JPS60158684A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS60158684A
JPS60158684A JP1361284A JP1361284A JPS60158684A JP S60158684 A JPS60158684 A JP S60158684A JP 1361284 A JP1361284 A JP 1361284A JP 1361284 A JP1361284 A JP 1361284A JP S60158684 A JPS60158684 A JP S60158684A
Authority
JP
Japan
Prior art keywords
substrate
layer
type
ridges
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1361284A
Other languages
Japanese (ja)
Inventor
Takeshi Hamada
健 浜田
Masaru Wada
優 和田
Yuichi Shimizu
裕一 清水
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1361284A priority Critical patent/JPS60158684A/en
Publication of JPS60158684A publication Critical patent/JPS60158684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Abstract

PURPOSE:To improve the efficiency of oscillation by forming a ridge having a conduction type reverse to a substrate to the substrate with a projection, to which a striped groove is formed, and shaping each layer containing an active layer on the ridge. CONSTITUTION:Two parallel erected ridges are formed to the surface of a wafer, in which a blocking layer 10 is grown on a P type GaAs substrate 9 to which a projection is shaped, while holding a groove. The groove is positioned just above the projection, and the bottom of the groove reaches to the P type substrate 9 while the blocking layers 10 are left on the outside of the ridges. A P type clad layer 11, a non-doped active layer 12, an N type clad layer 13 and an N type electrode forming layer 14 are grown continuously on the surface of the substrate 1. An N side ohmic electrode 15 is formed on the electrode forming layer 14 and a P type ohmic electrode 16 on the substrate side. Accordingly, currents can be injected concentrically to the active layer, and a laser device having a low oscillation threshold can be manufactured simply.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ装置およびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device and a method for manufacturing the same.

従来例の構成とその問題点 近年、光デイスクファイルの書き込み用、あるいはレー
ザプリンタなど、広い分野で基本横モード発振をする高
出力の半導体レーザ装置の需要が高まっており、本発明
者らがすでに開発したTR8(Twin −Ridge
−8ubstrate )型半導体レーザ装置はこの要
請に答えるものである。
Conventional configuration and its problems In recent years, there has been an increasing demand for high-power semiconductor laser devices that emit fundamental transverse mode oscillation in a wide range of fields, such as for writing optical disk files and laser printers. The developed TR8 (Twin-Ridge
-8ubstrate) type semiconductor laser devices meet this demand.

第1図はn型基板を用いた従来のTR8型半導体レーザ
装置で、基板1の上に平行に直立する2個のリッジを形
成し、その上に活性層3を含む各層2,3,4.6を連
続成長させ、電流注入のために亜鉛を結晶表面より拡散
させた後、上下両面に電極6,7を形成している。この
構造では結晶成長の異方性によ弘リッジ上の成長はりッ
ジの側面に比べて抑制されるためリッジ上に極めて薄い
活性層を再現性よく形成することができる。この活性層
の薄膜化によって活性層内への光の閉じ込め係数が小さ
くなるため、光はクラッド層に大きくしみ出し、第1ク
ラ・11層2内にしみ出した光は溝部以外のリッジの上
では基板に吸収されるのでリッジ間の溝部に閉じ込めら
れ、ここで安定した基本横モードの発振が得られる。
FIG. 1 shows a conventional TR8 type semiconductor laser device using an n-type substrate, in which two ridges standing parallel to each other are formed on a substrate 1, and each layer 2, 3, 4 including an active layer 3 is formed on the substrate 1. After continuous growth of .6 and diffusion of zinc from the crystal surface for current injection, electrodes 6 and 7 are formed on both upper and lower surfaces. In this structure, the growth on the wide ridge is suppressed due to the anisotropy of crystal growth compared to the side surfaces of the ridge, so that an extremely thin active layer can be formed on the ridge with good reproducibility. This thinning of the active layer reduces the confinement coefficient of light within the active layer, so light seeps into the cladding layer to a large extent, and the light that seeps into the 1st and 11th layer 2 is trapped on the ridges other than the grooves. Since it is absorbed by the substrate, it is confined in the groove between the ridges, where stable fundamental transverse mode oscillation can be obtained.

