JPH0344982A - Solid state laser device - Google Patents

Solid state laser device

Info

Publication number
JPH0344982A
JPH0344982A JP17988389A JP17988389A JPH0344982A JP H0344982 A JPH0344982 A JP H0344982A JP 17988389 A JP17988389 A JP 17988389A JP 17988389 A JP17988389 A JP 17988389A JP H0344982 A JPH0344982 A JP H0344982A
Authority
JP
Japan
Prior art keywords
solid
laser
mirror
laser beam
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17988389A
Other languages
Japanese (ja)
Inventor
Kimiharu Yasui
公治 安井
Yuji Takenaka
裕司 竹中
Shigenori Yagi
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17988389A priority Critical patent/JPH0344982A/en
Publication of JPH0344982A publication Critical patent/JPH0344982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To maintain a constant divergent angle of a laser beam without dependence on the output of laser by installing a cooling means to one end face of a solid state element and a refracting mirror which is non-reflective to the light from an excitation light source and totally reflective to laser light so that it may serve as a resonance mirror. CONSTITUTION:The light transmitted from an excitation light source 3 lit up by a power source 4 is repeatedly reflected directly or on the inner surface of a cone-shaped light transmission passage 5 which is reduced in its mouth. It is integrated, passes through a reflecting mirror 2, and is applied to a solid state element 1, thereby generating a laser beam. The laser beams 9 and 11 generated inside an unstable type resonator which comprises an outlet mirror 6 and a reflecting mirror 2 are amplified by a laser medium 1 are emitted by way of a non-reflective film 8 of the outlet mirror 6, or a central part of the beams through a partial reflective film 7 on the inner surface of the outlet mirror 6. Both are synthesized and emitted as a laser beam 10. The generated heat is eliminated from the element 1 by way of a cooling medium 55.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、固体レーザ装置、とくに固体レーザ装置か
ら発生されるレーザビームの品質安定化に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid-state laser device, particularly to stabilizing the quality of a laser beam generated from a solid-state laser device.

[従来の技術] 第13図は、たとえばレーザハンドブック(オーム社、
昭和57年)に示された従来の固体レーザ装置を示す断
面構成図である。図において、(1)は固体素子であり
、たとえばYAGレーザを例にとれば、Y3−xNdx
AIso+ 2よりなるロッド状の結晶、(3)は励起
光源で、例えばフラッシュランプ、(4)は励起光R(
3)を点灯するためQ電源、(5000)は反射ミラー
 (6)はたとえばガラスでできた出口ミラー (7)
は出口ミラー(6)の内面に設けられたたとえばTif
hよりなる部分反射膜、(8)は出口ミラー(6)の外
面および固体素子(1)の両側面に設けられた、たとえ
ば5102よりなる無反射膜、(9)はレーザ共据器内
のレーザビーム、(10)は外部に取り出されたレーザ
ビーム、(12)は外ワク、(20)は全反射ミラー 
(30)は励起光源(3)及び固体素子(1)の側面周
囲を冷却するための水路を構成するフローチューブ、(
50)は冷却水導入口、(51)は冷却水排水口、(6
0)は冷却水の流れを示す矢印である。
[Prior art] Fig. 13 shows, for example, the laser handbook (Ohmsha,
1 is a cross-sectional configuration diagram showing a conventional solid-state laser device shown in 1982). In the figure, (1) is a solid-state element, for example, taking a YAG laser as an example, Y3-xNdx
A rod-shaped crystal made of AIso+2, (3) is an excitation light source, such as a flash lamp, and (4) is an excitation light R(
3) Q power supply for lighting, (5000) is a reflective mirror (6) is an exit mirror made of glass, for example (7)
For example, Tif is provided on the inner surface of the exit mirror (6).
(8) is a non-reflection film made of, for example, 5102, provided on the outer surface of the exit mirror (6) and both sides of the solid-state element (1), and (9) is a partially reflective film made of 5102 in the laser co-installation device. Laser beam, (10) is the laser beam taken out to the outside, (12) is the external workpiece, (20) is the total reflection mirror
(30) is a flow tube (
50) is the cooling water inlet, (51) is the cooling water outlet, (6
0) is an arrow indicating the flow of cooling water.

