JPS6014485A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6014485A
JPS6014485A JP12139983A JP12139983A JPS6014485A JP S6014485 A JPS6014485 A JP S6014485A JP 12139983 A JP12139983 A JP 12139983A JP 12139983 A JP12139983 A JP 12139983A JP S6014485 A JPS6014485 A JP S6014485A
Authority
JP
Japan
Prior art keywords
layer
ridges
type
substrate
xalxas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12139983A
Other languages
Japanese (ja)
Inventor
Takeshi Hamada
健 浜田
Masaru Wada
優 和田
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12139983A priority Critical patent/JPS6014485A/en
Publication of JPS6014485A publication Critical patent/JPS6014485A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Abstract

PURPOSE:To reduce the oscillation threshold value and to upgrade the external differentiated quantum efficiency by a method wherein the bottom surface of a groove between two ridges on a substrate, which has the two ridges standing straight in parallel to each other, is located lower than the stepped surfaces on both the outsides of the ridges; a P-N junction face, which is parallel to the main plane of the substrate, is formed on the lower sides of the ridges and the stepped surfaces in such a condition as to be discontinued by the groove; and a double hetero structure including an active layer is formed on the ridges. CONSTITUTION:A first current constricting layer 9 of a P type Ga1-xAlxAs, a second current constricting layer 10 of an N type Ga1-xAlxAs and a third curret constricting layer 11 of a P type Ga1-xAlxAs are continuously grown on the surface of an N type GaAs substrate 1 in an order of the current constricting layers 9, 10 and 11 by a liquid- phase epitaxial method. Two ridges are formed on the surface of a wafer, which finished this first-time growth, toward the <011> direction holding a groove between them by performing an etching. An N type Ga1-xAlxAs clad layer 2 of the first layer, a non-dopped Ga1-yAlyAs active layer 3 of the second layer, a P type Ga1-xAlxAs clad layer 4 of the third layer and a P type GaAs electrode forming layer 5 of the fourth layer are continuously grown on the surface of the substrate 1 formed with the two ridges by an epitaxial method again.

Description

【発明の詳細な説明】 〔発明の目的〕本発明は本発明者らによってすでに開発
されているTBS(T町rLRidgeBtbhjtr
ate )構造を有する半導体レーザ装置の改良に関す
るものである。近年、光デイスクファイルの曹き込み用
、あるいはレーザプリンターなど、広い分野で基本横モ
ード発振をする高出力の半導体レーザ装置の需要が高ま
っており、TR8型半導体レーザ装置はこの要請に答え
るものである。
[Detailed Description of the Invention] [Object of the Invention] The present invention is based on the TBS (T-cho rLRidgeBtbhjtr) which has already been developed by the present inventors.
The present invention relates to an improvement of a semiconductor laser device having a structure. In recent years, there has been an increasing demand for high-output semiconductor laser devices that emit fundamental transverse mode oscillation in a wide range of fields, such as those used to fill optical disk files and laser printers, and the TR8 type semiconductor laser device meets this demand. be.

第1図はr+4基板を用いた従来のTR8型半導体レー
ザ装置で、基板1の上に平行に直立する2個のりクジを
形成し、その上に活性層3を含む各層2.4.5を連続
成長させ、電流注入のための亜鉛を結晶表面よシ拡散8
させた後、上下両面に電極6.7を形成している。この
構造は結晶成長の異方性によシ、リッジ上の成長はりク
ジの側面に比べて抑制されるため、リッジ上にきわめて
薄い活性層を再現性よく形成することができる。この活
性層の薄膜化によって活性層内への光の閉じ込め係数が
小さくなるため、光はクラッド層に大きくしみ出し、第
1クラッド層2内にしみ出した光は活部以外のりクジの
上では基板に吸収されるのでリッジ間の溝部に閉じ込め
ら1、こ\に安定した基本横モードの発振かえられる。
FIG. 1 shows a conventional TR8 type semiconductor laser device using an r+4 substrate, in which two glue holes are formed in parallel and upright on a substrate 1, and each layer 2, 4, 5 including an active layer 3 is formed on them. Continuous growth and diffusion of zinc over the crystal surface for current injection 8
After this, electrodes 6.7 are formed on both the upper and lower surfaces. Due to the anisotropy of crystal growth, this structure allows the growth on the ridge to be suppressed compared to the side surfaces of the ridge, so that an extremely thin active layer can be formed on the ridge with good reproducibility. As the active layer becomes thinner, the confinement coefficient of light in the active layer becomes smaller, so the light seeps into the cladding layer to a large extent, and the light that seeps into the first cladding layer 2 does not reach the top of the hole other than the active part. Since it is absorbed by the substrate, it is confined in the groove between the ridges, and stable fundamental transverse mode oscillation can be achieved.