ところで上記第1図の従来の構造には以下述べるような
問題がある。(1ン亜鉛拡散領域8から注入された電流
は、発振が行なわれる溝部だけではなく、溝部以外のリ
ッジ部に(流れるのでとtらの電流は損失なるばかりで
なく、溝部への有効な電流の注入を阻害する。(2)ス
トライプ状に亜鉛を任意の深さまで再現性よく熱拡散さ
せることはその制御性の点から問題があるため、拡散フ
ロントが第2クラッド層4に達しない。あるいは活性層
3にまで到達してしまう場合もあり、これらが発振率を
低下させる大きな原因となっている。
However, the conventional structure shown in FIG. 1 has the following problems. (The current injected from the zinc diffusion region 8 flows not only into the groove where oscillation occurs, but also into the ridge other than the groove, so the current in the other parts is not only a loss, but also an effective current flowing into the groove.) (2) The diffusion front does not reach the second cladding layer 4 because it is difficult to thermally diffuse zinc in a stripe pattern to any depth with good reproducibility in terms of controllability. In some cases, it may even reach the active layer 3, which is a major cause of lowering the oscillation rate.

発明の目的 本発明は上記の問題点の解決てれた新規な構造を有する
半導体レーザ装置およびその製造方法を提供することを
目的とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a semiconductor laser device having a novel structure that solves the above-mentioned problems, and a method for manufacturing the same.

発明の構成 この目的を達成するために、本発明の半導体レーザ装置
は、溝を有するストライプ状の突起をそなえた基板上に
、前記溝部を除いて、前記基板と反対導電型の層が形成
されるとともに、前記反対導電型の層は前記突起の両側
に段差を有して2つのりノジを形成し、前記リッジを有
する基板上に活性層を含む各層が形成1れて構成でれて
いる。
Structure of the Invention In order to achieve this object, a semiconductor laser device of the present invention is provided, in which a layer having a conductivity type opposite to that of the substrate is formed on a substrate provided with striped protrusions having grooves, except for the grooves. In addition, the layers of opposite conductivity types have steps on both sides of the protrusion to form two ridges, and each layer including an active layer is formed on the substrate having the ridge.

また、本発明の半導体レーザ装置の製造方法は、基板上
にストライプ状の突起を形成する工程と、前記突起を形
成した基板の上に導伝型を交互に変化てせるとともに前
記突起を埋めつくすように少なくとも1層の成長を行な
う工程と、前記突起と平行方向のストライプ状の2つの
りッジを、とのリッジ間の溝の底が前記突起の上端に達
し、リッジ外側の段差下部面は基板に達することのない
ように形成する工程と、前記リッジを有する基板上に活
性層を含む各層を形成する工程から構成式れている。
Further, the method for manufacturing a semiconductor laser device of the present invention includes a step of forming striped protrusions on a substrate, alternating conductivity types on the substrate on which the protrusions are formed, and filling the protrusions completely. the bottom of the groove between the ridges reaches the upper end of the protrusion, and the bottom surface of the step outside the ridge is The method consists of a step of forming the ridge so that it does not reach the substrate, and a step of forming each layer including the active layer on the substrate having the ridge.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。第2図a −dは本発明の一実施例における半
導体レーザの製造方法の各工程の断面図を示すものであ
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 2a to 2d show cross-sectional views of each step of a method for manufacturing a semiconductor laser according to an embodiment of the present invention.

