JPH0423479A - Laser device - Google Patents

Laser device

Info

Publication number
JPH0423479A
JPH0423479A JP12877190A JP12877190A JPH0423479A JP H0423479 A JPH0423479 A JP H0423479A JP 12877190 A JP12877190 A JP 12877190A JP 12877190 A JP12877190 A JP 12877190A JP H0423479 A JPH0423479 A JP H0423479A
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
laser
doped
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12877190A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12877190A priority Critical patent/JPH0423479A/en
Publication of JPH0423479A publication Critical patent/JPH0423479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve energy efficiency by enclosing at least one of pumping light source and laser medium with a doped quartz glass tube. CONSTITUTION:An least one of pumping light source 2 and a laser medium 1 is enclosed with a doped quartz glass tube 5. Light whose wave length is shorter than 600nm of light projected from a xcenon flash lamp 2 is cut by the transmission through the chromium doped quartz glass tube 5 and the luminance in a wavelength range of 600 to 850nm is doubled. Furthermore, the YAG rod and quartz glass tube which is doped chromium are not deteriorated by solarization even if used for a long time. Energy efficiency can be improved in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エネルギー効率の高いレーザー装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser device with high energy efficiency.

[従来の技術] Nd:  YAGレーザーの場合、キセノンフラッシュ
ランプを励起光源とし、集光反射鏡でレーザー媒質であ
るYAGロッドに光を照射し、ミラー系からなる共振器
でレーザー発振をさせている。
[Conventional technology] In the case of Nd: YAG laser, a xenon flash lamp is used as an excitation light source, a condensing reflector is used to irradiate light onto a YAG rod, which is a laser medium, and a resonator made of a mirror system is used to oscillate the laser. .

キセノンランプが高熱を発するため、ランプとYAGロ
ッドを石英管で囲み、冷却水を循環させている。
Because the xenon lamp generates high heat, the lamp and YAG rod are surrounded by a quartz tube and cooling water is circulated.

[発明が解決しようとする課題] しかし、Nd: YAGは720〜830nmの励起光
に対してのみレーザー遷移を行うが、キセノンランプの
発光スペクトルは、全波長域でほぼフラットである。7
20nmより短波長の光はロッドの劣化原因に、830
nmより長波長の光は発熱源となり、エネルギーの大き
な損失となっている。
[Problems to be Solved by the Invention] However, while Nd:YAG performs laser transition only for excitation light of 720 to 830 nm, the emission spectrum of a xenon lamp is substantially flat over the entire wavelength range. 7
Light with a wavelength shorter than 20 nm causes rod deterioration, and 830
Light with a wavelength longer than nm becomes a heat source, resulting in a large loss of energy.

本発明は励起光源の発光スペクトルを変化させることに
より、エネルギー効率を上げ、レーザー媒質の劣化を防
ぐことを目的としている。また、エネルギー効率の向上
は、励起光源の寿命を延ばすことにもなる。
The present invention aims to improve energy efficiency and prevent deterioration of the laser medium by changing the emission spectrum of the excitation light source. Improving energy efficiency also extends the lifetime of the excitation light source.

[課題を解決するための手段] 本発明は、励起光源、レーザー媒質、共振器から構成さ
れるレーザー装置において、励起光源とレーザー媒質の
少なくとも一方を、ドープト石英ガラス管で囲むことを
特徴とする。
[Means for Solving the Problems] The present invention is a laser device comprising an excitation light source, a laser medium, and a resonator, characterized in that at least one of the excitation light source and the laser medium is surrounded by a doped quartz glass tube. .

以下、実施例により本発明の詳細を示す。Hereinafter, the details of the present invention will be shown by examples.

[実施例] 実施例I Nd:  YAGレーザー装置の断面構造の概念を表す
図を、第1図に示す。YAGロッド1を石英ガラス管4
で囲み、冷却水6を流した。一方キセノンフラッシュラ
ンプ2をクロムをドープした石英ガラス管5(例えば特
開昭6O−76933)で囲み冷却水を流した。
[Example] Example I A diagram showing the concept of the cross-sectional structure of a Nd: YAG laser device is shown in FIG. YAG rod 1 into quartz glass tube 4
, and cooling water 6 was poured into it. On the other hand, the xenon flash lamp 2 was surrounded by a chromium-doped quartz glass tube 5 (for example, Japanese Patent Application Laid-Open No. 60-76933), and cooling water was allowed to flow therethrough.

