JPH04292436A - Fluorescent glass and laser device using the same glass - Google Patents
Fluorescent glass and laser device using the same glassInfo
- Publication number
- JPH04292436A JPH04292436A JP5208791A JP5208791A JPH04292436A JP H04292436 A JPH04292436 A JP H04292436A JP 5208791 A JP5208791 A JP 5208791A JP 5208791 A JP5208791 A JP 5208791A JP H04292436 A JPH04292436 A JP H04292436A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- doped
- quartz glass
- fluorescent
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 23
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 20
- 230000005284 excitation Effects 0.000 claims abstract description 15
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052593 corundum Inorganic materials 0.000 abstract description 16
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 16
- 229910052724 xenon Inorganic materials 0.000 abstract description 13
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 abstract description 13
- 239000000498 cooling water Substances 0.000 abstract description 9
- 230000010355 oscillation Effects 0.000 abstract description 8
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 5
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 5
- 239000000377 silicon dioxide Substances 0.000 abstract description 5
- 229910052682 stishovite Inorganic materials 0.000 abstract description 5
- 229910052905 tridymite Inorganic materials 0.000 abstract description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract description 4
- 239000007864 aqueous solution Substances 0.000 abstract description 4
- 230000003301 hydrolyzing effect Effects 0.000 abstract description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 abstract description 2
- GFISHBQNVWAVFU-UHFFFAOYSA-K terbium(iii) chloride Chemical compound Cl[Tb](Cl)Cl GFISHBQNVWAVFU-UHFFFAOYSA-K 0.000 abstract description 2
- 238000000295 emission spectrum Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910001602 chrysoberyl Inorganic materials 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- -1 polyfluoroethylene Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YJVUGDIORBKPLC-UHFFFAOYSA-N terbium(3+);trinitrate Chemical compound [Tb+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YJVUGDIORBKPLC-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Lasers (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、光の波長変換可能なド
ープト石英ガラス及び、エネルギー効率の高いレーザー
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a doped quartz glass capable of wavelength conversion of light and a laser device with high energy efficiency.
【0002】0002
【従来の技術】Ti:Al2O3レーザーの場合、キセ
ノンフラッシュランプを励起光源とし、集光反射鏡でレ
ーザー媒質であるAl2O3ロッドに光を照射し、ミラ
ー系からなる共振器でレーザー発振をさせている。キセ
ノンランプが高熱を発するため、ランプとAl2O3ロ
ッドを石英管で囲み、冷却水を循環させている。しかし
、Ti:Al2O3は400〜600nmの励起光に対
してのみレーザー遷移を行うが、キセノンランプの発光
スペクトルは、全波長域でほぼフラットである。400
nmより短波長の光はロッドの劣化原因に、600nm
より長波長の光は発熱源となり、エネルギーの大きな損
失となっている。[Prior art] In the case of a Ti:Al2O3 laser, a xenon flash lamp is used as an excitation light source, a condensing reflector is used to irradiate light onto an Al2O3 rod, which is a laser medium, and a resonator consisting of a mirror system is used to oscillate the laser. . Because the xenon lamp generates high heat, the lamp and Al2O3 rod are surrounded by a quartz tube and cooling water is circulated. However, Ti:Al2O3 performs laser transition only for excitation light of 400 to 600 nm, whereas the emission spectrum of a xenon lamp is almost flat over the entire wavelength range. 400
Light with a wavelength shorter than 600 nm causes rod deterioration.
Light with longer wavelengths becomes a source of heat generation, resulting in a large loss of energy.
【0003】そこで光の波長変換可能なドープト石英ガ
ラス(特開昭60−76933)を用い、励起光源の発
光スペクトルを変化させることにより、エネルギー効率
を上げ、レーザー媒質の劣化を防ぐことが提示されてい
る(特願平2−128771)。Nd:YAGや、アレ
キサンドライト(Cr:BeAl2O4)において、そ
の効果が確認された。[0003] Therefore, it has been proposed that the energy efficiency can be increased and the deterioration of the laser medium can be prevented by changing the emission spectrum of the excitation light source using doped quartz glass (Japanese Patent Laid-Open No. 60-76933) that can convert the wavelength of light. (Patent application No. 2-128771). This effect was confirmed in Nd:YAG and alexandrite (Cr:BeAl2O4).