エツチングによシ高す2.2μm9幅10μmの突起を
形成したp型GaAs基板9(第2図a)の表面にブロ
ッキング層10を突起上での厚はがO,Sμmで表面が
平坦になるように成長させる(第2図b)。
A blocking layer 10 is applied to the surface of a p-type GaAs substrate 9 (Fig. 2a) on which protrusions of 2.2 μm in height and 10 μm in width are formed by etching.The thickness above the protrusions is O.S μm and the surface becomes flat. (Figure 2b).

この第1回の成長が終了したウェハーの表面に、高さ1
.6μm1幅20μmの2個の平行に直立するりッジを
幅4μmの溝をはてんでエツチングによって形成する。
On the surface of the wafer after this first growth, a height of 1
.. Two parallel upright ridges of 6 .mu.m width and 20 .mu.m width are formed by etching with grooves of 4 .mu.m width.

リッジ間の溝は突起の真上に位置し、その底はp型基板
9′=1で到達する。一方リッジの外側の平坦部はエツ
チング後もブロッキング層10が残っている(第2図C
)。
The groove between the ridges is located directly above the protrusion and its bottom is reached at the p-type substrate 9'=1. On the other hand, the blocking layer 10 remains on the flat part outside the ridge even after etching (Fig. 2C).
).

かくしてリッジを形成した基板1の表面に再び液相エピ
タキシャル法によって第1層のp型Ga1.AjA%A
sクラッド層11をリッジの上での厚さが約0.2μm
、第2層のノンドーグGa1.、cklxAs活性層1
2を同様に約0.06μm、第3層のn型Ga4.Al
yAs クラッド層13を同様に約1.5 μm第4層
nmGaAs電極形成層14を同様に約20μm1それ
ぞれの厚てになるように連続成長きせる(第2図d)。
A first layer of p-type Ga1. AjA%A
The thickness of the s-cladding layer 11 on the ridge is approximately 0.2 μm.
, the second layer of non-dawg Ga1. , cklxAs active layer 1
2 to about 0.06 μm, and the third layer of n-type Ga4. Al
Similarly, the yAs cladding layer 13 is continuously grown to a thickness of about 1.5 μm, and the fourth nm GaAs electrode forming layer 14 is similarly grown to a thickness of about 20 μm (FIG. 2d).

なお上記実施例においては、:=o、os、y−〇A3
である。この第4層の電極形成層6の上にn側電極用金
属を蒸着し、合金処理を行なってn側オーミック電極1
5を形成し、基板側にはp型電極用金属を蒸着し、合金
処理を行なってp型オーミック電極16を形成する。
In the above example, :=o, os, y−〇A3
It is. A metal for the n-side electrode is deposited on the fourth electrode forming layer 6, and an alloying process is performed to form the n-side ohmic electrode 1.
A p-type ohmic electrode 16 is formed by depositing a p-type electrode metal on the substrate side and performing an alloying process.

本実施例の半導体レーザ装置は、以上の構成を有するの
で以下述べるような5来がある。
Since the semiconductor laser device of this embodiment has the above configuration, there are five features as described below.

(1)第1回のエピタキシャル成長で形成したブロッキ
ング層の作用でpn接゛合の逆バイアス状態となシ、電
流を阻止する。そのために、基板側より注入された電流
は発振が行なわれる溝部の上の活性層に集中的に注入袋
れる。その結果、発振しきい値を低下させ、外部微分量
子効率を向上させることができる。実験の結果、発振し
きい値は約30mA、外部微分量子効率は約70%であ
って、従来のTR8型半導体レーザに比べて低いしきい
値と高い効率のえられることが確認された。
(1) The blocking layer formed in the first epitaxial growth creates a reverse bias state of the pn junction and blocks current flow. Therefore, the current injected from the substrate side is intensively injected into the active layer above the groove where oscillation occurs. As a result, the oscillation threshold can be lowered and the external differential quantum efficiency can be improved. As a result of the experiment, it was confirmed that the oscillation threshold was about 30 mA and the external differential quantum efficiency was about 70%, which resulted in a lower threshold and higher efficiency than the conventional TR8 type semiconductor laser.