次に動作について説明する。固体素子(1)は電源(4
)により点灯されたフラッシュランプ(3)からの直接
光および反射ミラー(5000)内面よりの反射光によ
り励起され、レーザ媒質をなす。一方、内面に設けられ
た部分反射膜(7)により部分反射率を持った出口ミラ
ー(6)と全反射ミラー(20)とからなるいわゆる安
定型共振器内に閉じこめられたレーザビーム(9)は、
両ミラー間を往復するごとにこのレーザ媒質により増幅
され、ある一定以上の大きさになるとその一部が出口ミ
ラー(6)を通して外部にレーザビーム(10)として
放出される。
Next, the operation will be explained. The solid state element (1) is connected to the power source (4
) is excited by the direct light from the flash lamp (3) and the reflected light from the inner surface of the reflecting mirror (5000), and forms a laser medium. On the other hand, a laser beam (9) is confined within a so-called stable resonator consisting of an exit mirror (6) with partial reflectance and a total reflection mirror (20) due to a partial reflection film (7) provided on the inner surface. teeth,
Each time it travels back and forth between both mirrors, it is amplified by this laser medium, and when it reaches a certain size or more, a part of it is emitted to the outside as a laser beam (10) through an exit mirror (6).

なお、固体素子及びランプの側面は冷却水導入口(50
)より流入した冷却媒体により側面より冷却される。
In addition, the cooling water inlet (50
) is cooled from the side by the cooling medium flowing in.

[発明が解決しようとする課題] 従来の固体レーザ装置は以上のように、ロッド即ち固体
素子の側面を冷却して用いていたため、ロッド断面内の
温度分布及びこの温度分布がもたらす屈折率分布は、第
14図に示すように二次分布となり、上記温度分布がも
たらす屈折率差により、ロッドはロッドの軸方向に通過
するレーザビームに対してレンズとして働き、共振器の
状態を変化させていた。上記ロッドのレンズ化の度合は
ロッドを照射する励起光源への投入電力、したがってレ
ーザ出力により変化し、したがって、共振器より発生す
るレーザビームの発散角が、例えば第15図に示すよう
にレーザ出力により変化してしまうという問題があった
[Problems to be Solved by the Invention] As described above, in conventional solid-state laser devices, the side surface of the rod, that is, the solid-state element, is cooled. Therefore, the temperature distribution within the rod cross section and the refractive index distribution caused by this temperature distribution As shown in Figure 14, a quadratic distribution was obtained, and due to the refractive index difference caused by the temperature distribution, the rod acted as a lens for the laser beam passing in the axial direction of the rod, changing the state of the resonator. . The degree of lens formation of the rod changes depending on the power input to the excitation light source that irradiates the rod, and therefore the laser output. Therefore, the divergence angle of the laser beam generated from the resonator varies depending on the laser output as shown in FIG. There was a problem that it changed due to

ところでレーザビームの発散角の大小はレーザビームの
集光性能そのものといえる。これは焦点距離fの集光レ
ンズによる集光スポット系φ5は概略的に発散角θに対
して φ、=f・θ で表され、したがって発散角の大小に比例して、集光ス
ポット径の大小が決定されるためである。
Incidentally, the size of the divergence angle of a laser beam can be said to be the focusing performance of the laser beam itself. This means that the condensing spot system φ5 by a condensing lens with focal length f is roughly expressed as φ, = f・θ with respect to the divergence angle θ, and therefore the condensing spot diameter changes in proportion to the divergence angle. This is because the size is determined.

したがって、発散角がレーザ出力により変化することは
集光特性が変化することを意味し、安定なレーザ加工が
行えないという問題が発生していた。
Therefore, a change in the divergence angle depending on the laser output means a change in the light condensing characteristics, which has caused the problem that stable laser processing cannot be performed.

この発明は上記のような問題点を解消するためになされ
たもので、レーザ出力によらずレーザビームを発散角を
一定にたもって発生させることのできる安定した固体レ
ーザ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a stable solid-state laser device that can generate a laser beam with a constant divergence angle regardless of the laser output. do.

