JPS60239078A - Solid-state laser oscillator - Google Patents

Solid-state laser oscillator

Info

Publication number
JPS60239078A
JPS60239078A JP9298984A JP9298984A JPS60239078A JP S60239078 A JPS60239078 A JP S60239078A JP 9298984 A JP9298984 A JP 9298984A JP 9298984 A JP9298984 A JP 9298984A JP S60239078 A JPS60239078 A JP S60239078A
Authority
JP
Japan
Prior art keywords
solid
state laser
rod
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9298984A
Other languages
Japanese (ja)
Inventor
Ken Ishikawa
憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9298984A priority Critical patent/JPS60239078A/en
Publication of JPS60239078A publication Critical patent/JPS60239078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • H01S3/0931Imaging pump cavity, e.g. elliptical

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser oscillator having high efficiency by arranging a first laser rod, to which Nd is added, a second laser rod, to which Cr is added, and/or a plurality of excitation lamps in parallel in a cylindrical mirror body, an inner surface thereof is formed in a mirror surface, and fitting resonating mirrors at both ends of the laser rods. CONSTITUTION:An excitation lamp 3 in Xe is mounted between a rod 1 consisting of a YAG crystal, to which Nd is added, and a rod 2 composed of a garnet group crystal, to which Cr is added, the rods 1, 2 are protected by glass tubes 4, and support tubes 5 are attached at both ends of the glass tubes. The rods 1, 2 and the excitation lamp 3 are disposed in parallel in a cylindrical body 7, an inner surface thereof is shaped in a mirror surface 6. Resonator mirrors 9, 10 to the oscillation wavelegths of each rod are fitted at the ends of the support tubes 5. Beams emitted by the lighting of the excitation lamp 3 are absorbed, transmitted and specular-reflected by the rods 1, 2 and utilized efficiently without waste, and laser beams are oscillated with high efficiency. Laser beams transmit the resonator mirrors at several different wavelength from two positions, and are projected to the outside.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固体レーザ発振装置に係わり、特に高効率でレ
ーザ光を発振できる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state laser oscillation device, and particularly to a device that can oscillate laser light with high efficiency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

レーザ発振器において、その発振媒体によって異なるが
レーザ光の発振効率はおおむね10%以下である。特に
、溶接・切断などの加工に広く用いられるYAG固体レ
ーザ装置の場合、発振効率は1チ程度である。このとき
のエネルギ損失には、種々の原因があるが励起ラングの
光を発振媒体が十分に吸収できないことも原因の一つで
ある。
In a laser oscillator, the oscillation efficiency of laser light is approximately 10% or less, although it varies depending on the oscillation medium. In particular, in the case of a YAG solid-state laser device widely used for processing such as welding and cutting, the oscillation efficiency is about 1 inch. There are various causes for the energy loss at this time, but one of the causes is that the oscillation medium cannot sufficiently absorb the light from the excitation rung.

YAGなどの同体レーザ発振装置では1発振媒体である
YAGロッドと励起ランプの周囲に反射鏡からなる楕円
筒状鏡体を設けて、励起ランプからの光がYAGロッド
とは反対方向に照射したものも反射鏡で反射しYAGロ
ッド方向へ県中して光が照射するようにしている。これ
によってYAGロッドは励起ランプからの光をある程度
無駄なく吸収することができる。
In a homogeneous laser oscillator such as YAG, an elliptical cylindrical body consisting of a reflecting mirror is provided around the YAG rod as the oscillation medium and an excitation lamp, and the light from the excitation lamp is irradiated in the opposite direction to the YAG rod. The light is also reflected by a reflector so that it irradiates all over the area in the direction of the YAG rod. This allows the YAG rod to absorb light from the excitation lamp without wasting it to some extent.

一般に、 YAGレーザ用の発振媒体となるレーザロッ
ドはYAGにネオジウムイオンをドープしたものを用い
る。このレーザロッドが励起のだめに吸収する光の波長
域はおよそ700〜900nmである。
Generally, the laser rod serving as the oscillation medium for a YAG laser uses YAG doped with neodymium ions. The wavelength range of light absorbed by this laser rod for excitation is approximately 700 to 900 nm.

