JPS6014486A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6014486A
JPS6014486A JP12140083A JP12140083A JPS6014486A JP S6014486 A JPS6014486 A JP S6014486A JP 12140083 A JP12140083 A JP 12140083A JP 12140083 A JP12140083 A JP 12140083A JP S6014486 A JPS6014486 A JP S6014486A
Authority
JP
Japan
Prior art keywords
layer
type
xalxas
ridges
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12140083A
Other languages
Japanese (ja)
Inventor
Takeshi Hamada
健 浜田
Masaru Wada
優 和田
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12140083A priority Critical patent/JPS6014486A/en
Publication of JPS6014486A publication Critical patent/JPS6014486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the oscillation threshold value and to upgrade the external differentiated quantum efficiency by a method wherein three layers, whose conductive types are alternately different from one another, are formed on a substrate having a protrusion in such a way that a layer having either of two ridges standing straight in parallel to each other is formed respectively on both sides of a groove, whose bottom surface comes in contact to the top of the protrusion; and a double hetero structure including an active layer is formed on the semiconductor layers including the ridges. CONSTITUTION:A first current constricting layer 9 of a P type Ga1-xAlxAs and then a second current constricting layer 10 of an N type Ga1-xAlxAs, and furthermore, a third current constricting layer 11 of a P type Ga1-xAlxAs are continuously grown on the surface of an N type GaAs substrate 1, whereon a protrusion has been formed by performing an etching, by a liquid- phase epitaxial method until the surfaces thereof become flat. Two ridges standing straight in parallel to each other are formed on the surface of a wafer, when finished this first-time growth, putting a groove between them by performing an etching. An N type Ga1-xAlxAs clad layer 2 of the first layer, a non-dopped Ga1-yAlyAs active layer 3 of the second layer, a P type Ga1-xAlxAs clad layer 4 of the third layer and a P type GaAs electrode forming layer 5 of the fourth layer are continuously grown on the surface of the substrate 1, whereon the two ridges have been formed, by a liquid-phase epitaxial method again.

Description

【発明の詳細な説明】 〔発明の目的〕本発明は本発明者らによってすでに開発
されているTRF3(Twin RitLge5ubz
trate)構造を有する半導体レーザ装置の改良に関
するものである。近年、光デイスクファイルの書き込み
用、あるいはレーザプリンターなど、広い分野で基本横
モード発振をする高出力の半導体レーザ装置の需要が高
まっておシ、TR8型半導体レーザ装置はこの要請に答
えるものである。
[Detailed Description of the Invention] [Object of the Invention] The present invention is based on TRF3 (Twin RitLge5ubz), which has already been developed by the present inventors.
The present invention relates to an improvement of a semiconductor laser device having a trate) structure. In recent years, there has been an increasing demand for high-power semiconductor laser devices that emit fundamental transverse mode oscillation in a wide range of fields, such as for writing optical disk files and laser printers, and the TR8 type semiconductor laser device meets this demand. .

第1図はル型基板を用いた従来のTR8型半導体レーザ
装甑で、基板1の上に平行に直立する2個のりクジを形
成し、その上に活性層3を含−む各層2.4.5の連続
成長させ、電流注入のために亜鉛を結晶表面より拡散8
させた後、上下両面に電極6.7を形成している。この
構造は結晶成長の異方性によシ、リッジ上の成長はりク
ジの側面に比べて抑制されるため、リッジ上i1′2:
きわめて薄い活性層を再現性よく形成する光はクラッド
層に大きくしみ出し、第1クラッド層2内にしみ出した
光は溝部以外のりクジの上では基板に吸収されるのでリ
ッジ間の溝部に閉じ込められ、こ\に安定した基本横モ
ードの発振かえられる。
FIG. 1 shows a conventional TR8 type semiconductor laser device using a square substrate, in which two glue holes are formed vertically in parallel on a substrate 1, and each layer 2. 4.5 is continuously grown, and zinc is diffused from the crystal surface for current injection.
After this, electrodes 6.7 are formed on both the upper and lower surfaces. Because this structure is suppressed due to the anisotropy of crystal growth, the growth on the ridge is suppressed compared to the side surface of the ridge, so i1'2 on the ridge:
The light that forms the extremely thin active layer with good reproducibility largely seeps into the cladding layer, and the light that seeps into the first cladding layer 2 is absorbed by the substrate on the grooves other than the grooves, so it is confined in the grooves between the ridges. This results in stable fundamental transverse mode oscillation.