[課題を解決するための手段] この発明に係わる固体レーザ装置は、固体素子を励起す
る励起光源の光を筒状の導光路により、固体素子の光軸
方向の一端面に導くとともに、上記一端面を冷却し、ざ
らに上記一端面に、励起光源の光に対して無反射、レー
ザ光に対して全反射となる反射ミラーを、レーザ共振器
を構成する共振器ミラーの一つとして設けたものである
[Means for Solving the Problems] A solid-state laser device according to the present invention guides light from an excitation light source that excites a solid-state element to one end surface in the optical axis direction of the solid-state element through a cylindrical light guide path, and The end face was cooled, and a reflecting mirror that did not reflect the light from the excitation light source and totally reflected the laser light was provided on one of the above end faces as one of the resonator mirrors that constituted the laser resonator. It is something.

なお、上記筒状の導光路の内面の少なくとも一部に、励
起光源の光を乱反射する加工を施すとよい。
Note that it is preferable that at least a portion of the inner surface of the cylindrical light guide path be processed to diffusely reflect the light from the excitation light source.

[作用] この発明における筒状の導光路は、励起光源の光の分布
を均一にして、冷却された固体素子の光軸方向の一端面
に導き、上記固体素子の一端面に設けられた反射ミラー
は上記励起光源の光を全透過させ、上記全透過した光は
固体素子を断面方向、したがってレーザビーム進行方向
く光軸方向)に垂直な方向に均一励起するとともに、励
起された固体素子から発生したレーザビームを共振器内
に反射させて共振器状態を構成する。この構成において
、レーザビームの進行方向と垂直な方向の状態に温度分
布は発生せず、したがってレーザビームは固体素子に入
射し、反射することにより集束、もしくは発散されるこ
とはなく、結果励起光源への人力の変化、したがってレ
ーザ出力の変化によるレーザ出力の発散角の変化を小さ
くすることができる。
[Function] The cylindrical light guide path in the present invention uniformizes the distribution of light from the excitation light source, guides it to one end surface in the optical axis direction of the cooled solid-state element, and guides the light from the excitation light source to one end surface in the optical axis direction of the solid-state element. The mirror completely transmits the light from the excitation light source, and the completely transmitted light uniformly excites the solid-state element in the cross-sectional direction (therefore, in the direction perpendicular to the laser beam traveling direction (optical axis direction)), and also excite the solid-state element from the excited solid-state element. The generated laser beam is reflected into the resonator to form a resonator state. In this configuration, no temperature distribution occurs in the direction perpendicular to the direction of travel of the laser beam, and therefore the laser beam is not focused or diverged by being incident on the solid-state element and reflected, resulting in an excitation light source. It is possible to reduce the change in the divergence angle of the laser output due to the change in human power and therefore the change in the laser output.

[実施例コ 以下、この発明の一実施例を第1図について説明する。[Example code] An embodiment of the present invention will be described below with reference to FIG.

