洗浄用
液体を供給している。また同じく支持台に取りつ
けられているパイプ17からは圧縮空気が吐出で
きるような構成になつている。図では省略した
が、支持台15は上下機構及び回転機械をもつて
いる。
FIG. 2 is a diagram showing an embodiment of the present invention. In the figure, a soft fiber bundle 14 is fixed to a support stand 15 at the bottom of a sample stand on which a sample 7 is mounted. Furthermore, a cleaning liquid such as water is constantly supplied to the support base 15 through a pipe 16. Further, the structure is such that compressed air can be discharged from a pipe 17 that is also attached to the support base. Although not shown in the figure, the support stand 15 has an up-and-down mechanism and a rotating machine.

第3図は、本実施例により球面レンズの凹面部
を洗浄している状態を示すもので、試料7を塔載
する試料台は側方に退けられ支持台15が矢印
R1で示す如く上昇して、その先端部に取りつけ
てある繊維束14が凹面部に接触すると、支持台
15は矢印R2で示すように回転する。所定時間
回転すると、支持台15は下がり、それと同時に
パイプ17から圧縮空気(その強さは1Kg/cm2
が吐出し、この圧縮空気が繊維束14の中を通つ
て吹き出し、瞬時に凹面部に附着している水滴及
び附着部を吹きとばしてしまう。
FIG. 3 shows the state in which the concave surface of the spherical lens is being cleaned according to this embodiment, in which the sample stage on which the sample 7 is mounted is moved to the side and the support base 15 is
When the support base 15 rises as shown by R 1 and the fiber bundle 14 attached to its tip comes into contact with the concave surface, the support base 15 rotates as shown by the arrow R 2 . After rotating for a predetermined period of time, the support stand 15 lowers, and at the same time compressed air (its strength is 1 kg/cm 2 ) is supplied from the pipe 17.
is discharged, and this compressed air blows out through the fiber bundle 14, instantly blowing away the water droplets adhering to the concave surface portion and the adhering portion.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、試料観察中
に球面レンズの凹面部に附着した汚れの影響によ
り、音波を適確に集音することが困難であつたも
のが容易に解決することができる。
As described above, according to the present invention, the difficulty in collecting sound waves accurately due to the influence of dirt attached to the concave surface of the spherical lens during sample observation can be easily solved. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波顕微鏡の構成を示す図、第2図
は本発明の一実施例の構成を示す図、第3図は、
その動作を説明する図である。
FIG. 1 shows the configuration of an ultrasonic microscope, FIG. 2 shows the configuration of an embodiment of the present invention, and FIG. 3 shows the configuration of an ultrasonic microscope.
It is a figure explaining the operation|movement.

Claims (1)

【特許請求の範囲】[Claims] 1 音波伝播体の一端に凹面状の半球穴を設けて
成り、所定の焦点を有する音波レンズと、該音波
レンズの焦点近傍に試料を保持する試料台を有
し、前記音波レンズから液体媒質を介して前記試
料に超音波を照射し、前記試料からのじよう乱音
波により前記試料を撮像する超音波顕微鏡におい
て、軟弱繊維束よりなる洗浄用軟弱物質と、該洗
浄軟弱物質を保持し、かつ前記音波レンズの半球
穴に向つて移動して前記半球穴に洗浄用軟弱物質
を接触させるとともに回転させる移動手段を有す
る支持台と、前記洗浄用軟弱物質に洗浄用液体及
び圧縮空気を供給する手段を備えたことを特徴と
する超音波顕微鏡。
1. A sound wave propagator has a concave hemispherical hole at one end, has a sound wave lens having a predetermined focus, and a sample stage for holding a sample near the focus of the sound wave lens, and a liquid medium is ejected from the sound wave lens. In an ultrasonic microscope that irradiates the sample with ultrasonic waves through the sample and images the sample using the disturbance sound waves emitted from the sample, the ultrasonic microscope includes a cleaning soft substance made of a soft fiber bundle, holding the cleaning soft substance, and a support table having a moving means for moving toward the hemispherical hole of the sonic lens to bring the cleaning soft material into contact with the hemispherical hole and rotating it; and means for supplying cleaning liquid and compressed air to the cleaning soft material. An ultrasonic microscope characterized by being equipped with.
JP60237282A 1985-10-25 1985-10-25 Ultrasonic microscope Granted JPS61105457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237282A JPS61105457A (en) 1985-10-25 1985-10-25 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237282A JPS61105457A (en) 1985-10-25 1985-10-25 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JPS61105457A JPS61105457A (en) 1986-05-23
JPH0210379B2 true JPH0210379B2 (en) 1990-03-07

Family

ID=17013078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237282A Granted JPS61105457A (en) 1985-10-25 1985-10-25 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS61105457A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588808B2 (en) * 1991-12-16 1997-03-12 本田技研工業株式会社 Molding method for cup-shaped toothed products

Also Published As

Publication number Publication date
JPS61105457A (en) 1986-05-23

Similar Documents

Publication Publication Date Title
JPH0136584B2 (en)
EP0318283A2 (en) Apparatus for investigating a sample with ultrasound
EP0084174B1 (en) Ultrasonic microscope
US5406849A (en) Method and apparatus for detecting guided leaky waves in acoustic microscopy
JPH0421139B2 (en)
JPH0324982B2 (en)
JPH0210379B2 (en)
JPH0330105B2 (en)
SU832449A1 (en) Scanning acoustic microscope
JPS6255099B2 (en)
JPH0427501B2 (en)
JPH0365495B2 (en)
JPH0233984B2 (en)
JPS5815151A (en) Ultrasonic microscope
JPS6188144A (en) Ultrasonic microscope
JPH0465978B2 (en)
JPS585648A (en) Ultrasonic microscope
JPS61111458A (en) Ultrasonic microscope
JPH0230769Y2 (en)
JPH0158456B2 (en)
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPS585646A (en) Ultrasonic microscope
JPS5928362Y2 (en) ultrasound microscope
JPS6097267A (en) Washing apparatus of ultrasonic microscope
JPS6342742B2 (en)