(2)1回目のエピタキシャル成長で形成するブロッキ
ング層は基板にあらかじめ形成した突起を埋めつくして
かつ表面が平田になるように成長するために、リッジ間
の溝の深さとりノジ外側も の段差の高さを同じにすることができるので。
(2) The blocking layer formed in the first epitaxial growth completely fills the protrusions previously formed on the substrate and grows so that the surface is flat, so the depth of the groove between the ridges and the height of the step on the outside of the groove are Because it can be made the same.

これを1回のエツチングで行なうことができる。This can be done in one etching.

(3)本実施例の半導体レーザは電流の通過がリッジ間
の溝部に限られるだめに、従来の゛1’R3半導体レー
ザにおいて必要な電流注入のだめの亜鉛の拡散が不要と
なるので、亜鉛拡亜の深さのバラツキに起因する発振率
の低下iy<m一つ、エピタキシャル成長後の工程を大
幅に簡素化することができる。
(3) Since the semiconductor laser of this embodiment allows current to pass only through the groove between the ridges, there is no need for zinc diffusion for current injection, which is required in the conventional 1'R3 semiconductor laser. Since the oscillation rate is reduced by iy<m due to the variation in the depth of the epitaxial layer, the steps after epitaxial growth can be greatly simplified.

なお、実施例はp型基板を用いた場合について説明した
が、n型基板を用いても同様に実施することができ、か
つ同様の効果を有することは言うまでもない。
Note that although the embodiment has been described using a p-type substrate, it goes without saying that the same implementation can be performed using an n-type substrate, and the same effect will be obtained.

発明の効果 以上のように、本発明によれば、電流を活性層に集中的
に注入することによって、発振しきい値の低い半導体レ
ーザ装置を、簡単な工程で作ることができ、その実用的
効果は犬なるものである。
Effects of the Invention As described above, according to the present invention, by intensively injecting current into the active layer, a semiconductor laser device with a low oscillation threshold can be manufactured through a simple process, and its practical use can be improved. The effect is like a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザ装置の断面図、第2図は本
発明の半導体レーザ装置の製造方法の各工程での断面図
である。 1−−−−= n型GaAs基板、2・・・・・n型G
a1.AlyAsクラッド層、3・・・・・・ノンドー
プGa1.A#xAs活性層、4・・・・・・p型Ga
 11A 1.y A Sりオツド層、6・・・・・・
n型GaAs電極形成層、6・・・・・・p型オーミッ
ク電極、7・・・・・・n型オーミック電極、8・・・
・・・亜鉛拡散領域、9・・・・・p型GaAs基板、
1o・・・・・・n型GaAs7’oソキング層、11
−n型Ga4. AiyAs。 クラッド層、12・・・・・ノンドープGa、−x A
ex As活性層、13・・・・・・n型Ga1−アA
 ly A sクラッド層、14・・・・・・n型Ga
A s電極形成層、15・・・・・・n側オーミック電
極、16・・・・・・p側オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
FIG. 1 is a cross-sectional view of a conventional semiconductor laser device, and FIG. 2 is a cross-sectional view of each step of the method for manufacturing a semiconductor laser device of the present invention. 1----= n-type GaAs substrate, 2...n-type G
a1. AlyAs cladding layer, 3...non-doped Ga1. A#xAs active layer, 4...p-type Ga
11A 1. y A S advanced layer, 6...
n-type GaAs electrode forming layer, 6... p-type ohmic electrode, 7... n-type ohmic electrode, 8...
...Zinc diffusion region, 9...p-type GaAs substrate,
1o...N-type GaAs7'o soaking layer, 11
-n-type Ga4. AiyAs. Cladding layer, 12...Non-doped Ga, -x A
ex As active layer, 13...n-type Ga1-A
ly As cladding layer, 14...n-type Ga
A s electrode forming layer, 15...n-side ohmic electrode, 16...p-side ohmic electrode. Name of agent: Patent attorney Toshio Nakao (1st person)
figure