第1図において、(1)は固体素子で、たとえば’/A
Gレーザを例に取ればY3− NdヶAl5O12より
なるaラド状の結晶、(2)はこのロッド(1)の、光
軸方向の一端面に設けられた、レーザビームに対して全
反射、励起光源の光に対して全透過となる反射ミラーで
、例えはTlO2と5102の組合せからなる誘電体多
層膜よりなり、コリメートミラーをなす。(3)は励起
光源であり、例えばアークランプ、(4)は励起光源(
3)を点灯するための電源、(5)は筒状の導光路、(
6)はたとえばガラスでできた出口ミラーで、拡大ミラ
ーをなす。(7)は出口ミラー(6)の内面中央に設け
られた、たとえばTi(hよりなる部分反射膜、(8)
は出口ミラー内面の、部分反射膜(7)の周囲上、出口
ミラー(6)の外面、さらに固体素子(1)の側面に設
けられた、たとえばS:02よりなる無反射膜、(9)
(11)は出口ミラー(6)と反射ミラー(2)からな
るレーザ共振器内に発生したレーザビーム、(10)は
レーザ共振器外部に取り出されたレーザビーム、(12
)は外ワク、(30)は励起光源(3)の周囲に冷却媒
体の通路を形成するフローチューブで、たとえば光源の
光を全透過するコーティングが施されたパイレックスガ
ラス、(50)は導光路内への冷却媒体の流入口、(5
1)は冷却媒体の流出口、(55)は冷却媒体であり、
例えば水、(60)は冷却媒体(55)の流れを示す矢
印、(70)は固体素子(1)の周囲を断熱する断熱材
である。
In FIG. 1, (1) is a solid-state element, for example '/A
Taking the G laser as an example, a rad-shaped crystal made of Y3-NdAl5O12, (2) is provided on one end surface of the rod (1) in the optical axis direction, and is a laser beam that undergoes total reflection. A reflecting mirror that completely transmits light from an excitation light source, for example, is made of a dielectric multilayer film made of a combination of TlO2 and 5102, and serves as a collimating mirror. (3) is an excitation light source, for example an arc lamp, and (4) is an excitation light source (
3) is a power source for lighting, (5) is a cylindrical light guide, (
6) is an exit mirror made of glass, for example, and serves as a magnifying mirror. (7) is a partial reflection film made of, for example, Ti(h) provided at the center of the inner surface of the exit mirror (6); (8)
is a non-reflective film made of S:02, for example, provided on the inner surface of the exit mirror, around the partially reflective film (7), on the outer surface of the exit mirror (6), and on the side surface of the solid-state element (1), (9)
(11) is a laser beam generated within a laser resonator consisting of an exit mirror (6) and a reflecting mirror (2), (10) is a laser beam taken out outside the laser resonator, (12)
) is the outer wall, (30) is a flow tube that forms a cooling medium passage around the excitation light source (3), for example, Pyrex glass with a coating that completely transmits the light from the light source, and (50) is a light guide path. inlet for cooling medium into (5
1) is a cooling medium outlet, (55) is a cooling medium,
For example, water, (60) is an arrow indicating the flow of the cooling medium (55), and (70) is a heat insulating material that insulates the periphery of the solid element (1).

次に動作について説明する。電源(4)により点灯され
た励起光源(3)から発せられた光はその一部が直接に
、また大部分の光は励起光源(3)から固体素子(1)
に向かって口の細くなるコーン状になっている筒状の導
光路(5)内面で繰り返し反射し、結果、励起光源(3
)からの光は積分され、反射ミラー(2)を通過して、
固体素子(1)を光軸方向の一端面から均一照射し、照
射により励起された固体素子(1)はレーザ媒質をなす
。一方、出口ミラー(6)と反射ミラー(2)とからな
るいわゆる不安定型共振器内に発生したレーザビーム(
9X11)は、両ミラー間を往復するごとにこのレーザ
媒質により増幅され、ある−室以上の大きさになると、
その周囲部の全部は出口ミラー(6)の内面の無反射膜
(8)を通して、また中央部の一部は出口ミラー(6)
の内面の部分反射膜(7)を通して出射し、両者は合成
されて中詰まり状のレーザビーム(10)として放出さ
れる。不安定型共振器を用いているためレーザビームは
ほとんど等位相であり、従ってほぼ回折限界の集光品質
を持つレーザビームが得られる。
Next, the operation will be explained. Part of the light emitted from the excitation light source (3) turned on by the power source (4) is directly transmitted, and most of the light is emitted from the excitation light source (3) to the solid state element (1).
It is repeatedly reflected on the inner surface of the cylindrical light guide (5), which has a cone shape that tapers toward the end, and as a result, the excitation light source (3
) is integrated and passes through the reflecting mirror (2),
The solid-state element (1) is uniformly irradiated from one end face in the optical axis direction, and the solid-state element (1) excited by the irradiation forms a laser medium. On the other hand, a laser beam (
9X11) is amplified by this laser medium every time it goes back and forth between both mirrors, and when it reaches a size larger than a certain chamber,
The entire peripheral part passes through the non-reflection film (8) on the inner surface of the exit mirror (6), and a part of the central part passes through the exit mirror (6).
The laser beam is emitted through a partially reflecting film (7) on the inner surface of the laser beam, and both are combined and emitted as a solid laser beam (10). Since an unstable resonator is used, the laser beam has almost the same phase, and therefore a laser beam with almost diffraction-limited focusing quality can be obtained.

