JPS60136385A - Solid state laser oscillator - Google Patents

Solid state laser oscillator

Info

Publication number
JPS60136385A
JPS60136385A JP24408783A JP24408783A JPS60136385A JP S60136385 A JPS60136385 A JP S60136385A JP 24408783 A JP24408783 A JP 24408783A JP 24408783 A JP24408783 A JP 24408783A JP S60136385 A JPS60136385 A JP S60136385A
Authority
JP
Japan
Prior art keywords
laser rod
laser
rod
cooling water
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24408783A
Other languages
Japanese (ja)
Other versions
JPH0428155B2 (en
Inventor
Ken Ishikawa
憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24408783A priority Critical patent/JPS60136385A/en
Publication of JPS60136385A publication Critical patent/JPS60136385A/en
Publication of JPH0428155B2 publication Critical patent/JPH0428155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • H01S3/0931Imaging pump cavity, e.g. elliptical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water

Abstract

PURPOSE:To make a laser rod being uniformly cooled in the circum-ference direction and to make the pattern of the laser light uniform and to highten the saturation point of the output by a method wherein the laser rod is accommodated in a wafer flowing pipe and a spiral shape guide body which makes the cooling water circulate through a flowing passage, is formed on the outside circumferencoal part of the rod. CONSTITUTION:A light collecting reflecting mirror 3 of which inner periphery surface is mirror-processed, is provided in a body 1 of an oscillator of which inner circumference surface is formed in the eclipse shape, and the laser rod 4 with a circular section is provided at the one side focus point and an excitation lamp 5 is provided at the other focus point respectively. The laser rod 4 is inserted in the water flowing pipe 10 made of transparent material, and the passage 11 of the cooling water is formed between the inner periphery surface of the pipe 10 and the outer periphery surface of the laser rod 4, and the cooling water from a supply pipe 18 flows spirally on the outer periphery surface along a spiral shaped guide body 12 in the passage 11. Hereby, the circumference direction of the rod 4 is cooled in the uniform temperature, even if the laser rod 4 is light excited by an exciting lamp from only one direction of the circumference direction, and high output laser light L can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はレーザロッドが冷却水によって冷却される固
体レーザ発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state laser oscillation device in which a laser rod is cooled by cooling water.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、固体レーザ発振装置σはたとえば噛円筒などの
集光反射鏡の内部にレーザロッドと励起ランプとを対向
させて収容するとともに、上記レーザロッドの端面に各
々共1辰器を形成する一対のミラーを平行に配置してな
る。そして、レーザロッドを励起ランプで光励起するこ
とにより、上記共振器の出力側のミラーからレーザ光が
出力されるようになっている。また、レーザロッドは励
起ランプから受ける熱で大きく歪んだり、早期に損傷す
るから、上記レーザロッドを流水パイプに挿通シ、この
流水パイプに冷却水k itがすことによって水冷する
ようにしている。
In general, a solid-state laser oscillator σ houses a laser rod and an excitation lamp facing each other inside a condensing reflector such as a bit cylinder, and a pair of laser rods each forming a cylinder on the end face of the laser rod. The mirrors are arranged in parallel. By optically exciting the laser rod with an excitation lamp, laser light is output from the mirror on the output side of the resonator. In addition, since the laser rod is greatly distorted or damaged early by the heat received from the excitation lamp, the laser rod is inserted into a running water pipe and cooled by water by supplying a cooling water kit to the running water pipe.

ところで、従来冷却水は流水パイプ内をレーザロッドの
軸方向に沿って流がされており、またレーザロッドは1
本あるいは2本の励起ランプにより周方向の1方向ある
いは180度ずれた2方向から光励起されていた。その
ため、レーザロッドは励起ランプによって周方向が均一
に加熱されないばかりか、周方向の励起ランプによって
励起されて温度上昇した個所を軸方向に沿って流れる冷
却水は他の個所を流れる冷却水に比べて温明上昇が著し
いから、レーザロッドの周方向における温度差が一段と
拡大される。
By the way, conventionally, cooling water is made to flow in a water pipe along the axial direction of the laser rod, and the laser rod is
Light excitation was carried out from one direction in the circumferential direction or from two directions shifted by 180 degrees using one or two excitation lamps. Therefore, not only is the laser rod not heated uniformly in the circumferential direction by the excitation lamp, but the cooling water that flows along the axial direction in the area where the temperature has increased due to excitation by the excitation lamp in the circumferential direction is compared to the cooling water that flows in other areas. Since the temperature rise is remarkable, the temperature difference in the circumferential direction of the laser rod is further expanded.