【0004】0004
【発明が解決しようとする課題】しかしながら前述の従
来技術は、チタンを活性イオンとするレーザー媒質に適
応しようとしても、必要とする励起波長に合う蛍光ガラ
スが存在せず、効率の良いレーザー装置ができないため
、波長可変レーザーの発振波長域を広く取れないという
課題があった。[Problems to be Solved by the Invention] However, even if the above-mentioned conventional technology is applied to a laser medium that uses titanium as an active ion, there is no fluorescent glass that matches the required excitation wavelength, and an efficient laser device is not available. Therefore, there was a problem in that it was not possible to widen the oscillation wavelength range of the wavelength tunable laser.
【0005】本発明は前記課題を解決するためのもので
あり、チタンを活性イオンとするレーザー媒質の励起波
長に合う蛍光ガラスの提供を目的としている。また、エ
ネルギー効率が良く、波長可変レーザーの発振波長域を
広く取れるレーザー装置の提供を目的としている。The present invention is intended to solve the above-mentioned problems, and aims to provide a fluorescent glass that matches the excitation wavelength of a laser medium containing titanium as an active ion. Another object of the present invention is to provide a laser device that has good energy efficiency and can widen the oscillation wavelength range of a wavelength tunable laser.
【0006】[0006]
【課題を解決するための手段】本発明は、シリカガラス
にテルビウムとアルミニウムがドーピングされているこ
とを特徴とする蛍光ガラス。[Means for Solving the Problems] The present invention provides a fluorescent glass characterized in that silica glass is doped with terbium and aluminum.
【0007】励起光源、チタンを活性イオンとするレー
ザー媒質、共振器から構成されるレーザー装置において
、励起光源とレーザー媒質の少なくとも一方を、シリカ
ガラスにテルビウムとアルミニウムがドーピングされて
いる蛍光ガラス管で囲むことを特徴とする。In a laser device consisting of an excitation light source, a laser medium containing titanium as an active ion, and a resonator, at least one of the excitation light source and the laser medium is a fluorescent glass tube made of silica glass doped with terbium and aluminum. Characterized by surrounding.
【0008】[0008]
【実施例】(実施例1)エチルシリケートを塩酸水溶液
で加水分解したゾルに、塩化テルビウム(III)と塩
化アルミニウムを添加して溶解し、更に平均粒径0.1
5ミクロンのコロイダルシリカを混合した。テルビウム
とアルミニウムの添加量は適当な値を選択できるが、こ
こでは組成をモル比で(SiO2 :Tb:Al=1:
0.001:0.015)とした。ゾル中にアンモニア
の希釈水溶液を徐徐に添加し、ゾルのpHを3から6の
間に調整してポリフルオロエチレン等の疎水性の容器中
でゲル化させ、適当な開口率の蓋をし、40℃から90
℃の温度で乾燥させドライゲルを得た。適当な昇温プロ
グラムで1100℃から1300℃の温度まで加熱する
と、無色透明なドープト石英ガラスが得られた。[Example] (Example 1) Terbium (III) chloride and aluminum chloride were added and dissolved in a sol obtained by hydrolyzing ethyl silicate with an aqueous hydrochloric acid solution, and the average particle size was 0.1.
5 microns of colloidal silica was mixed. Appropriate values can be selected for the amounts of terbium and aluminum added, but here the composition is expressed as a molar ratio (SiO2:Tb:Al=1:
0.001:0.015). Gradually add a diluted aqueous solution of ammonia to the sol, adjust the pH of the sol between 3 and 6, gel it in a hydrophobic container such as polyfluoroethylene, and cover with a lid with an appropriate opening ratio. 40℃ to 90℃
A dry gel was obtained by drying at a temperature of ℃. When heated to a temperature of 1100° C. to 1300° C. using an appropriate heating program, a colorless and transparent doped quartz glass was obtained.