ところで上記第1図の従来の構造には以下述べるような
問題がある。(1)亜鉛拡散領域8から注入された電流
は、発振が行なわれる溝部だけではなく、溝部以外のり
クジ部にも流れるのでこれらの電流は損失になるばかシ
でなく、溝部への有効な電流の注入を阻害する。(2)
ストライブ状に亜鉛を任意の深さまで再現性よく熱拡散
させることはその制御性の点から限界があるため、拡散
フロントが第5のクラッドN4に達し々いことがあ勺、
あるいは活性層5まで到達する場合もあるのでこれらが
発振率を低下させる原因になる。本発明はこれらの問題
点の解決された新規な構造を有するTR8型半導体レー
ザ装置を提供することを目的とするものである。
However, the conventional structure shown in FIG. 1 has the following problems. (1) The current injected from the zinc diffusion region 8 flows not only to the groove where oscillation occurs but also to the grooves other than the groove, so these currents do not become losses but are effective currents to the groove. injection. (2)
Since there is a limit to the controllability of thermally diffusing zinc in the form of stripes to an arbitrary depth with good reproducibility, there is a possibility that the diffusion front will not reach the fifth cladding N4.
Alternatively, it may reach the active layer 5, which causes a decrease in the oscillation rate. An object of the present invention is to provide a TR8 type semiconductor laser device having a novel structure in which these problems are solved.

〔発明の構成〕本発明の半導体レーザ装置は突起を有す
る半導体基板上に、前記突起の頂部に底面が接する溝の
両側に平行に直立するりクジを有する層が形成されるよ
う導電型を交互に異にする少くとも1個の層が形成さ1
、ておシ、前記2個のりクジを含む半導体層の上には活
性層を含むダブルへテロ構造が形成されていることを特
徴とする。
[Structure of the Invention] The semiconductor laser device of the present invention is provided by alternating conductivity types so that a layer having grooves standing upright in parallel on both sides of a groove whose bottom surface is in contact with the top of the protrusion is formed on a semiconductor substrate having a protrusion. At least one layer is formed that differs from 1 to 1.
A double heterostructure including an active layer is formed on the semiconductor layer including the two glue holes.

本発明の構成を第2図および第6図について沿;5明す
る。エツチングにょシ高さ2.2μm、d)3μmの突
起を形成したn臂GαAs基板1(第6図α)の表面に
液相エピタキシャル法にょシP型Gα1−xALx1g
の第1電流狭窄層9を突起の上で厚さ02μ麻、次にn
型0a1−:t、711χA夕の第2電流狭窄層10を
同様に突起の上で厚さ□2μm、さらにP 7fiGc
L1−xllxAz tD 第573t Mf、 狭即
層11を表向が平坦になるまで連続成長させる(第5ト
b)。ζ、の第1回の成長が終了したつ。
The structure of the present invention will be explained with reference to FIGS. 2 and 6. Etched the surface of the n-arm GαAs substrate 1 (Fig. 6 α) on which protrusions with a height of 2.2 μm and 3 μm were formed using a liquid phase epitaxial method.
The first current confinement layer 9 is placed on the protrusion to a thickness of 02 μm, then n
Similarly, the second current confinement layer 10 of type 0a1-:t, 711χA is formed on the protrusion to a thickness of □2 μm, and further P7fiGc
L1-xllxAz tD 573t Mf, Continuously grow the narrowing layer 11 until the surface becomes flat (fifth tob). The first growth of ζ has been completed.