このように、レーザロッドの周方向における温度に差が
生じると、レーザロッドが温度上昇することによって生
じる凸レンズ作用が不均一となる。つまり、レーザロッ
ドの励起ラングを含む第1の断面方向と、この第1の断
面方向と直交する方向の第2の断面方向とでは、第゛1
の断101方回が第2の断面方向よりも焦点距離が大き
くなる。すると、たとえばレーザロッドの断面が円形で
あっても、出力されるレーザ光のパターンが矩形状とな
ってしまうから、このレーザ光によって切断加工を行な
う場合など走査方向によって加工幅が異なり、精密な切
断加工が行なえなくなるという問題が生じる。また、レ
ーザロッドの周方向における凸レンズ作用が均一でない
と、励起ランプへの人力を増大させても、レーザ光の出
力の飽和点が低下し、高出力のレーザ光が得られないと
いう問題もある。
As described above, when a difference occurs in temperature in the circumferential direction of the laser rod, the convex lens effect caused by the temperature increase of the laser rod becomes non-uniform. In other words, the first cross-sectional direction including the excitation rung of the laser rod and the second cross-sectional direction perpendicular to the first cross-sectional direction are
The focal length of the 101-fold cross section is larger than that of the second cross-sectional direction. For example, even if the cross section of the laser rod is circular, the output laser beam pattern will be rectangular, so when cutting with this laser beam, the processing width will vary depending on the scanning direction, making it difficult to perform precision work. A problem arises in that cutting cannot be performed. In addition, if the convex lens effect in the circumferential direction of the laser rod is not uniform, there is a problem that even if the human power to the excitation lamp is increased, the saturation point of the laser light output will decrease, making it impossible to obtain high-power laser light. .

〔発明の目的〕 この’ih明はレーザロッドが周方向においてほぼ均一
な温度になるよう冷却されるようにして、出力されるレ
ーザ光のパターンが均一で、しかも励起ラングへの入力
に対してレーザ光の出力の飽和点を十分高くすることが
できるようにした固体レーザ発振装置を折供することに
ある。
[Purpose of the invention] This method allows the laser rod to be cooled to a substantially uniform temperature in the circumferential direction, so that the pattern of the output laser light is uniform and the pattern of the laser light is uniform relative to the input to the excitation rung. An object of the present invention is to provide a solid-state laser oscillation device that can make the saturation point of laser light output sufficiently high.

〔発明の概要〕[Summary of the invention]

集光反射鏡の内部に励起ランプに対向して設けられるレ
ーザロッドを流水ノくイブに収容し、この流水パイプに
よってレーザロッドの外周に流通路を区画形成し、この
流通路に流通路を流れる冷却水をレーザロッドの周方向
に旋回させる螺旋状のガイド体を設けることにより、レ
ーザロッドの周方向全体が均一な温度の冷却水で冷却さ
れるようにしたものである。
The laser rod, which is provided inside the condensing reflector and facing the excitation lamp, is housed in a running water pipe, and a flow path is defined around the outer periphery of the laser rod by this water pipe, and a flow path is formed in this flow path. By providing a spiral guide body that rotates cooling water in the circumferential direction of the laser rod, the entire circumferential direction of the laser rod is cooled with cooling water at a uniform temperature.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図中1は内周面が楕円状に形成された発振装置の本体で
ある。この本体1の軸方向両端開口は端板2によって閉
塞されている。また、本体Iの内周面には軸方向両端部
を除く個所に本体1の内周面と同様なi前日筒状でその
内周面が鏡面加工された集光反射鏡3が設けられている
。この東光反射境3の一方の焦点位置にはYA40ツド
やその他のレーザロッドなどの断面円形のレーザロッド
4、能力の焦点位置には励起ランプ5がそれぞれ軸線を
本体lの軸線と平行にして設けられている。
In the figure, reference numeral 1 denotes the main body of the oscillation device whose inner peripheral surface is formed into an elliptical shape. Openings at both axial ends of the main body 1 are closed by end plates 2. Further, on the inner circumferential surface of the main body I, except for both ends in the axial direction, there is provided a condensing reflector 3 which has a cylindrical shape similar to the inner circumferential surface of the main body 1 and whose inner circumferential surface is mirror-finished. There is. A laser rod 4 with a circular cross section, such as a YA40 laser rod or other laser rod, is installed at one focal point of this Toko reflective boundary 3, and an excitation lamp 5 is installed at the focal point of the power, with their axes parallel to the axis of the main body l. It is being