クロムをドープした石英ガラスは400〜600nmの
波長の光を吸収し、600〜850nmの波長域で発光
する。キセノンフラッシュランプから出射した光は、ク
ロムをドープした石英ガラス管を通過することにより、
600nmより短波長の光がカットされ、600〜85
0nmの波長域の輝度が倍増した。
Chromium-doped quartz glass absorbs light in the wavelength range of 400 to 600 nm and emits light in the wavelength range of 600 to 850 nm. The light emitted from the xenon flash lamp passes through a chromium-doped quartz glass tube.
Light with a wavelength shorter than 600nm is cut, and the wavelength of 600-85
The brightness in the 0 nm wavelength range has doubled.

このように波長変換した光を、集光反射鏡3でNd: 
 YAGロッドに照射し、共振器でレーザー光を取り出
したところ、レーザーの出射強度は従来のほぼ2倍とな
った。また長時間使用しても、YAGロッドおよびクロ
ムをドープした石英ガラス管には、ソーラリゼーション
による劣化が発生せず、レーザー特性に変化は認められ
なかった。
The light whose wavelength has been converted in this way is converted to Nd:
When a YAG rod was irradiated with the laser beam and the laser beam was extracted using a resonator, the laser output intensity was almost twice that of the conventional one. Further, even after long-term use, the YAG rod and the chromium-doped quartz glass tube did not deteriorate due to solarization, and no change was observed in the laser characteristics.

実施例2 アレキサンドライト(cr:  BeA120a)ロッ
ドを、セリウムをドープした石英ガラス管で囲み、冷却
水を流した。一方キセノンフラッシュランプを石英管で
囲み、冷却水を流した。
Example 2 An alexandrite (CR: BeA120a) rod was surrounded by a cerium-doped quartz glass tube, and cooling water was passed through it. On the other hand, the xenon flash lamp was surrounded by a quartz tube, and cooling water was passed through it.

セリウムをドープした石英ガラスは、200〜300n
mの紫外線を吸収し、350〜550nmの波長域で発
光する。アレキサンドライトレーザーは、400〜65
0nmの励起光を吸収し、700〜818nmの波長可
変レーザー発振を起こす。
Cerium-doped quartz glass is 200-300N
It absorbs ultraviolet rays of m and emits light in the wavelength range of 350 to 550 nm. Alexandrite laser is 400-65
It absorbs 0 nm excitation light and generates wavelength tunable laser oscillation from 700 to 818 nm.

クリプトンフラッシュランプの出射光が集光反射鏡で反
射され、セリウムをドープした石英ガラスを通過すると
、300nmより短波長の光がカットされ、350〜5
00nmの波長域の輝度が倍増した。このように波長変
換した光をアレキサンドライトロッドに照射し、共振器
でレーザーを取り出したところ、レーザーの出射強度は
従来のほぼ2倍となった。
When the emitted light from the krypton flash lamp is reflected by a condensing reflector and passes through cerium-doped quartz glass, light with wavelengths shorter than 300 nm is cut out, and the light with wavelengths shorter than 300 nm is
The brightness in the 00 nm wavelength range has doubled. When the alexandrite rod was irradiated with the wavelength-converted light and the laser was extracted from the resonator, the laser output intensity was almost twice that of the conventional one.

実施例3 Nd:  YAGロッドを、クロムをドープした石英ガ
ラス管で囲み、冷却水を流した。一方キセノンフラッシ
ュランプを、セリウムをドープした石英ガラス管で囲み
、冷却水を流した。
Example 3 A Nd:YAG rod was surrounded by a chromium-doped quartz glass tube, and cooling water was passed through it. On the other hand, the xenon flash lamp was surrounded by a quartz glass tube doped with cerium, and cooling water was passed through it.