エバーの表面に、<011>方向に高さ15μnL、巾
20μmの2個の平行に直立するりフジを巾4μ扉の溝
をはさんでエツチングによって形成する。リッジ間の溝
は突起の真上に位置し、その底FiL型基板1まで達す
る。一方、リッジの外側の平坦部はエツチング後も第3
電流狭隙層11が残っている (第6図C)。かくして
リッジを形成した基板1の表面に再び液相エピタキシャ
ル法によって第1層のn型Gα1−xALxyクラッド
層2をリッジの上での厚さが約Q、 21tms第2層
のノンドープGα1−yAZ yAz活性層3を同様に
約0.05μm、第3層のP型□a1−xllxAzク
ラッド層4を同様に約1.5μm、第4層のP型GaA
s電極形感層5を同様に約0.5μm、それぞれの厚さ
に々るよう連続成長させる(第6図d)。なお、上記実
施例においては!=0.−45、y = 0.08でち
る。この第4層の電極形成層5の上にP側電極用金属を
蒸着し、合金処理を行なってP側オーミック電極6を形
成し、基板側には路側電極用金属を薄着し、合金処理を
行なってル側オーミック電極7を形成すると第2図に示
す本発明の半導体ウェハーかえられる。
On the surface of the Ever, two parallel ridges with a height of 15 μnL and a width of 20 μm in the <011> direction are formed by etching, sandwiching a 4 μm wide door groove. The groove between the ridges is located directly above the protrusion and reaches the bottom of the FiL type substrate 1. On the other hand, the flat part on the outside of the ridge remains in the third position even after etching.
The current narrowing layer 11 remains (Fig. 6C). On the surface of the substrate 1 with the ridge formed in this way, a first layer of n-type Gα1-xALxy cladding layer 2 is formed again by the liquid phase epitaxial method so that the thickness above the ridge is approximately Q, 21 tms, and the second layer is non-doped Gα1-yAZ yAz. The active layer 3 is also approximately 0.05 μm thick, the third layer P type □a1-xllxAz cladding layer 4 is approximately 1.5 μm thick, and the fourth layer is P type GaA.
Similarly, the s-electrode type sensitive layers 5 are continuously grown to a thickness of about 0.5 μm (FIG. 6d). In addition, in the above example! =0. -45, y = 0.08. A P-side electrode metal is vapor-deposited on the fourth electrode forming layer 5 and alloyed to form a P-side ohmic electrode 6. A roadside electrode metal is thinly deposited on the substrate side and alloyed. After forming the ohmic electrode 7 on the side, the semiconductor wafer of the present invention shown in FIG. 2 is replaced.

〔発明の効果〕本発明の半導体レーザ装置り以上の構成
を有するので以下述べるような効果がある。(1)第1
回目のエピタキシャル成長で形成しfc電流狭啼層の作
用でPn接合の逆バイアス状態となシ、電流を阻止する
。そのために成長面から注入された電流は発1振が行な
わjる溝部の上の活性層に集中的に注入される。その結
果、発振しきい値を低下させ、外部微分量子効率を向上
させることができる。実験の結果、発振しきい値は約!
+ 077LA、外部微分S、子効率は約70係であっ
て、従凍0TR8型半導体レーザに比べて低いしきい値
と高い効率のえらj、ることか確認された。(2) 1
 [gi目のエピタキシャル成長で形成する電流狭卑層
は、基板にあらかじめ形成した突起により、第6図すに
示すように、突起の両側に裾を引くような形状に形成さ
れる。
[Effects of the Invention] Since the semiconductor laser device of the present invention has the above structure, it has the following effects. (1) First
The fc current narrowing layer formed during the second epitaxial growth puts the Pn junction in a reverse bias state and blocks current flow. Therefore, the current injected from the growth surface is intensively injected into the active layer above the groove where oscillation occurs. As a result, the oscillation threshold can be lowered and the external differential quantum efficiency can be improved. As a result of experiments, the oscillation threshold is approx.
+077LA, external differential S, and particle efficiency were approximately 70 factors, and it was confirmed that the laser diode had a lower threshold value and higher efficiency than the conformal 0TR8 type semiconductor laser. (2) 1
[The current narrowing layer formed by the gi-th epitaxial growth is formed by protrusions previously formed on the substrate into a shape with skirts on both sides of the protrusions, as shown in FIG.

したがって突起の高さおよびリッジの巾を適当に定める
とりクジ間の渦の深さとリッジ外111jの段差の高さ
を同じにすることができるので、これを1回のエツチン
グで行なうことができる。
Therefore, since the depth of the vortex between the ridges and the height of the step outside the ridge 111j can be made the same by appropriately determining the height of the protrusion and the width of the ridge, this can be done in one etching.

(3)本発明の構造は電流の通過がリッチ間の溝部に限
らむ、るため、従来のTR8半導体レーザにおいて必要
な電流注入のための亜鉛の拡散が不要となるので、亜鉛
拡散の深さのバラツキに起因する発振率の低下がなくな
り、かつ、エピタキシャル成長後の工程を大巾に簡素化
することができる。
(3) In the structure of the present invention, the passage of current is limited to the groove between the rich, so there is no need for zinc diffusion for current injection, which is required in conventional TR8 semiconductor lasers, so the depth of zinc diffusion can be reduced. This eliminates a decrease in the oscillation rate due to variations in the oscillation rate, and also greatly simplifies the process after epitaxial growth.