ところで上記第1図の従来の構造には以下述べるような
問題がある。(1)亜鉛拡散領域8から注入された電流
は、発掘が行なわ九る溝部だけではなく、溝部以外のり
クジ部にも流れるのでこれらの電流は損失に々るばかシ
でなく、溝部への有効な電流の注入を阻害する。(2)
ストライブ状に亜鉛を任意の深さまで再現性よく熱拡散
させることはその制御性の点から限界があるため、拡散
フロントが第3のクラッド層4に達しないことがあり、
あるいは活性層3まで到達する場合もあるのでこれらが
発振率を低下させる原因にガる。本発明はこれらの問題
点の解決された新規な構造を有するTR8型半導体レー
ザ装置を提供することを目的とするものである。
However, the conventional structure shown in FIG. 1 has the following problems. (1) The current injected from the zinc diffusion region 8 flows not only to the trench where excavation is performed but also to the drilled part other than the trench, so these currents do not cause losses but are effective to the trench. inhibits the injection of current. (2)
Since there is a limit to the controllability of thermally diffusing zinc to an arbitrary depth with good reproducibility in the form of stripes, the diffusion front may not reach the third cladding layer 4.
Alternatively, the light may reach the active layer 3, which may cause a decrease in the oscillation rate. An object of the present invention is to provide a TR8 type semiconductor laser device having a novel structure in which these problems are solved.

〔発明の構成〕本発明の半導体レーザ装置は平行に直立
する2個のりクジを有する半導体基板の前記リッジ間の
溝の底面は前記2個のりクジの両外側の段差面よシも下
方にあって、前記2個のりクジおよびその両側の段差面
の下側には前記半導体基板の主平面と平行な少くとも1
個のpn接合面が前記溝によって中断される状態で形成
さn、ておシ、前記2個のりクジの上には活性層を含む
ダブルへテロ構造が形成されていることを特徴とする。
[Structure of the Invention] In the semiconductor laser device of the present invention, the bottom surface of the groove between the ridges of the semiconductor substrate having two glue holes standing upright in parallel is also below the stepped surfaces on both outer sides of the two glue holes. At least one layer parallel to the main plane of the semiconductor substrate is provided below the two glue holes and the stepped surfaces on both sides thereof.
A double heterostructure including an active layer is formed on the two pn junctions, the two pn junctions being interrupted by the grooves, and the two grooves.

本発明の構成を第2図および第6図について説明する。The configuration of the present invention will be explained with reference to FIGS. 2 and 6.

rL型GαAJ’基板1の表面に液相エピタキシャル法
によシP型G(Z 1−x、p、1xAsの第1電流狭
窄層9を厚さ0.31iyn、n型G(Zl−xAlx
Asの第2電流狭叩層10を厚さ0,3μ”、P型Gα
1−xAtxAsの第6電流狭窄層11を厚さ1.4μ
mの順に連続成長させる(第3図α)。
A first current confinement layer 9 of P-type G (Z1-x, p, 1xAs) is formed on the surface of the rL-type GαAJ' substrate 1 by a liquid phase epitaxial method to a thickness of 0.31 iyn and an n-type G (Zl-xAlx
The second current narrowing layer 10 of As has a thickness of 0.3 μ'' and is of P type Gα.
The sixth current confinement layer 11 of 1-xAtxAs has a thickness of 1.4μ.
Continuous growth is performed in the order of m (Fig. 3 α).