【0009】3価のテルビウムとアルミニウムをドープ
した石英ガラスの蛍光特性を測定したところ、220〜
300nmの紫外線を吸収し、400〜550nmの広
い波長域で発光した。図1に3価のテルビウムとアルミ
ニウムをドープした石英ガラスの発光スペクトルを示す
。比較として図2に3価のテルビウムのみをドープした
石英ガラスの発光スペクトルを示す。また、図3にレー
ザー媒質であるTi:Al2O3の吸収スペクトルを示
す。3価のテルビウムとアルミニウムをドープした石英
ガラスは、チタンを活性イオンとするレーザー媒質の励
起波長に合う蛍光ガラスであることが確認できた。When the fluorescence characteristics of quartz glass doped with trivalent terbium and aluminum were measured, it was found that 220~
It absorbed ultraviolet light of 300 nm and emitted light in a wide wavelength range of 400 to 550 nm. Figure 1 shows the emission spectrum of quartz glass doped with trivalent terbium and aluminum. For comparison, FIG. 2 shows the emission spectrum of quartz glass doped only with trivalent terbium. Further, FIG. 3 shows the absorption spectrum of Ti:Al2O3, which is a laser medium. It was confirmed that quartz glass doped with trivalent terbium and aluminum is a fluorescent glass that matches the excitation wavelength of a laser medium with titanium as the active ion.
【0010】Ti:Al2O3レーザー装置の断面構造
の概念を表す図を、図4に示す。Al2O3ロッド41
を石英ガラス管44で囲み、冷却水46を流した。一方
キセノンフラッシュランプ42を前述の3価のテルビウ
ムとアルミニウムをドープした石英ガラス管45で囲み
冷却水を流した。キセノンフラッシュランプから出射し
た光は、蛍光ガラス管を通過することにより、300n
mより短波長の光がカットされ、400〜550nmの
波長域の輝度が倍増した。このように波長変換した光を
、集光反射鏡43でレーザー媒質に照射し、共振器でレ
ーザー光を取り出したところ、レーザーの出射強度は従
来のほぼ1.5倍となった。FIG. 4 shows a conceptual diagram of the cross-sectional structure of a Ti:Al2O3 laser device. Al2O3 rod 41
was surrounded by a quartz glass tube 44, and cooling water 46 was passed through it. On the other hand, the xenon flash lamp 42 was surrounded by the aforementioned quartz glass tube 45 doped with trivalent terbium and aluminum, and cooling water was allowed to flow therethrough. The light emitted from the xenon flash lamp passes through a fluorescent glass tube, making it 300n
Light with wavelengths shorter than m was cut, and the brightness in the wavelength range of 400 to 550 nm was doubled. When the wavelength-converted light was irradiated onto a laser medium by the condensing reflector 43 and the laser beam was extracted by the resonator, the laser output intensity was approximately 1.5 times that of the conventional one.
【0011】そのため、波長可変レーザーの発振波長域
を従来の700〜950nmから、650〜1050n
mに広げることができた。また長時間使用しても、Al
2O3ロッドおよびテルビウムとアルミニウムをドープ
した石英ガラス管には、ソーラリゼーションによる劣化
が発生せず、レーザー特性に変化は認められなかった。
(実施例2)メチルシリケートを硝酸水溶液で加水分解
したゾルに、硝酸テルビウム(III)と塩化アルミニ
ウムを添加して溶解し、更に平均粒径0.2ミクロンの
コロイダルシリカを混合した。テルビウムとアルミニウ
ムの添加量は適当な値を選択できるが、ここでは組成を
モル比で(SiO2 :Tb:Al=1:0.005
:0.05)とした。ゾル中にアンモニアの希釈水溶液
を徐徐に添加し、ゾルのpHを3から6の間に調整して
ポリプロピレン等の疎水性の容器中でゲル化させ、適当
な開口率の蓋をし、40℃から90℃の温度で乾燥させ
ドライゲルを得た。適当な昇温プログラムで1100℃
から1300℃の温度まで加熱すると、無色透明なドー
プト石英ガラスが得られた。[0011] Therefore, the oscillation wavelength range of the wavelength tunable laser has been changed from the conventional 700 to 950 nm to 650 to 1050 nm.
I was able to expand it to m. Also, even if used for a long time, the Al
The 2O3 rod and the terbium- and aluminum-doped quartz glass tube did not undergo any deterioration due to solarization, and no change in laser characteristics was observed. (Example 2) Terbium(III) nitrate and aluminum chloride were added and dissolved in a sol obtained by hydrolyzing methyl silicate with an aqueous nitric acid solution, and colloidal silica having an average particle size of 0.2 microns was further mixed therein. Appropriate values can be selected for the amounts of terbium and aluminum added, but here the composition is expressed as a molar ratio (SiO2:Tb:Al=1:0.005).