Claims (2)

【特許請求の範囲】[Claims] (1)表面にストライプ状の溝が形成された突起を有す
る基板の前記溝部以外の表面に、前記基板と反対導電型
の層が形成され、前記反対導電型の層が前記突起の両側
に段差が形成されることによって、2つのたがいに平行
なリッジが形成され、前記リッジを有する基板上に活性
層を含む各層が形成されていることを特徴とする半導体
レーザ装置。
(1) A layer of a conductivity type opposite to that of the substrate is formed on a surface other than the groove portion of a substrate having a protrusion with striped grooves formed on the surface, and the layer of the opposite conductivity type has a step on both sides of the protrusion. 1. A semiconductor laser device characterized in that two parallel ridges are formed by forming two parallel ridges, and each layer including an active layer is formed on a substrate having the ridges.
(2)基板上にストライプ状の突起を形成する工程と、
前記突起を形成した基板の上に導伝型を交互に変化させ
るとともに前記突起をうめつくすように少なくとも1層
の成長を行なう工程と、前記突起が埋めつくされた基板
の表面に前記突起と平行方向のストライプ状の2つのた
がいに平行なリッジを、このリッジ間の溝の底が前記突
起の上端に達し、リッジ外側の段差下部面は基板に達す
ることのないように形成する工程と、前記リッジを有す
る基板上に活性層を含む各層を形成する工程とを含む半
導体レーザ装置の製造方法。
(2) forming striped protrusions on the substrate;
a step of growing at least one layer on the substrate in which the protrusions are formed, alternating the conductivity type and filling the protrusions; forming two ridges parallel to each other in the form of stripes in a direction such that the bottom of the groove between the ridges reaches the upper end of the protrusion, and the lower surface of the step outside the ridge does not reach the substrate; 1. A method for manufacturing a semiconductor laser device, comprising: forming each layer including an active layer on a substrate having a ridge.
JP1361284A 1984-01-27 1984-01-27 Semiconductor laser device and manufacture thereof Pending JPS60158684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1361284A JPS60158684A (en) 1984-01-27 1984-01-27 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1361284A JPS60158684A (en) 1984-01-27 1984-01-27 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60158684A true JPS60158684A (en) 1985-08-20

Family

ID=11838047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1361284A Pending JPS60158684A (en) 1984-01-27 1984-01-27 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60158684A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS58164284A (en) * 1982-03-25 1983-09-29 Toshiba Corp Manufacture of buried type semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS58164284A (en) * 1982-03-25 1983-09-29 Toshiba Corp Manufacture of buried type semiconductor laser

Similar Documents

Publication Publication Date Title
JPS61190993A (en) Manufacture of semiconductor laser element
JPH0243351B2 (en)
JPH0797689B2 (en) Semiconductor laser device
JPS60158684A (en) Semiconductor laser device and manufacture thereof
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS62296490A (en) Semiconductor laser device
JPS62214687A (en) Structure of semiconductor laser
JPH0574237B2 (en)
JPS6297384A (en) Semiconductor laser device
JPS6054796B2 (en) semiconductor laser
JPH0239483A (en) Semiconductor laser diode and manufacture thereof
JPS6014486A (en) Semiconductor laser device
JPS59222984A (en) Semiconductor laser device
JPS6014485A (en) Semiconductor laser device
JPS6318874B2 (en)
JPS59144192A (en) Semiconductor laser device
JPS61104687A (en) Manufacture of buried semiconductor laser
JPH065969A (en) Semiconductor laser
JPS60257583A (en) Semiconductor laser device
JPS58131787A (en) Semiconductor laser
JPS62144380A (en) Manufacture of semiconductor laser device
JPS61137386A (en) Double hetero-structure semiconductor laser
JPH01309393A (en) Semiconductor laser device and its manufacture