キセノンフラッシュランプの出射光が、セリウムをドー
プした石英ガラス管、続いてクロムをドープした石英管
を通過すると、600nmより短波長の光がカットされ
、600〜850nmの波長の光が約3倍の強度になっ
た。このように波長変換した光をNd: YAGロッド
に照射し、共振器でレーザーを取り出したところ、レー
ザーの出射強度は従来の3倍近くに増加した。
When the emitted light from a xenon flash lamp passes through a quartz glass tube doped with cerium and then a quartz tube doped with chromium, light with wavelengths shorter than 600 nm is cut out, and light with wavelengths between 600 and 850 nm is cut out by about three times as much. It became strong. When the Nd: YAG rod was irradiated with the light whose wavelength had been converted in this way and the laser was extracted from the resonator, the laser output intensity increased to nearly three times that of the conventional method.

実施例4 Ndr  YAGロッドを、セリウムとクロムを共ドー
プした石英ガラス管で囲み、冷却水を流した。
Example 4 A Ndr YAG rod was surrounded by a quartz glass tube co-doped with cerium and chromium, and cooled water was flowed through it.

一方キセノンフラッシュランプを、石英ガラス管で囲み
、冷却水を流した。
On the other hand, the xenon flash lamp was surrounded by a quartz glass tube, and cooling water was passed through it.

キセノンフラッシュランプの出射光が集光され、セリウ
ムとクロムを共ドープした石英管を通過すると、600
nmより短波長の光がカットされ、600〜850nm
の波長の光が約3倍の強度になった。このように波長変
換した光をNd:  YAGロッドに照射し、共振器で
レーザーを取り出したところ、レーザーの出射強度は従
来の3倍近くに増加した。
When the emitted light from a xenon flash lamp is focused and passes through a quartz tube co-doped with cerium and chromium, it produces 600
Light with wavelengths shorter than 600 to 850 nm is cut.
The intensity of light with this wavelength has become approximately three times as strong. When the Nd:YAG rod was irradiated with the wavelength-converted light in this way and the laser was extracted from the resonator, the laser output intensity increased nearly three times that of the conventional method.

実施例5 アレキサンドライトレーザ装置の断面構造の概念を表す
図を、第2図に示す。アレキサンドライトロッド11及
びキセノンフラッシュランプ12を、セリウムをドープ
した石英ガラス管14で囲み、冷却水15を流した。
Example 5 FIG. 2 shows a conceptual diagram of the cross-sectional structure of an alexandrite laser device. The alexandrite rod 11 and the xenon flash lamp 12 were surrounded by a quartz glass tube 14 doped with cerium, and cooling water 15 was flowed therethrough.

キセノンランプを出射した光は、セリウムをドープした
石英ガラス管で波長変換され、集光反射鏡13でアレキ
サンドライトロッドに集光される。
The light emitted from the xenon lamp is wavelength-converted by a cerium-doped quartz glass tube, and is focused onto an alexandrite rod by a condensing reflector 13.

共振器でレーザー光を取り出したところ、レーザーの出
射強度は従来のほぼ2倍となった。
When the laser beam was extracted using a resonator, the intensity of the laser beam was almost twice that of the conventional one.

また、レーザーの出射強度が従来並みになるよう、キセ
ノンランプの動作エネルギーを約半分にしたところ、ラ
ンプ寿命を10倍近く延ばすことができた。
Furthermore, by cutting the operating energy of the xenon lamp by about half so that the laser output intensity was the same as before, the lamp life could be extended nearly 10 times.

以上数種類のり−ザー装置について実施例を述べてきた
が、励起光源やレーザー媒質の種類に何ら限定されるこ
とはない。また、石英ガラスへのドーピング物質も種々
考えられる。
Although several types of laser apparatuses have been described above, the invention is not limited to the type of excitation light source or laser medium. Furthermore, various doping substances for quartz glass can be considered.