次にこの発明の中心である固体素子の端面励起構成につ
いて説明を加える。励起光源(3)からの光は筒状の導
光路(5)により積分された後、断面方向にほぼ均一な
強度を持つ光に変換され、固体素子(1)を端面より反
射ミラー(2)を通して均一照射励起する。固体素子(
1)内に入射した光の一部はレーザビーム(10)とし
て外部に取り出されるが、残りの光は熱となり、固体素
子内に温度分布、従って屈折率分布を発生させる。しか
しながら、固体素子(1)は冷却媒体(55)により、
光を照射されたのと同一の端面より冷却され、周囲面は
断熱材(70)により断熱されているため、固体素子内
の屈折率分布はレーザビームの光軸方向にのみ発生し、
その断面方向にはほとんど分布が発生しないことになる
。第2図(a)にはこの発明の一実施例による構成によ
り固体素子を励起した場合の固体素子(1)内圧折率分
布を、第2図(b)には同じ固体素子(1)を従来の構
成(第13図)により励起した場合の固体素子内屈折率
分布を示す。この発明による構成では固体素子断面方向
にほとんど屈折率の変化がないことがわかる。なお、こ
の発明による構成ではレーザビーム光軸方向には屈折率
分布が発生するが、この分布はミラー(6)、ミラー(
2)間の共振器長を若干変化させるのみで、はとんど発
生されるレーザビーム(10)の発散角には影響しない
。第3図にはレーザ出力変化に対するレーザビーム発散
角の変化を示す。ここで固体素子(1)は、アークラン
プにより励起されたY2.aNde、eAI5012で
あり、その断面の直径は12mm、長さは10mm、出
口ミラー(6)と全反射ミラー(2)間の距離は0 、
44m、出口ミラー内面中央の部分反射膜(7)の反射
率は80rである。
Next, a description will be given of the end-face excitation configuration of the solid-state device, which is the center of this invention. After the light from the excitation light source (3) is integrated by the cylindrical light guide (5), it is converted into light with almost uniform intensity in the cross-sectional direction, and the solid-state element (1) is passed from the end face to the reflecting mirror (2). Uniform irradiation and excitation through. Solid-state device (
1) A part of the incident light is extracted to the outside as a laser beam (10), but the remaining light becomes heat and generates a temperature distribution and therefore a refractive index distribution within the solid-state element. However, due to the cooling medium (55), the solid state element (1)
Since it is cooled from the same end surface that is irradiated with light, and the surrounding surface is insulated by a heat insulating material (70), the refractive index distribution within the solid-state element occurs only in the optical axis direction of the laser beam.
Almost no distribution occurs in the cross-sectional direction. FIG. 2(a) shows the internal pressure refractive index distribution of the solid-state device (1) when the solid-state device is excited with a configuration according to an embodiment of the present invention, and FIG. 2(b) shows the same solid-state device (1). The refractive index distribution within a solid-state element when excited with a conventional configuration (FIG. 13) is shown. It can be seen that in the configuration according to the present invention, there is almost no change in the refractive index in the cross-sectional direction of the solid-state element. In addition, in the configuration according to the present invention, a refractive index distribution occurs in the laser beam optical axis direction, but this distribution is caused by the mirror (6), the mirror (
2) By only slightly changing the resonator length between the two, the divergence angle of the generated laser beam (10) is not affected. FIG. 3 shows changes in laser beam divergence angle with respect to changes in laser output. Here, the solid-state element (1) is excited by the arc lamp Y2. aNde, eAI5012, the diameter of its cross section is 12 mm, the length is 10 mm, the distance between the exit mirror (6) and the total reflection mirror (2) is 0,
44 m, and the reflectance of the partially reflective film (7) at the center of the inner surface of the exit mirror is 80 r.