なお、励起ランプによく用いられるXe(キセノン)フ
ラッシコランプの発光波長域は200〜1200nmと
なっている。すなわち、XeフラッシュランプでYAG
レーザロッドを励起する場合、YAGレーザロッドはX
eフラッシュランプが発光する光のうち700〜900
nmのみしか吸収しないため、この他の波長域の光は無
駄となっていた。さらに、これらの光は無駄になるばか
りでなく、レーザロッド自体に熱作用を誘起するといっ
た悪影響を及ぼす原因となっていた。
Note that the emission wavelength range of a Xe (xenon) flashlight lamp, which is often used as an excitation lamp, is 200 to 1200 nm. In other words, YAG with a Xe flash lamp
When exciting the laser rod, the YAG laser rod
700 to 900 of the light emitted by the e-flash lamp
Since only nanometer wavelengths are absorbed, light in other wavelength ranges is wasted. Furthermore, this light is not only wasted, but also causes an adverse effect such as inducing a thermal effect on the laser rod itself.

〔発明の目的〕[Purpose of the invention]

本発明の目的は励起ランプの光を無駄なく効率的に吸収
し、高効率のレーザ光を発振することができる固体レー
ザ発振装置を提供することにある。
An object of the present invention is to provide a solid-state laser oscillation device that can efficiently absorb light from an excitation lamp without waste and oscillate highly efficient laser light.

〔発明の概要〕[Summary of the invention]

本発明は内面が鏡面である筒状鏡体の内部にネオジウム
イオンをドープした第1の固体レーザロッド、クロムイ
オンをドープした第2の固体レーザロッドおよび1″!
fたけ複数の励起ランプを並列に配置し、上記の固体レ
ーザロッドのそれぞれの両端部に共振器ミラーを設けた
ことを特徴とした固体レーザ装置であって、励起ランプ
の光の波長域のうち異なる特定の波長域を第1の固体レ
ーザロッドと第2の固体レーザロッドのそれぞれが吸収
し励起することによって励起ラングの光を無駄なく効率
的に利用し高効率のレーザ光を発振するものである。
The present invention provides a first solid-state laser rod doped with neodymium ions inside a cylindrical body whose inner surface is a mirror surface, a second solid-state laser rod doped with chromium ions, and 1''!
A solid-state laser device is characterized in that a plurality of excitation lamps of f length are arranged in parallel, and resonator mirrors are provided at both ends of each of the above-mentioned solid-state laser rods. The first solid-state laser rod and the second solid-state laser rod each absorb and excite different specific wavelength ranges, thereby efficiently utilizing the light of the excitation rung without wasting it and emitting highly efficient laser light. be.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を用いて説明する。第1図は本
実施例の正面図、第2図は第1図のA−A断面図でおる
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of this embodiment, and FIG. 2 is a sectional view taken along the line AA in FIG.

(1)はネオジウムイオン(Nd3+)をドーグした第
1の固体レーザロッドであって、材質はYAG(YaA
1504 )結晶で、その他GGG(Cd3GasC)
+2)、GSGG(GdaSezGaaOt 2)など
が考えられ、また(2)はクロムイオン(Cr )をド
ーグした第2の固体レーザロッドであってルビーや第1
の固体レーザロッドと同様なりロムイオン(Cr3+)
をドープしたガーネット系結晶CGCG、GSGGなど
)などが考えられる。
(1) is the first solid-state laser rod doped with neodymium ions (Nd3+), and the material is YAG (YaA
1504) crystal, other GGG (Cd3GasC)
+2), GSGG (GdaSezGaaOt 2), etc., and (2) is a second solid-state laser rod doped with chromium ions (Cr), and ruby or the first
Same as the solid-state laser rod of ROM ion (Cr3+)
Garnet-based crystals doped with CGCG, GSGG, etc.) can be considered.

これら第1および第2の固体レーザロッド(1)。These first and second solid state laser rods (1).