[発明の効果] 以上述べたように本発明によれば、励起光源、レーザー
媒質、共振器から構成されるレーザー装置において、励
起光源とレーザー媒質の少なくとも一方を、ドープト石
英ガラス管で囲むことにより、エネルギー効率を上げ、
レーザー媒質の劣化を防ぐことができた。また、エネル
ギー効率の向上により、励起光源の寿命を延ばすことが
できた。
[Effects of the Invention] As described above, according to the present invention, in a laser device composed of an excitation light source, a laser medium, and a resonator, by surrounding at least one of the excitation light source and the laser medium with a doped quartz glass tube, , increase energy efficiency,
We were able to prevent the deterioration of the laser medium. In addition, the lifetime of the excitation light source could be extended by improving energy efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における、Nd:  YAG
レーザー装置の断面構造の概念を表す図である。第2図
は本発明の実施例5における、アレキサンドライトレー
ザー装置の断面構造の概念を表す図である。 YAGロッド キセノンフラッシュランプ 集光反射鏡 石英ガラス管 クロムをドープした石英ガラス管 冷却水 アレキサンドライトロッド キセノンフラッシュランプ 集光反射鏡 セリウムをドープした石英ガラス管 冷却水 以  上
FIG. 1 shows Nd: YAG in Example 1 of the present invention.
FIG. 2 is a diagram illustrating the concept of a cross-sectional structure of a laser device. FIG. 2 is a diagram showing the concept of a cross-sectional structure of an alexandrite laser device in Example 5 of the present invention. YAG rod xenon flash lamp focusing reflector quartz glass tube chromium-doped quartz glass tube cooling water Alexandrite rod xenon flash lamp focusing reflector cerium-doped quartz glass tube cooling water

Claims (1)

【特許請求の範囲】[Claims] 励起光源、レーザー媒質、共振器から構成されるレーザ
ー装置において、励起光源とレーザー媒質の少なくとも
一方を、ドープト石英ガラス管で囲むことを特徴とする
レーザー装置。
A laser device comprising an excitation light source, a laser medium, and a resonator, characterized in that at least one of the excitation light source and the laser medium is surrounded by a doped silica glass tube.
JP12877190A 1990-05-18 1990-05-18 Laser device Pending JPH0423479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12877190A JPH0423479A (en) 1990-05-18 1990-05-18 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12877190A JPH0423479A (en) 1990-05-18 1990-05-18 Laser device

Publications (1)

Publication Number Publication Date
JPH0423479A true JPH0423479A (en) 1992-01-27

Family

ID=14993066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12877190A Pending JPH0423479A (en) 1990-05-18 1990-05-18 Laser device

Country Status (1)

Country Link
JP (1) JPH0423479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161269A (en) * 2006-12-27 2008-07-17 Hiroshi Ariyama Hanger for clothes display-cum-clotheshorse
WO2017204358A1 (en) * 2016-05-27 2017-11-30 富士フイルム株式会社 Solid-state laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161269A (en) * 2006-12-27 2008-07-17 Hiroshi Ariyama Hanger for clothes display-cum-clotheshorse
WO2017204358A1 (en) * 2016-05-27 2017-11-30 富士フイルム株式会社 Solid-state laser device
US10587088B2 (en) 2016-05-27 2020-03-10 Fujifilm Corporation Solid-state laser device

Similar Documents

Publication Publication Date Title
Paschotta et al. 230 mW of blue light from a thulium-doped upconversion fiber laser
US3230474A (en) Solid state laser and pumping means therefor using a light condensing system
Erhard et al. Pumping schemes for multi-kW thin disk lasers
JPS60189277A (en) Oscillatation for erbium laser and device thereof
US5841801A (en) Double wavelength laser
JPS594092A (en) Yttrium gallium garnet laser doped with chromium
JPH07235714A (en) Solid laser apparatus
JPH0423479A (en) Laser device
JP2908680B2 (en) Upconversion laser material
JPH0475393A (en) Laser device
WO2008050258A2 (en) Optically pumped solid-state laser with co-doped gain medium
JPS59195892A (en) Solid state laser oscillator
US5381433A (en) 1.94 μm laser apparatus, system and method using a thulium-doped yttrium-lithium-fluoride laser crystal pumped with a diode laser
WO1990008413A1 (en) Solid laser
JPS60239078A (en) Solid-state laser oscillator
JPH0424975A (en) Laser equipment
JP2645051B2 (en) Solid state laser oscillator
JPH05254879A (en) Fluorescent glass and laser device using the same
JPH09153655A (en) Laser device
JPH0453282A (en) Laser device
JPH04302186A (en) Solid-state laser oscillator, solid-state laser medium, laser resonator, and laser exposure device
JP3094436B2 (en) Semiconductor laser pumped solid-state laser device
JPH04292436A (en) Fluorescent glass and laser device using the same glass
JPS59161890A (en) Gadolinium-gallium-garnet laser doped with cr
JP2001223423A (en) Laser device