上記レーザロッド40両端には各々支持ノ(イブ6の一
端が液密に嵌着されている。これら支持バイブロの他端
は上記端板2に穿設された通孔7に液密に嵌挿されてい
る。各端板2から突出した支持バイブロの他端開口には
共振器を形成する全反射ミラー8と出力ミラ−9とがそ
れぞれ上記レーザロッド4の端面に対して平行に対向し
て配設されている。そして、レーザロッド4が励起ラン
プ5によって光励起されると、上記出力ミラ−9からレ
ーザ光りが出力されるようになっている。また、レーザ
ロッド4は光学的に透明な材料で作られた流水パイプ1
0に」申11Mされている。この流水パイプIOはレー
ザロッド4よりも大径で、この内周面とレーザロッド4
の外周面との間に冷却水の流通路Z1を区画形成してい
る。この流通路11つまりレーザロッド4の外周面には
、光学的に透明な材料によって外径寸法が流水パイプI
Oの内径寸法とほぼ同径に形成された螺旋状のカイト体
I2が取着されている。
One end of the support vibrator 6 is fitted in a liquid-tight manner to both ends of the laser rod 40. The other end of these support vibrators is fitted in a through hole 7 formed in the end plate 2 in a liquid-tight manner. At the other end opening of the support vibro projecting from each end plate 2, a total reflection mirror 8 and an output mirror 9 forming a resonator are respectively opposed in parallel to the end surface of the laser rod 4. When the laser rod 4 is optically excited by the excitation lamp 5, laser light is output from the output mirror 9.The laser rod 4 is made of an optically transparent material. Running water pipe made of materials 1
0” and 11M have been posted. This water pipe IO has a larger diameter than the laser rod 4, and the inner peripheral surface and the laser rod 4
A cooling water flow path Z1 is defined between the outer peripheral surface of the cooling water and the outer circumferential surface of the cooling water. The outer circumferential surface of this flow path 11, that is, the laser rod 4, is made of an optically transparent material so that the outer diameter is a water pipe I.
A spiral kite body I2 formed to have approximately the same diameter as the inner diameter of O is attached.

また、上記流水パイプ100両端は、上記本体1の軸方
向両端部に仕切壁I3によって区画形成された断面円形
状の第1の流路14と第20流路15にそれぞれ液密に
接続されている。
Further, both ends of the water pipe 100 are fluid-tightly connected to a first flow path 14 and a twentieth flow path 15 each having a circular cross section and defined at both axial ends of the main body 1 by a partition wall I3. There is.