(2)の間には、キセノン(Xe)フラッシコランプか
らなる励起ランプ(3)が設けられている。なお、第1
および第2の固体レーザロッド+11 、 (2)は周
囲をそれぞれガラスパイプ(4)によって保護され、両
端にはそれぞれ支持パイプ(5)が取り付けられ支持さ
れている。このようにして、第1および第2の固体レー
ザロッド(1)、(2)、励起ランプ(3)は並列に配
置されているが、これらは内面が鏡面(6)となった筒
状鏡体(力の内部に位置している。この筒状鏡体(力の
断面形状は第2図に示すように、2個の楕円形状がそれ
ぞれ一つの焦点を共有するように重ねられた形状をして
いる。この共有した焦点上に励起ランプ(3)が置かれ
、他のそれぞれの焦点上に第1および第2の固体レーザ
ロッド(1) 、 f2Jが備えられている。なお、筒
状鏡体(7)は支持パイプ(5)とともに支持筐体(8
)によって支持されている。一方、第1および第2の固
体レーザロッド(IJ 、 (2)のそれぞれの両端部
、すなわち支持パイプ(5)の端部にはそれぞれのレー
ザロッド(IJ 、 (2)の発振波長に対する共振器
ミラー+9) 、 (1(Itが設けられている。
(2) is provided with an excitation lamp (3) consisting of a xenon (Xe) flash lamp. In addition, the first
The second solid-state laser rod +11, (2) is protected around the circumference by a glass pipe (4), and support pipes (5) are attached to and supported at both ends. In this way, the first and second solid-state laser rods (1), (2) and the excitation lamp (3) are arranged in parallel, but these are cylindrical mirrors with a mirror surface (6). As shown in Figure 2, the cross-sectional shape of this cylindrical mirror body (force is located inside the body) is a shape in which two elliptical shapes are overlapped so that they each share one focal point. An excitation lamp (3) is placed on this shared focal point, and first and second solid-state laser rods (1) and f2J are provided on each of the other focal points. The mirror body (7) is attached to the support case (8) together with the support pipe (5).
) is supported by On the other hand, at both ends of each of the first and second solid-state laser rods (IJ, (2), that is, at the end of the support pipe (5), there is a resonator for the oscillation wavelength of each laser rod (IJ, (2)). Mirror+9), (1(It is provided.

以下1本実施例装置の動作について説明する。The operation of the apparatus of this embodiment will be explained below.

第1および第2の固体レーザロッドfl) 、 (2+
を励起するために励起ランプ(3)を図示しない点燈装
置で点燈する。このとき、励起ランプ(3)が発光する
光の成長は第3図に示すように200〜1200nmの
範囲である。このような光が、直接めるいは筒状鏡体(
7)に反射して、第1または第2の固体レーザロッドに
照射する。このときs M 1および第2の固体レーザ
ロッド(1)、(2)はこの光を吸収することによって
レーザ光を発振するように励起するが。
First and second solid-state laser rods fl), (2+
The excitation lamp (3) is turned on by a lighting device (not shown) in order to excite it. At this time, the growth of the light emitted by the excitation lamp (3) is in the range of 200 to 1200 nm, as shown in FIG. Such light is directly transmitted through a cylindrical mirror (
7) and irradiates the first or second solid-state laser rod. At this time, s M 1 and the second solid-state laser rods (1) and (2) are excited to oscillate laser light by absorbing this light.

それぞれが吸収する光の波長域はそれぞれ第4図、第5
図に示すとおりである。すなわち、第4図はネオジウム
イオンをドープしたYAGなどのレーザ媒体からなる第
1の固体レーザロッド(IJが吸収する光の波長域を示
す図、第5図はクロムイオンをドープしたルビーなどか
らなる第2の固体レーザロッド(2)が吸収する光の波
長域を示す図である。
The wavelength range of light absorbed by each is shown in Figures 4 and 5, respectively.
As shown in the figure. That is, Fig. 4 shows the first solid-state laser rod made of a laser medium such as YAG doped with neodymium ions (a diagram showing the wavelength range of light absorbed by IJ), and Fig. 5 is made of a laser medium such as ruby doped with chromium ions. FIG. 6 is a diagram showing the wavelength range of light absorbed by the second solid-state laser rod (2).