なお、第4図に示すように、導光路内面の一部もしくは
全面に光源の光を乱反射する拡散反射面(500)を構
成すれば光を積分する効果がさらに増し、より高い精度
で固体素子(1)を端面より均一照射できる。
As shown in Fig. 4, if a diffuse reflection surface (500) that diffusely reflects the light from the light source is formed on a part or the entire surface of the inner surface of the light guide, the effect of integrating the light will further increase, and the solid-state element can be integrated with higher accuracy. (1) can be uniformly irradiated from the end face.

また、上記実施例では共振器内のレーザビームが焦点を
結ぶネガティブブランチ構成の不安定型共振器を用いる
構成を示したが、第5図に示すように共振器内で焦点を
結ばないポジティブブランチ構成の不安定型共振器を用
いてもよい、また第6図に示すような全反射膜(77)
を用いたリング状のレーザビーム(10)を発生する不
安定型共振器、第7図に示すような内面全体に部分反射
膜(7)が施された出口ミラー(6)を用いた安定型共
振器など各種共振器を用いることができる。
In addition, in the above embodiment, a configuration using an unstable resonator with a negative branch configuration in which the laser beam is focused within the resonator was shown, but as shown in FIG. An unstable type resonator may be used, or a total reflection film (77) as shown in Fig. 6 may be used.
An unstable resonator that generates a ring-shaped laser beam (10) using Various resonators such as a resonator can be used.

また、上記実施例では励起光源(3)からの光は固体素
子(1)に向かって口の細くなるコーン状になっている
筒状の導光路(5)内面で、繰り返し反射積分され、固
体素子(1)を端面から均一照射する構成を示したが、
励起光源(3)が十分細い場合などには、第8図に示す
ように、固体素子(1)に向かって口の広くなるコーン
状になっている筒状の導光路(5)を用いたほうが、よ
り効率よく励起光源(3)の光を固体素子(1)に導く
ことができる。
In the above embodiment, the light from the excitation light source (3) is repeatedly reflected and integrated on the inner surface of the cylindrical light guide (5), which has a cone shape that tapers toward the solid-state element (1). Although the configuration in which the element (1) is uniformly irradiated from the end face is shown,
When the excitation light source (3) is sufficiently thin, a cylindrical light guide (5) with a cone-like opening that widens toward the solid-state element (1) is used, as shown in Figure 8. The more efficiently the light from the excitation light source (3) can be guided to the solid-state element (1).

また、固体素子の一端面に設けられた反射ミラー(2)
を、第9図に示すように、出口ミラー(6)と全反射ミ
ラー(20)から構成される共振器内の折返し中間ミラ
ーとして用いてもよい。
In addition, a reflecting mirror (2) provided on one end surface of the solid-state element
may be used as a folding intermediate mirror in a resonator composed of an exit mirror (6) and a total reflection mirror (20), as shown in FIG.

また、励起光源はランプに限るものではなく、例えば第
1O図に示すように、マイクロ波励起などの外部光源(
300)により発生した光(310)を、窓(80)を
通して導光路(5)内に導くようにすれば、固体素子を
冷却する冷却媒体(55)は固体素子のみを冷却すれば
よく、冷却効率が向上する。
Furthermore, the excitation light source is not limited to a lamp; for example, as shown in Figure 1O, an external light source such as a microwave excitation source (
If the light (310) generated by the device (300) is guided into the light guide path (5) through the window (80), the cooling medium (55) that cools the solid-state element only needs to cool the solid-state element; Increased efficiency.

さらに、第11図に示すように、半導体レーザ(301
)から発生された光(311)を導光路(5)内に導い
てもよく、この場合半導体の波長を固体素子のレーザ発
振の吸収波長に合わせることにより、レーザ発振に用い
られる光のみが固体素子に入射することになり、従って
固体素子内での発熱が減少し、発明の効果が高まる。
Furthermore, as shown in FIG. 11, a semiconductor laser (301
) may be guided into the light guide path (5). In this case, by matching the wavelength of the semiconductor to the absorption wavelength of the laser oscillation of the solid-state element, only the light used for laser oscillation is transmitted to the solid-state element. Therefore, the heat generation within the solid-state device is reduced, and the effectiveness of the invention is enhanced.