したがって、本体I内は流水パイプIOと上記一対の仕
切壁13とによってレーザロッド4が収容された径方向
上側の上部室16と、励起ランプ5が収容された下側の
下部室17とに隔別されている。さらに、本体1には上
記第1の流路I4に連通ずる供給管18および下部室1
7の上記第1の流路14と対応する一端に連通ずる排出
管19が接続されている。まだ、上記第20流路15を
形成する仕切壁13には、この第2の流路15と下部室
17とを連通ずる透孔20が穿設されている。上記供給
管18からは冷却水が供給される。したがって、供給管
18から第1の流路14に流人した冷却水は、第1図に
矢印で示すように流水パイプ10、第2の流路15、透
孔20お1−び下部室17を通って上記排出管19から
流出するようになっている。
Therefore, the interior of the main body I is separated by the water pipe IO and the pair of partition walls 13 into an upper chamber 16 on the radially upper side in which the laser rod 4 is housed, and a lower chamber 17 on the lower side in which the excitation lamp 5 is housed. Separated. Furthermore, the main body 1 includes a supply pipe 18 communicating with the first flow path I4 and a lower chamber 1.
A discharge pipe 19 communicating with one end corresponding to the first flow path 14 of No. 7 is connected. The partition wall 13 forming the 20th flow path 15 is still provided with a through hole 20 that communicates the second flow path 15 with the lower chamber 17. Cooling water is supplied from the supply pipe 18 . Therefore, the cooling water flowing from the supply pipe 18 to the first flow path 14 flows through the flow pipe 10, the second flow path 15, the through hole 20 and the lower chamber 17 as shown by arrows in FIG. It passes through the discharge pipe 19 and flows out.

このように構成されだレーザ発振装置において、レーザ
光りを出力させる場合には、供給管18から冷却水を供
給するとともに、励起ランプ5に通′ルしてレーザロッ
ド4を光励起すれば、共振器を形成する出力ミラ−9か
らレーザ光りが出力される。一方、供給管18から第1
の流路14に供給された冷却水がレーザロッド4の外周
に流通路11を形成した流水パイプ10に流入すると、
この流通路11に設けられた螺旋状のガイド体12に沿
ってレーザロッド4の外周面を旋回しながら流れる。そ
のため、レーザロッド4の周方向が全周にわたって同じ
温度の冷却水で冷却されるから、レーザロッド4が周方
向の一方向からだけ励起ランプ5で光励起されていても
、このレーザロッド4の周方向は同じ温度の冷却水によ
ってほぼ均一な温度に冷却される。したがって、レーザ
ロッド4の凸レンズ作用は、励起ランプ5によって光励
起される径方向と、この径方向と直交する方向において
ほぼ同一となるから、出力ミラ−9から出力されるレー
ザ光りのパターン形状はレーザロッド4の端面形状に等
しい円形となる。そして、レーザロッド4の断面形状と
同じ円形のレーザ光りが出力されると、このレーザ光り
によって切断加工を行なうような場合、走査方向が異な
っても切断幅が一定となるから、切断加工を精密に行な
うことができる。また、レーザロッド4の凸レンズ作用
が周方向において均一化されると、励起ランプ5への入
力に対してレーザ光りの出力がほぼ比例的に変化するか
ら、レーザ光りの出力の飽和点が上昇する。つまり、高
出力のレーザ光りを得ることができる。
In the laser oscillation device configured in this way, when outputting laser light, cooling water is supplied from the supply pipe 18, and the laser rod 4 is optically excited by passing it through the excitation lamp 5, thereby creating a resonator. Laser light is output from the output mirror 9 forming the . On the other hand, the first
When the cooling water supplied to the flow path 14 flows into the water pipe 10 that has a flow path 11 formed around the outer periphery of the laser rod 4,
The light flows along the spiral guide body 12 provided in the flow path 11 while rotating around the outer peripheral surface of the laser rod 4 . Therefore, since the entire circumferential direction of the laser rod 4 is cooled with cooling water of the same temperature, even if the laser rod 4 is optically excited by the excitation lamp 5 from only one direction in the circumferential direction, the circumferential direction of the laser rod 4 is The directions are cooled to a substantially uniform temperature by cooling water of the same temperature. Therefore, the convex lens action of the laser rod 4 is almost the same in the radial direction in which it is optically excited by the excitation lamp 5 and in the direction orthogonal to this radial direction, so that the pattern shape of the laser beam output from the output mirror 9 is It has a circular shape that is equal to the end face shape of the rod 4. When a circular laser beam with the same cross-sectional shape as the laser rod 4 is output, when cutting is performed using this laser beam, the cutting width is constant even if the scanning direction is different, so the cutting process can be performed with precision. can be done. Furthermore, when the convex lens action of the laser rod 4 is made uniform in the circumferential direction, the output of the laser beam changes almost proportionally to the input to the excitation lamp 5, so the saturation point of the output of the laser beam increases. . In other words, high-power laser light can be obtained.