これらの図かられかるように、第1の固体レーザロッド
(1)は700〜900 nmの波長域の光を、第2の
固体レーザロッド(2)は300〜700 nmの波長
域の光をよく吸収して励起する。このため、励起ラング
(3)が点燈したとき、初めは発光した光の1/2づつ
がそれぞれの固体レーザロッド+I+ 、 (2)に照
射し、吸収されるべき波長の光は吸収され、ここで吸収
されない波長の光は単に固体レーザロッド(旬、(2)
を透過し反則して再び励起ランプ(3)を通りもう一方
の固体レーザロッド(11、(2+に到達する。
As can be seen from these figures, the first solid-state laser rod (1) emits light in the wavelength range of 700 to 900 nm, and the second solid-state laser rod (2) emits light in the wavelength range of 300 to 700 nm. Absorbs and excites well. Therefore, when the excitation rung (3) is turned on, 1/2 of the emitted light initially irradiates each solid-state laser rod +I+, (2), and the light with the wavelength that should be absorbed is absorbed. Light of wavelengths that are not absorbed here is simply a solid-state laser rod (Shun, (2)
The laser beam passes through the excitation lamp (3) again and reaches the other solid-state laser rod (11, (2+).

例えば、初めに第1の固体レーザロッド(1)に照射し
た光は700〜900 nmの波長域が主に吸収され。
For example, the light irradiated to the first solid-state laser rod (1) is mainly absorbed in the wavelength range of 700 to 900 nm.

その他の波長域の光が第2の固体レーザロッド(2)に
到達する。ここでは300〜700 nmの波長域の光
が主に吸収される。初めに第2の固体レーザロッド(2
)に照射する光はこの逆の経路で300〜700nm、
700〜900nmの光がそれぞれ吸収される。
Light in other wavelength ranges reaches the second solid-state laser rod (2). Here, light in the wavelength range of 300 to 700 nm is mainly absorbed. First, the second solid-state laser rod (2
) is 300 to 700 nm in the opposite direction.
Light of 700 to 900 nm is absorbed respectively.

このように、励起ランプ(3)から発光した光は、第1
および第2の固体レーザロッド(11、(2+によって
無駄なく効率的に吸収されることになる。光を吸収した
第1および第2の固体レーザロッド(1j。
In this way, the light emitted from the excitation lamp (3)
The light is efficiently absorbed by the second solid-state laser rod (11, (2+) without waste.The first and second solid-state laser rods (1j) that have absorbed the light.

(2)はそれぞれ励起し、レーザ光を発振する。このレ
ーザ光は両端部に設けられた共振器ミラー(9)。
(2) is excited and oscillates a laser beam. This laser beam is transmitted to the resonator mirrors (9) provided at both ends.

(10)によってそれぞれ増幅され、それぞれの発振波
長λ1.λ2で共振器ミラーi9) 、 f[0)を透
過して外部へ発振していく。
(10), and each oscillation wavelength λ1. At λ2, it passes through the resonator mirror i9) and f[0) and oscillates to the outside.

このとき、発振するレーザ光は2カ所から発振し、それ
ぞれの波長も異なる。これらレーザ光を1J[1工・そ
の他に応用する場合は別々に利用してもよいし、2つの
レーザ光を合成して用いてもよい。
At this time, the oscillated laser light is oscillated from two locations, and each wavelength is different. When these laser beams are applied to 1J [1 engineering] or other applications, they may be used separately, or the two laser beams may be combined and used.

なお、他の実施例として年6図に示すように励起ランプ
(3)、 t3)’を2本設け、固体レーザロッド(1
)。
In addition, as another example, as shown in Figure 6, two excitation lamps (3), t3)' are provided, and a solid-state laser rod (1
).