さらに、第12図に示すように、半導体レーザ(301
)からの光を光ファイバー(312)により導光路(5
)内に導くようにすれば、半導体レーザ(301)の大
きさに制限されず、より多くの半導体レーザからの光を
固体素子内に導くことができる。
Furthermore, as shown in FIG. 12, a semiconductor laser (301
) through an optical fiber (312) to a light guide path (5
), more light from the semiconductor laser can be guided into the solid-state element without being limited by the size of the semiconductor laser (301).

[発明の効果コ 以上のようにこの発明によれば、固体素子を励起する励
起光源の光を筒状の導光路により、固体素子の光軸方向
の一端面に導くとともに、上記−端面を冷却し、さらに
上記一端面に、励起光源の光に対して無反射、レーザ光
に対して全反射となる反射ミラーを、レーザ共振器を構
成する共振器ミラーの一つとして設けたので、固体素子
励起の度合によらず固体素子内の断面方向の屈折率は一
定に保つことができ、従ってレーザ出力によらず発散角
の安定したレーザビームを得ることができる。
[Effects of the Invention] As described above, according to the present invention, the light from the excitation light source that excites the solid-state element is guided to one end face in the optical axis direction of the solid-state element through the cylindrical light guide path, and the above-mentioned end face is cooled. Furthermore, a reflecting mirror that does not reflect the light from the excitation light source and totally reflects the laser light is provided on one end face as one of the resonator mirrors that constitute the laser resonator, so that the solid-state element The refractive index in the cross-sectional direction within the solid-state element can be kept constant regardless of the degree of excitation, and therefore a laser beam with a stable divergence angle can be obtained regardless of the laser output.

さらに、上記筒状の導光路の内面の少なくとも一部に、
励起光源の光を乱反射する加工を施せば、励起光源の光
を効率よく積分して固体素子を断面方向により均一に励
起し、より安定したレーザビームを得ることができる。
Furthermore, on at least a part of the inner surface of the cylindrical light guide,
If the light from the excitation light source is processed to diffusely reflect it, the light from the excitation light source can be efficiently integrated, the solid-state element can be excited more uniformly in the cross-sectional direction, and a more stable laser beam can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による固体レーザ装置を示
す断面構成図、第2図(a)(b)は各々この発明の一
実施例及び従来の固体レーザ装置における固体素子の屈
折率分布を示す分布図、第3図はこの発明の一実施例に
よる固体レーザ装置に・おける発散角特性を示す特性図
、第4図ないし第12図は各々この発明の他の実施例に
よる固体レーザ装置を示す断面構成図、第13図は従来
の固体レーザ装置を示す断面構成図、第14図は従来の
固体レーザ装置における固体素子の屈折率分布を示す分
布図、並びに第15図は従来の固体レーザ装置における
発散角特性を示す特性図である。 (1)・・・固体素子、(2)・・・反射ミラー (2
0)・・・全反射ミラー (3)・・・光源、(300
)・・・外部光源、(30+)・・・半導体レーザ、(
5)・・・導光路、(500)・・・拡散反射面、(6
)・・・出口ミラー (9X10)(11)・・・レー
ザビーム、(50)・・・冷却媒体流入口、(51)・
・・冷却媒体の流出口、(55)・・・冷却媒体なお、
図中、同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional configuration diagram showing a solid-state laser device according to an embodiment of the present invention, and FIGS. 2(a) and 2(b) are refractive index distributions of solid-state elements in an embodiment of the present invention and a conventional solid-state laser device, respectively. FIG. 3 is a characteristic diagram showing the divergence angle characteristics of a solid-state laser device according to one embodiment of the present invention, and FIGS. 4 to 12 are distribution diagrams showing the divergence angle characteristics of a solid-state laser device according to another embodiment of the present invention. 13 is a cross-sectional diagram showing a conventional solid-state laser device, FIG. 14 is a distribution diagram showing the refractive index distribution of a solid-state element in a conventional solid-state laser device, and FIG. 15 is a diagram showing a conventional solid-state laser device. FIG. 2 is a characteristic diagram showing divergence angle characteristics in a laser device. (1)...Solid element, (2)...Reflection mirror (2
0)... Total reflection mirror (3)... Light source, (300
)...External light source, (30+)...Semiconductor laser, (
5)...Light guide path, (500)...Diffuse reflection surface, (6
)...Exit mirror (9X10) (11)...Laser beam, (50)...Cooling medium inlet, (51)...
・・Cooling medium outlet, (55) ・・Cooling medium,
In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)固体素子、この固体素子を励起する光源、この光
源からの光を内面で反射させて積分し、上記固体素子の
光軸方向の一端面に導く筒状の導光路、上記固体素子の
上記一端面を冷却する冷却手段、及び上記固体素子の上
記一端面に設けられ、上記光源の光に対して無反射、レ
ーザ光に対して全反射となる反射ミラー、この反射ミラ
ーと共にレーザ共振器を構成する共振器ミラーを備えた
固体レーザ装置。
(1) a solid-state element, a light source that excites the solid-state element, a cylindrical light guide path that reflects and integrates the light from the light source on its inner surface and guides it to one end surface in the optical axis direction of the solid-state element; a cooling means for cooling the one end surface; a reflecting mirror provided on the one end surface of the solid-state element that does not reflect the light from the light source and totally reflects the laser beam; together with the reflecting mirror, a laser resonator; A solid-state laser device equipped with a resonator mirror.
(2)筒状の導光路の内面の少なくとも一部に、光源の
光を乱反射する加工が施されている請求項1記載の固体
レーザ装置。
(2) The solid-state laser device according to claim 1, wherein at least a portion of the inner surface of the cylindrical light guide path is processed to diffusely reflect the light from the light source.
JP17988389A 1989-07-12 1989-07-12 Solid state laser device Pending JPH0344982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17988389A JPH0344982A (en) 1989-07-12 1989-07-12 Solid state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17988389A JPH0344982A (en) 1989-07-12 1989-07-12 Solid state laser device