さらに、レーザロッド4を収容した流水パイプ1Oと、
レーザロッド4の外周面に設けられたガイド体I2とは
、ともに光学的に透明な材料で作られているから、これ
らが励起ランプ5の光を遮断し、レーザロッド4が効率
よく光励起されなくなるということがない〇 なお、この発明シ裏上記−実施1+11に限定されず、
たとえばレーザ発振装置154としては、レーザロッド
の同方向180度ずれを位置に2本の1励起ランプが設
けられたものであってもよい。まだ、ガイド体はレーザ
ロッドの外周でなく、流水パイプの内周まだシ1仁水の
上流部と下流部において仕切啼などに取着してもよく、
要は流水パイプによって形成された流通路に[一定的に
設けられていればよい。
Furthermore, a running water pipe 1O that accommodates the laser rod 4,
Since the guide body I2 provided on the outer peripheral surface of the laser rod 4 is both made of an optically transparent material, they block the light from the excitation lamp 5, and the laser rod 4 is not efficiently excited by light. However, this invention is not limited to the above implementation 1+11,
For example, the laser oscillation device 154 may be one in which two excitation lamps are provided at positions 180 degrees apart in the same direction of the laser rod. However, the guide body may be attached not to the outer periphery of the laser rod but to the inner periphery of the water pipe, such as a partition between the upstream and downstream parts of the water pipe.
In short, it is sufficient that the pipes are provided in a constant manner in the flow path formed by the water pipe.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明は、集光反射鏡の内部に励起
ラングと対向して設けられるレーザロッドを流水パイプ
に収容し、この流水パイプによってレーザロッドの外周
に流通路を区画形成し、この流通路に冷却水をレーザロ
ッドの周方向に旋回させて流がす螺旋状のガイド体を設
けだから、レーザロッドの周方向が励起ランプにより不
均一に光励起されても、レーザロッドの周方向に旋回す
る冷却水によりこのレーザロッドの周方向における温度
分布はほぼ均一になる。したがって、レーザロッドの凸
レンズ作用は周方向においてほぼ均一となるから、レー
ザロッドの断面形状と同じパターンのレーザ光が得られ
、たとえば切断加工などを走査方向によって切断幅が変
わるようなことなく高精度に行なえるばかりか、励起ラ
ンプへの人力に比例して飽和点の高い高出力のレーザ光
を得ることができるなどの利点を有する。
As described above, the present invention accommodates the laser rod, which is provided inside the condensing reflector and faces the excitation rung, in a water pipe, and the water pipe defines a flow path on the outer periphery of the laser rod. A spiral guide body is provided in the flow path to circulate the cooling water in the circumferential direction of the laser rod, so even if the circumferential direction of the laser rod is optically excited unevenly by the excitation lamp, it will not flow in the circumferential direction of the laser rod. The swirling cooling water makes the temperature distribution of the laser rod substantially uniform in the circumferential direction. Therefore, since the convex lens effect of the laser rod is almost uniform in the circumferential direction, laser beams with the same pattern as the cross-sectional shape of the laser rod can be obtained, allowing for high precision cutting without changing the cutting width depending on the scanning direction. This method has the advantage that not only can it be used for a long time, but also that a high-output laser beam with a high saturation point can be obtained in proportion to the amount of human power applied to the excitation lamp.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示し、第1図は概略的構成
をろくす縦断面図、第2図は第1図B−n線に沿う断面
図である。 3・・・集光反射鏡、4・・・レーザロッド、5・・・
励起ランプ、10・・・流水パイプ、11・・・流通路
、12・・・ガイド体。
The drawings show one embodiment of the present invention, in which FIG. 1 is a vertical sectional view showing a schematic structure, and FIG. 2 is a sectional view taken along the line B-n in FIG. 1. 3... Concentrating reflector, 4... Laser rod, 5...
Excitation lamp, 10... Water pipe, 11... Flow path, 12... Guide body.