(2)と交互に並列に配lオしてもよい。これによって
さらに強力な光励起が可能となり、効率においては同様
な効果を淡わず。また、帖7図に示すように第2図に示
した実施例とはに1体レーザロッド(2)と励起ラング
(3)の配列位置を代えたものでもよい。
(2) may be arranged alternately in parallel. This enables even more powerful optical excitation, with the same effect in terms of efficiency. Furthermore, as shown in Figure 7, the arrangement positions of the single laser rod (2) and excitation rung (3) may be changed from the embodiment shown in Figure 2.

この場合においても上述と同様な理由により無駄なく効
率的なレーザ発振が可能である。ざらに第8図では矩形
断面の第1と第2の固体レーザロッド(1ど、+21’
 、 4本のキセノンフラッジクランプからなる励起ラ
ンプ(3)を筒状鏡体(力に配t4したものである。こ
の場合においても、励起ランプ(3)の光は捷ず始めに
近い方の固体レーザロッド(1) 、 +21に照射す
るが、このときに吸収されなかった波長域の光は透過し
たのち他方の固体レーザロッドfl) 、 (21に照
射され、さらに光は吸収され効率のよいレーザ発振を行
なうことができる。
In this case as well, efficient laser oscillation is possible without waste for the same reason as described above. Roughly speaking, FIG. 8 shows the first and second solid-state laser rods (1, +21'
, An excitation lamp (3) consisting of four xenon flood clamps is arranged in a cylindrical mirror body (t4).In this case as well, the light of the excitation lamp (3) is not divided and is directed to the one closest to the beginning. The solid-state laser rods (1) and +21 are irradiated, but the light in the wavelength range that is not absorbed at this time is transmitted and then irradiated to the other solid-state laser rod fl) and (21, where the light is further absorbed and efficiently Laser oscillation can be performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の固体レーザ発振装置によれ
ば、固体レーザロッドを光励起する際、励起ランプが発
光する光を無駄なく効率的に利用することができる。こ
のため、高効率のレーザ光の発振が可能となった。さら
に、発振するレーザ光は2カ所から同時に発振し、それ
ぞれの波長の異なるレーザ光発振も可能であるので本発
明装置を用いることによってレーザ光の応用・用途が拡
大された。
As explained above, according to the solid-state laser oscillation device of the present invention, when optically exciting a solid-state laser rod, the light emitted by the excitation lamp can be efficiently utilized without wasting it. This has made it possible to oscillate highly efficient laser light. Furthermore, since the laser beam can be oscillated from two places simultaneously, and the laser beams can be oscillated with different wavelengths, the applications and uses of the laser beam have been expanded by using the device of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す正面図、第2図は第1
図のA−A断面図、第3図はキセノンフラッジ−ランプ
が発光する光の波長特性を示す図、第4図はネオジウム
イオンをドープした第1の固体レーザロッドが吸収する
光の波長特性を示す図、第5図はクロムイオンをドープ
した第2の固体レーザロッドが吸収する光の波長特性を
示す図、第6図ないし第8図は本発明の他の実施例を示
す断面図である。 l・・・第1の固体レーザロッド。 2・・・第2の固体レーザロッド、 3・・・励起ラング、 6・・・瞼面、 7・・・筒状鏡体、 9.10・・・共振器ミラー。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第2図 第3図 隼4図 第5図
FIG. 1 is a front view showing one embodiment of the present invention, and FIG. 2 is a front view showing one embodiment of the present invention.
3 is a diagram showing the wavelength characteristics of the light emitted by the xenon flood lamp, and FIG. 4 is the wavelength characteristic of the light absorbed by the first solid-state laser rod doped with neodymium ions. FIG. 5 is a diagram showing the wavelength characteristics of light absorbed by the second solid-state laser rod doped with chromium ions, and FIGS. 6 to 8 are cross-sectional views showing other embodiments of the present invention. be. l...first solid-state laser rod. 2... Second solid-state laser rod, 3... Excitation rung, 6... Eyelid surface, 7... Cylindrical body, 9.10... Resonator mirror. Agent: Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Figure 3 Hayabusa Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)内面が反射面である筒状鏡体の内部に第1の固体
レーザロッド、第2の固体レーザロッドおよびlまたは
複数の励起ランプを並列に配置し、上It[1の固体レ
ーザロッドにはネオジウムイオンをド・7・プし、上記
第2の固体レーザロッドにはクロムイオンをドーグし、
これらの固体レーザロッドの両端部に共振器ミラーを設
けたことを特徴とする同体レーザ発振装置。
(1) A first solid-state laser rod, a second solid-state laser rod, and l or a plurality of excitation lamps are arranged in parallel inside a cylindrical body whose inner surface is a reflective surface, and the upper It [1 solid-state laser rod neodymium ions are doped into the second solid-state laser rod, and chromium ions are doped into the second solid-state laser rod.
A solid-state laser oscillation device characterized in that a resonator mirror is provided at both ends of these solid-state laser rods.
(2)励起ランプはキセノンフラッシコラングであり、
このランプが上記第1および槙2の固体レーザロッドを
同時に励起することを特徴とする特許請求の範囲g1項
記載の固体レーザ発振装置。
(2) The excitation lamp is a xenon flash lamp,
The solid-state laser oscillation device according to claim g1, characterized in that this lamp simultaneously excites the first and second solid-state laser rods.
JP9298984A 1984-05-11 1984-05-11 Solid-state laser oscillator Pending JPS60239078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9298984A JPS60239078A (en) 1984-05-11 1984-05-11 Solid-state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9298984A JPS60239078A (en) 1984-05-11 1984-05-11 Solid-state laser oscillator