この第1回の成長が終了したウェハーの表面に、<01
1>方向に巾20μmの2個のりクジを巾4μ〃ムの溝
をはさんでエツチングによって形成する。リッジ間の溝
の深さは約2.2μmで、その底はル型基板1まで達す
る。一方、リッジの外側の高さは約1.1μmで、その
表面には第3電流狭イ層11が残っている(第3図b)
。かくしてリッジを形成した基板10表面に再びエピタ
キシャル法によって第1層のル型Gα1−xAl xA
 sクラッド層2をリッジの上での厚さが約0.2μm
On the surface of the wafer after this first growth, <01
1. Two glue holes each having a width of 20 μm are formed by etching in the > direction with a groove having a width of 4 μm in between. The depth of the groove between the ridges is about 2.2 μm, and the bottom reaches the square substrate 1. On the other hand, the height of the outside of the ridge is approximately 1.1 μm, and the third current narrowing layer 11 remains on the surface (Fig. 3b).
. On the surface of the substrate 10 on which the ridge has been formed in this way, the first layer of L-type Gα1-xAl xA is again epitaxially applied.
The thickness of the s-cladding layer 2 on the ridge is approximately 0.2 μm.
.

第2層のノンドープGα1−yll yAz活性層3を
同GaA、?電極形成層5を同様に約05μm、それぞ
j、の厚さになるよう連続成長させる(第5図C)なお
、上記実施例においては−M=0.43、y=008で
ある。この第4層の電極形成層5の上にp側電極用金属
を蒸着し、合金処理を行なってp側オーミック電極6を
形成し、基板側にはn側電極用金属を蒸着し、合金処理
を行なって7) 4All 、%−ミック電極7を形成
すると第2図に示す本発明の半導体ウェハーがえらjる
The second layer non-doped Gα1-yllyAz active layer 3 is made of GaA,? Similarly, the electrode forming layer 5 is continuously grown to a thickness of about 05 .mu.m, respectively j (FIG. 5C). In the above embodiment, -M=0.43 and y=008. A p-side electrode metal is deposited on the fourth electrode forming layer 5 and alloyed to form a p-side ohmic electrode 6. On the substrate side, an n-side electrode metal is deposited and alloyed. 7) After forming the 4All,%-mic electrode 7, the semiconductor wafer of the present invention shown in FIG. 2 is obtained.

〔発明の効果〕本発明の半導体レーザ装置は以上の構成
を有するので第1回目のエビタギシャル成長で形成した
電流狭窄層の作用でPル接合の逆バイアス状態となシ、
電流を阻止する。
[Effects of the Invention] Since the semiconductor laser device of the present invention has the above configuration, the P-ru junction is brought into a reverse bias state by the action of the current confinement layer formed in the first epitaxial growth.
Block current.

そのために成長面から注入さfl、た電流は発振が行な
わjる溝部の上の活性層に集中的に注入さj、る。その
結果、発振しきい値を低下させ、外部微分量子効率を向
上させるととができる。実験の結果、発振しきい値は約
30 mA、外部微分量子効率は約70係であって、従
来のTR8型半え9体レーザに比べて低いしきい値と高
い効率のえられることが確認された。
For this purpose, the current fl, injected from the growth surface is intensively injected into the active layer above the trench where oscillation occurs. As a result, the oscillation threshold can be lowered and the external differential quantum efficiency can be improved. As a result of the experiment, it was confirmed that the oscillation threshold is approximately 30 mA and the external differential quantum efficiency is approximately 70 coefficients, which provides a lower threshold and higher efficiency than the conventional TR8 type half-9 body laser. It was done.

また、本発明の七−!造は電流の通過がリッジ間のソ1
′↓′、4部に限られるため、従来のTFiS半導体レ
ーザにおいて必要な′1u流注入のための亜鉛の拡散が
不要となるので亜鉛拡散の探さのバラツキに起因する発
振率の低下がなくなり、かつ、エピタキシャル成長後の
工程を犬「IJvc甘6素せすることができる。
Moreover, 7-! of the present invention! The structure allows current to pass between the ridges.
'↓' is limited to 4 parts, so there is no need for zinc diffusion for the '1u flow injection, which is required in conventional TFiS semiconductor lasers, so there is no reduction in the oscillation rate due to variations in the search for zinc diffusion. In addition, the process after epitaxial growth can be carried out with ease.

以上本発明につきrL型基板を用いた場合について説明
したが、本発明はp型基板を用いても同様に実施するこ
とができ、かつ、同様の効果を有することはいうまでも
々い。
Although the present invention has been described above using an rL-type substrate, it goes without saying that the present invention can be implemented in the same manner using a p-type substrate, and the same effects will be obtained.