以上、本発明につきル型基板を用いた場合について説明
したが、本発明はP型基板を用いても同様に実施するこ
とができ、かつ、同様の効果を有することはいう1でも
ない。
Although the present invention has been described above using a L-type substrate, the present invention can also be implemented in the same manner using a P-type substrate, and the same effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:従来のTR8型半導体レーザ装置の断面図 第2図二本発明のTR8型半等体レーザ装置の断面図 第3図二本発明のTR8型半導体レーザ装簡の製造工程
図で、α、b、c、dはその各 工程を示す。 1−−−n型□aAs基板、2− n型Gc1−xll
xAs lラッド層、6・・・ノンドープGαi −3
1AZ yhs活性層、4・・・P型Gα1−x)Ax
Agクラッド層、5・・・ル型GαAz電極形成層、6
・・・P型オーミ・ツク電極、7・−・ル型オーミック
電極、8・・・亜鉛拡散領域、9 ・P型Ga 1−x
ALxAt第1電流狭マ層10− n、 fJ、 Gl
−xlLx)s第2電流狭享層i i−:p型Gα1−
xAlxAI第3電流狭キ層牙1図 才2図 牙3図 +4)
FIG. 1: A cross-sectional view of a conventional TR8 type semiconductor laser device. FIG. 2: A cross-sectional view of a TR8 type semiconductive laser device of the present invention. FIG. 3: A manufacturing process diagram of a TR8 type semiconductor laser package of the present invention. α, b, c, and d indicate each step. 1--n type □aAs substrate, 2- n type Gc1-xll
xAs l rad layer, 6... non-doped Gαi -3
1AZ yhs active layer, 4...P-type Gα1-x)Ax
Ag cladding layer, 5... Le-type GaAz electrode forming layer, 6
... P-type ohmic electrode, 7... Le-type ohmic electrode, 8... Zinc diffusion region, 9 - P-type Ga 1-x
ALxAt first current narrowing layer 10-n, fJ, Gl
-xlLx)s 2nd current narrowing layer i i-:p type Gα1-
xAlxAI 3rd current narrow layer fang 1 figure 2 figure 3 figure + 4)

Claims (1)

【特許請求の範囲】 突起を有する半導体基板上に、前記突起の頂部に底面が
接する溝の両側に平行に直立するりクジを有する層が形
成されるよう導電型を交互に異にする少くとも1個の層
が形成されておシ。 前記2個のりクジを含む半導体層の上には活性層を含む
ダブルへテロ構造が形成されていることを%徴とする半
導体レーザ装置
[Scope of Claims] At least one layer having conductivity types that is alternately different so that a layer having grooves standing upright in parallel on both sides of a groove whose bottom surface is in contact with the top of the projection is formed on a semiconductor substrate having a projection. One layer is formed. A semiconductor laser device characterized in that a double heterostructure including an active layer is formed on the semiconductor layer including the two glue holes.
JP12140083A 1983-07-04 1983-07-04 Semiconductor laser device Pending JPS6014486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12140083A JPS6014486A (en) 1983-07-04 1983-07-04 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12140083A JPS6014486A (en) 1983-07-04 1983-07-04 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6014486A true JPS6014486A (en) 1985-01-25

Family

ID=14810242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12140083A Pending JPS6014486A (en) 1983-07-04 1983-07-04 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6014486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745611A (en) * 1985-10-25 1988-05-17 Matsushita Electric Industrial Co., Ltd. Buried twin ridge substrate laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS571287A (en) * 1980-06-03 1982-01-06 Nec Corp Basic lateral mode semiconductor laser and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS571287A (en) * 1980-06-03 1982-01-06 Nec Corp Basic lateral mode semiconductor laser and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745611A (en) * 1985-10-25 1988-05-17 Matsushita Electric Industrial Co., Ltd. Buried twin ridge substrate laser

Similar Documents

Publication Publication Date Title
JPS61190993A (en) Manufacture of semiconductor laser element
US4366568A (en) Semiconductor laser
US4870468A (en) Semiconductor light-emitting device and method of manufacturing the same
JPH0243351B2 (en)
JPS61183987A (en) Semiconductor laser
JPS6014486A (en) Semiconductor laser device
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPS61102086A (en) Semiconductor laser
JPH0945999A (en) Semiconductor device and manufacture thereof
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JP2940158B2 (en) Semiconductor laser device
JPH0574237B2 (en)
JPS62296490A (en) Semiconductor laser device
JPH0537078A (en) Quantum well semiconductor laser element and manufacture thereof
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6297384A (en) Semiconductor laser device
JPS6014485A (en) Semiconductor laser device
JPS6318874B2 (en)
JPS6148277B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS5911692A (en) Semiconductor laser
JP2736382B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPH0436598B2 (en)
JPS60158684A (en) Semiconductor laser device and manufacture thereof
JPS59222984A (en) Semiconductor laser device