:0.05). A diluted aqueous solution of ammonia was gradually added to the sol, the pH of the sol was adjusted between 3 and 6, and the sol was gelled in a hydrophobic container such as polypropylene, covered with a lid with an appropriate opening ratio, and heated at 40°C. A dry gel was obtained by drying at a temperature of 90°C. 1100℃ with an appropriate heating program
When heated to a temperature of 1,300° C., a colorless and transparent doped quartz glass was obtained.
【0012】3価のテルビウムとアルミニウムをドープ
した石英ガラスの蛍光特性を測定したところ、220〜
300nmの紫外線を吸収し、400〜550nmの広
い波長域で発光し、チタンを活性イオンとするレーザー
媒質の励起波長に合う蛍光ガラスであることが確認でき
た。When the fluorescence characteristics of quartz glass doped with trivalent terbium and aluminum were measured, it was found that 220~
It was confirmed that the fluorescent glass absorbs ultraviolet light of 300 nm, emits light in a wide wavelength range of 400 to 550 nm, and matches the excitation wavelength of a laser medium containing titanium as an active ion.
【0013】Ti:BeAl2O4ロッドを3価のテル
ビウムとアルミニウムをドープした石英ガラス管で囲み
、冷却水を流した。一方キセノンフラッシュランプを石
英ガラス管で囲み冷却水を流した。キセノンフラッシュ
ランプから出射した光は集光反射鏡で反射され、蛍光ガ
ラス管を通過することにより、300nmより短波長の
光がカットされ、400〜550nmの波長域の輝度が
倍増した。共振器でレーザー光を取り出したところ、レ
ーザーの出射強度は従来のほぼ2倍となった。そのため
、波長可変レーザーの発振波長域を従来の700〜95
0nmから、650〜1100nmに広げることができ
た。また長時間使用しても、Al2O3ロッドおよびテ
ルビウムとアルミニウムをドープした石英ガラス管には
、ソーラリゼーションによる劣化が発生せず、レーザー
特性に変化は認められなかった。[0013] The Ti:BeAl2O4 rod was surrounded by a quartz glass tube doped with trivalent terbium and aluminum, and cooling water was allowed to flow through it. On the other hand, the xenon flash lamp was surrounded by a quartz glass tube and cooling water was passed through it. The light emitted from the xenon flash lamp was reflected by a condensing reflector and passed through a fluorescent glass tube, thereby cutting out light with wavelengths shorter than 300 nm and doubling the brightness in the wavelength range of 400 to 550 nm. When the laser beam was extracted using a resonator, the intensity of the laser beam was almost twice that of the conventional one. Therefore, the oscillation wavelength range of the wavelength tunable laser has been changed from 700 to 95
It was possible to widen the range from 0 nm to 650 to 1100 nm. Further, even after long-term use, the Al2O3 rod and the terbium- and aluminum-doped quartz glass tube did not deteriorate due to solarization, and no change in laser characteristics was observed.
【0014】(実施例3)Ti:Al2O3ロッドとキ
セノンフラッシュランプを、実施例1と同様に作製した
3価のテルビウムとアルミニウムをドープした石英ガラ
ス管で囲み、冷却水を流した。キセノンフラッシュラン
プから出射した光は、蛍光ガラス管を通過すると300
nmより短波長の光がカットされ、400〜550nm
の波長域の輝度が倍増した。このように波長変換した光
をTi:Al2O3ロッドに照射し、共振器でレーザー
を取り出したところ、レーザーの出射強度は従来の2倍
近くに増加した。そのため、波長可変レーザーの発振波
長域を従来の700〜950nmから、650〜110
0nmに広げることができた。また長時間使用しても、
Al2O3ロッドおよびテルビウムとアルミニウムをド
ープした石英ガラス管には、ソーラリゼーションによる
劣化が発生せず、レーザー特性に変化は認められなかっ
た。また、レーザーの出射強度が従来並みになるよう、
キセノンランプの動作エネルギーを約半分にしたところ
、ランプ寿命を10倍近く延ばすことができた。(Example 3) A Ti:Al2O3 rod and a xenon flash lamp were surrounded by a quartz glass tube doped with trivalent terbium and aluminum prepared in the same manner as in Example 1, and cooling water was flowed through the tube. When the light emitted from a xenon flash lamp passes through a fluorescent glass tube, it emits 300
Light with wavelengths shorter than nm is cut, 400-550 nm
The brightness in the wavelength range has doubled. When the Ti:Al2O3 rod was irradiated with the light whose wavelength had been converted in this way and the laser was extracted from the resonator, the output intensity of the laser increased to nearly twice that of the conventional method. Therefore, the oscillation wavelength range of the wavelength tunable laser has been changed from the conventional 700 to 950 nm to 650 to 110 nm.