Claims (1)

【特許請求の範囲】[Claims] 集光反射鏡と、この集光反射鏡の内部に互いに対向して
設けられたレーザロッドおよび励起ランプと、上記レー
ザロッドを内部に収容しこのレーザロッドの外周に冷却
水の流通路を区画形成した流水パイプと、上記流通路に
設けられこの流通路を流れる冷却水をレーザロッドの周
方向に旋回させる螺旋状のガイド体とを具備したことを
特徴とする固体レーザ発掘装置。
A condensing reflector, a laser rod and an excitation lamp that are provided inside the condensing reflector to face each other, and the laser rod is housed inside, and a cooling water flow path is defined on the outer periphery of the laser rod. 1. A solid-state laser excavation device, comprising: a flowing water pipe; and a spiral guide body provided in the flow path to swirl the cooling water flowing through the flow path in the circumferential direction of the laser rod.
JP24408783A 1983-12-26 1983-12-26 Solid state laser oscillator Granted JPS60136385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24408783A JPS60136385A (en) 1983-12-26 1983-12-26 Solid state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24408783A JPS60136385A (en) 1983-12-26 1983-12-26 Solid state laser oscillator

Publications (2)

Publication Number Publication Date
JPS60136385A true JPS60136385A (en) 1985-07-19
JPH0428155B2 JPH0428155B2 (en) 1992-05-13

Family

ID=17113538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24408783A Granted JPS60136385A (en) 1983-12-26 1983-12-26 Solid state laser oscillator

Country Status (1)

Country Link
JP (1) JPS60136385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204679A (en) * 1987-02-19 1988-08-24 Toshiba Corp Solid-state laser oscillator
US5331652A (en) * 1993-03-22 1994-07-19 Alliedsignal Inc. Solid state laser having closed cycle gas cooled construction
US7548568B2 (en) * 2001-07-25 2009-06-16 Innotech Usa Inc. Portable laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204679A (en) * 1987-02-19 1988-08-24 Toshiba Corp Solid-state laser oscillator
US5331652A (en) * 1993-03-22 1994-07-19 Alliedsignal Inc. Solid state laser having closed cycle gas cooled construction
US7548568B2 (en) * 2001-07-25 2009-06-16 Innotech Usa Inc. Portable laser device

Also Published As

Publication number Publication date
JPH0428155B2 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
US4751716A (en) Hollow cylindrical solid state laser medium and a laser system using the medium
JPS58173878A (en) High output basic mode laser
US3824487A (en) Unstable ring laser resonators
JPS60136385A (en) Solid state laser oscillator
US3803509A (en) Apparatus for optical excitation of a laser rod
US4783789A (en) Annular lasing apparatus
US3354405A (en) Energy coupling device
JPS63204679A (en) Solid-state laser oscillator
JPS63110683A (en) Gas laser oscillator
JPS60239078A (en) Solid-state laser oscillator
KR100257401B1 (en) Output controlling laser beam generator
JPH0344982A (en) Solid state laser device
JPS5918697Y2 (en) Laser oscillation device
JPS59150488A (en) Solid-state laser oscillating device
JPH056356B2 (en)
CA1067190A (en) Optical imaging of flashlamp discharge to laser medium
JPS62199080A (en) Solid state laser oscillator
JPS5855666Y2 (en) laser oscillator
CN104917038B (en) Laser oscillator and laser processing device
JPS61212078A (en) Slab-type laser device
JPS60136386A (en) Solid state laser oscillator
JPH02163987A (en) Gas laser oscillation apparatus
JPS58169983A (en) Discharge tube excitation laser device
CS262776B1 (en) Lowmode solid-matter laser
JPS637689A (en) Laser device using powdered laser medium