Publications (1)

Publication Number Publication Date
JPH0344982A true JPH0344982A (en) 1991-02-26

Family

ID=16073567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17988389A Pending JPH0344982A (en) 1989-07-12 1989-07-12 Solid state laser device

Country Status (1)

Country Link
JP (1) JPH0344982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199774A (en) * 1996-01-22 1997-07-31 Nec Corp Laser-diode-excited solid-state laser device
JP2020508562A (en) * 2017-01-25 2020-03-19 ローレンス リバモア ナショナル セキュリティー, エルエルシー Systems and methods for laser systems with non-planar thin disk gain media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199774A (en) * 1996-01-22 1997-07-31 Nec Corp Laser-diode-excited solid-state laser device
US5859868A (en) * 1996-01-22 1999-01-12 Nec Corporation Solid-state laser device which is pumped by light output from laser diode
JP2020508562A (en) * 2017-01-25 2020-03-19 ローレンス リバモア ナショナル セキュリティー, エルエルシー Systems and methods for laser systems with non-planar thin disk gain media

Similar Documents

Publication Publication Date Title
JP3167844B2 (en) Solid-state laser device
US4942588A (en) Laser device
KR910009016B1 (en) Laser processing apparatus
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JPH0344982A (en) Solid state laser device
JPH08148739A (en) Laser resonator and laser apparatus provided with said laser resonator
JPH0936462A (en) Solid state laser and pumping method therefor
JP2000340868A (en) Solid state laser device and laser processing device using same
JPH09270552A (en) Solid-state laser device
JP2663497B2 (en) Laser device
JP4047989B2 (en) Laser oscillator
JP4439653B2 (en) Solid state laser apparatus and laser processing apparatus using the same
JPS63254776A (en) Solid-state laser device
JP2738053B2 (en) Solid-state laser device
JPH0637368A (en) Laser and beam expander
JP3003172B2 (en) Solid state laser oscillator
JPH11284256A (en) Solid laser device
JP2676920B2 (en) Semiconductor laser pumped solid-state laser device
JPH033379A (en) Solid-state laser device
JP2970121B2 (en) Narrow band laser oscillator
JP3241707B2 (en) Laser processing equipment
JPH0451501Y2 (en)
JPH07240553A (en) Laser oscillation apparatus
JP2580703B2 (en) Laser device
JP2691773B2 (en) Solid-state laser device