It was possible to spread it to 0 nm. Even if you use it for a long time,
No deterioration due to solarization occurred in the Al2O3 rod and the terbium and aluminum doped quartz glass tube, and no change in laser characteristics was observed. In addition, in order to maintain the laser output intensity at the same level as before,
By cutting the operating energy of a xenon lamp by about half, it was possible to extend the lamp life by nearly 10 times.
【0015】以上数種類のレーザー装置について実施例
を述べてきたが、励起光源やレーザー媒質の種類に何ら
限定されることはない。また、石英ガラスへのドーピン
グ物質の濃度や製造方法も種々考えられる。Although the embodiments of several types of laser devices have been described above, the excitation light source and the type of laser medium are not limited in any way. Furthermore, various concentrations of doping substances in quartz glass and manufacturing methods can be considered.
【0016】[0016]
【発明の効果】以上述べたように本発明によれば、シリ
カガラスにテルビウムとアルミニウムをドーピングする
ことにより、チタンを活性イオンとするレーザー媒質の
励起波長に合う蛍光ガラスの提供を達成できた。石英ガ
ラスの性質を合わせ持つので、化学的にも熱的にも安定
で、光学部品として広く応用が期待できる。As described above, according to the present invention, by doping silica glass with terbium and aluminum, it has been possible to provide fluorescent glass that matches the excitation wavelength of a laser medium containing titanium as an active ion. Since it has the properties of quartz glass, it is chemically and thermally stable, and is expected to be widely used as optical components.
【0017】また、励起光源とチタンを活性イオンとす
るレーザー媒質の少なくとも一方を、前記蛍光ガラス管
で囲むことにより、エネルギー効率が良く、波長可変レ
ーザーの発振波長域を広く取れるレーザー装置の提供を
達成できた。固体レーザーなので取り扱い易く、半導体
レーザーの波長域をほぼカバーでき、しかも波形特性の
よい高出力レーザーを出射できる。研究開発用その他と
して、広く活用できる。[0017] It is also an object of the present invention to provide a laser device which has good energy efficiency and can widen the oscillation wavelength range of a wavelength tunable laser by surrounding at least one of the excitation light source and the laser medium containing titanium as an active ion with the fluorescent glass tube. I was able to achieve it. Since it is a solid-state laser, it is easy to handle, can cover most of the wavelength range of semiconductor lasers, and can emit high-power laser with good waveform characteristics. It can be widely used for research and development purposes and other purposes.
【図1】本発明の3価のテルビウムとアルミニウムをド
ープした石英ガラスの発光スペクトル図である。FIG. 1 is an emission spectrum diagram of quartz glass doped with trivalent terbium and aluminum according to the present invention.
【図2】3価のテルビウムのみをドープした石英ガラス
の発光スペクトル図である。FIG. 2 is an emission spectrum diagram of quartz glass doped only with trivalent terbium.
【図3】レーザー媒質であるTi:Al2O3の吸収ス
ペクトル図である。FIG. 3 is an absorption spectrum diagram of Ti:Al2O3, which is a laser medium.
【図4】本発明の実施例1における、Ti:Al2O3
レーザー装置の断面構造の概念を表す図である。FIG. 4: Ti:Al2O3 in Example 1 of the present invention
FIG. 2 is a diagram illustrating the concept of a cross-sectional structure of a laser device.