Publications (1)

Publication Number Publication Date
JPS60239078A true JPS60239078A (en) 1985-11-27

Family

ID=14069777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9298984A Pending JPS60239078A (en) 1984-05-11 1984-05-11 Solid-state laser oscillator

Country Status (1)

Country Link
JP (1) JPS60239078A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022190A (en) * 1988-06-14 1990-01-08 Hamamatsu Photonics Kk Laser device
JPH0249151U (en) * 1988-09-30 1990-04-05
JPH0365270U (en) * 1989-10-31 1991-06-25
WO1992015135A1 (en) * 1991-02-23 1992-09-03 Aesculap Ag Laser
CN102354899A (en) * 2011-09-06 2012-02-15 湖北星业光电科技有限公司 Dual-lamp composite light-gathering cavity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022190A (en) * 1988-06-14 1990-01-08 Hamamatsu Photonics Kk Laser device
JPH0249151U (en) * 1988-09-30 1990-04-05
JPH0365270U (en) * 1989-10-31 1991-06-25
WO1992015135A1 (en) * 1991-02-23 1992-09-03 Aesculap Ag Laser
CN102354899A (en) * 2011-09-06 2012-02-15 湖北星业光电科技有限公司 Dual-lamp composite light-gathering cavity

Similar Documents

Publication Publication Date Title
JP3167844B2 (en) Solid-state laser device
JPS60189277A (en) Oscillatation for erbium laser and device thereof
JPS60239078A (en) Solid-state laser oscillator
JPH0563263A (en) Semiconductor laser-pumped solid-state laser device
JPH02122581A (en) Laser oscillator
US3588739A (en) Exciter device for solid-state laser
JP3003172B2 (en) Solid state laser oscillator
KR100257401B1 (en) Output controlling laser beam generator
JP4047989B2 (en) Laser oscillator
JPS63254776A (en) Solid-state laser device
JP2645051B2 (en) Solid state laser oscillator
JPS5989480A (en) Bi-output solid-state laser device
JPH02301178A (en) Solid state laser device
JPH033379A (en) Solid-state laser device
JPH0423479A (en) Laser device
JPS60239076A (en) Solid-state laser oscillator
JPH056356B2 (en)
JPH0278286A (en) Solid-state laser device
JPH07115234A (en) High-power laser apparatus
JPH06177470A (en) Nd:yag laser oscillating device
JPH11330590A (en) Solid state laser device
JP2001160643A (en) Solid-state laser device
JPH08279639A (en) Slab laser and laser marker
JPH0546113B2 (en)
JPH0563071U (en) Flash lamp