【図面の簡単な説明】 第1図:従来のTR8摩半導体レーザ装置の断面図 第2V二本発明のTR8型半導体レーザ装飽の断面図 第6N:本発明のTPh竿隼導体レーザ装置の製造工程
図で、α、J cはその各工 程を示す。 1・・・IL型σαA、s’基板、2・・・ル型GIZ
1づA詠A3クシッド層、6・・・ノンドープG(Xi
−9AlyhS活性層、4−= p型G(Zl−xAl
、ycAsクラッド層、5・・・rL弗aay raL
極形成形成層・・・P型オーミック電極、7 =−n敲
オーミック電極、8・・−亜鉛拡散領域、9”・P 型
Gl−xAlxy第1電流狭享層10 ・−n g’i
 G(Zl−xAlxp−s第2電流狭9層11 ”・
p i!、1()(Zi−、y:A1.y:As第3電
流狭Y層牙1図 才2図 第3図 ([
[Brief Description of the Drawings] Figure 1: Cross-sectional view of a conventional TR8 type semiconductor laser device No. 2V2 Cross-sectional view of a TR8 type semiconductor laser device of the present invention No. 6N: Manufacture of the TPh Kanhayabusa conductor laser device of the present invention In the process diagram, α and Jc indicate each step. 1... IL type σαA, s' substrate, 2... Le type GIZ
1. A 3 oxid layer, 6... non-doped G (Xi
-9AlyhS active layer, 4-=p-type G (Zl-xAl
, ycAs cladding layer, 5... rL 弗aay raL
Pole forming layer...P-type ohmic electrode, 7=-n ohmic electrode, 8...-zinc diffusion region, 9''-P-type Gl-xAlxy first current confinement layer 10 ・-n g'i
G(Zl-xAlxp-s second current narrow 9 layer 11”・
Pi! , 1 () (Zi-, y: A1. y: As 3rd current narrow Y layer fang 1 Figure 2 Figure 3 ([

Claims (1)

【特許請求の範囲】[Claims] 平行に直立する2個のりクジを有する半導体基板の前記
リッジ間の溝の底面は前記2個のりクジの両外側の段差
面よシも下方にあって、前記2個のりクジおよびその両
側の段差面の下側には前記半導体基板の主平面と平行な
少くとも1個のpルの接合面が前記溝によって中断さ!
1゜る状態で形成さj、ておシ、前記2個のりクジの上
には活性層を含むダブルへテロ構造が形成されているこ
とを特徴とする半導体レーザ装置
The bottom surface of the groove between the ridges of the semiconductor substrate having two glue holes standing upright in parallel is also below the stepped surfaces on both outer sides of the two glue holes, and the bottom surface of the groove between the ridges of the semiconductor substrate has two glue holes standing upright in parallel. On the lower side of the surface, at least one p-type bonding surface parallel to the main plane of the semiconductor substrate is interrupted by the groove!
1. A semiconductor laser device characterized in that a double heterostructure including an active layer is formed on the two glue holes.
JP12139983A 1983-07-04 1983-07-04 Semiconductor laser device Pending JPS6014485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12139983A JPS6014485A (en) 1983-07-04 1983-07-04 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12139983A JPS6014485A (en) 1983-07-04 1983-07-04 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6014485A true JPS6014485A (en) 1985-01-25

Family

ID=14810220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12139983A Pending JPS6014485A (en) 1983-07-04 1983-07-04 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6014485A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser

Similar Documents

Publication Publication Date Title
JPH0118590B2 (en)
JPS61190993A (en) Manufacture of semiconductor laser element
JPS61183987A (en) Semiconductor laser
JPH0474877B2 (en)
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPS6014485A (en) Semiconductor laser device
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61102086A (en) Semiconductor laser
JP2940158B2 (en) Semiconductor laser device
JP2873462B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS6014486A (en) Semiconductor laser device
JPH0574237B2 (en)
JPS62296490A (en) Semiconductor laser device
JPS637691A (en) Semiconductor laser device
JPS6297384A (en) Semiconductor laser device
JP2605478B2 (en) Method of manufacturing semiconductor laser device
JPS60158684A (en) Semiconductor laser device and manufacture thereof
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPH01309393A (en) Semiconductor laser device and its manufacture
JPS62179790A (en) Semiconductor laser
JPS60140777A (en) Buried type semiconductor laser
JPS62259490A (en) Buried hetero structure semiconductor laser
JPS59144192A (en) Semiconductor laser device
JPS59222984A (en) Semiconductor laser device
JPS6266694A (en) Semiconductor laser element and manufacture thereof