1 3価のテルビウムとアルミニウムをドープし
た石英ガラスの発光スペクトル
2 3価のテルビウムをドープした石英ガラスの
発光スペクトル
3 Ti:Al2O3の吸収スペクトル41
Ti:Al2O3ロッド
42 キセノンフラッシュランプ43 集
光反射鏡
44 石英ガラス管
45 3価のテルビウムとアルミニウムをドープ
した石英ガラス管
46 冷却水1 Emission spectrum of quartz glass doped with trivalent terbium and aluminum 2 Emission spectrum of quartz glass doped with trivalent terbium 3 Absorption spectrum of Ti:Al2O3 41
Ti:Al2O3 rod 42 Xenon flash lamp 43 Concentrating reflector 44 Quartz glass tube 45 Quartz glass tube doped with trivalent terbium and aluminum 46 Cooling water
Claims (2)
ウムがドーピングされていることを特徴とする蛍光ガラ
ス。1. A fluorescent glass characterized in that silica glass is doped with terbium and aluminum.
レーザー媒質、共振器から構成されるレーザー装置にお
いて、励起光源とレーザー媒質の少なくとも一方を、シ
リカガラスにテルビウムとアルミニウムがドーピングさ
れている蛍光ガラス管で囲むことを特徴とする蛍光ガラ
スを用いたレーザー装置。2. A laser device comprising an excitation light source, a laser medium containing titanium as an active ion, and a resonator, in which at least one of the excitation light source and the laser medium is made of fluorescent glass in which silica glass is doped with terbium and aluminum. A laser device that uses fluorescent glass and is surrounded by a tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5208791A JPH04292436A (en) | 1991-03-18 | 1991-03-18 | Fluorescent glass and laser device using the same glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5208791A JPH04292436A (en) | 1991-03-18 | 1991-03-18 | Fluorescent glass and laser device using the same glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04292436A true JPH04292436A (en) | 1992-10-16 |
Family
ID=12905048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5208791A Pending JPH04292436A (en) | 1991-03-18 | 1991-03-18 | Fluorescent glass and laser device using the same glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04292436A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100801376B1 (en) * | 2007-03-07 | 2008-02-05 | 김휘영 | Portable hair removing device using intensive pulse light |
CN112759396A (en) * | 2021-01-20 | 2021-05-07 | 江苏师范大学 | Rod-shaped fluorescent ceramic and preparation method and application thereof |
-
1991
- 1991-03-18 JP JP5208791A patent/JPH04292436A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100801376B1 (en) * | 2007-03-07 | 2008-02-05 | 김휘영 | Portable hair removing device using intensive pulse light |
CN112759396A (en) * | 2021-01-20 | 2021-05-07 | 江苏师范大学 | Rod-shaped fluorescent ceramic and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3582820A (en) | Erbium laser device | |
JPS60189277A (en) | Oscillatation for erbium laser and device thereof | |
JPH04292436A (en) | Fluorescent glass and laser device using the same glass | |
Sasaki et al. | Preparation and Photoproperties of a Transparent Alumina Film Doped with Energy‐Transfer‐Type Laser Dye Pair | |
JPS62232985A (en) | Cr-doped scandium borate laser | |
JPH0475393A (en) | Laser device | |
JPH05254879A (en) | Fluorescent glass and laser device using the same | |
JP2908680B2 (en) | Upconversion laser material | |
JP3333849B2 (en) | Solid state laser device | |
US4397023A (en) | High efficiency dye laser | |
JPH0423479A (en) | Laser device | |
JPH0453282A (en) | Laser device | |
JPH0424975A (en) | Laser equipment | |
US3593194A (en) | Laser coolant and ultraviolet filter | |
JPH02123776A (en) | Solid laser device | |
JP3404788B2 (en) | High pressure discharge lamp and light source device using the same | |
JPH05275793A (en) | Laser glass and laser | |
JPS59161890A (en) | Gadolinium-gallium-garnet laser doped with cr | |
JP2001223423A (en) | Laser device | |
Eichler et al. | Generation of short pulses by a Pr3+: LiYF4 crystal with an efficient laser transition at 639.5 nm | |
EP0097242B1 (en) | Emerald laser | |
Shen et al. | Large energy 1341.4 nm Nd: YALO3 pulse laser | |
RU2202845C2 (en) | Laser | |
JPH079409Y2 (en) | Solid-state laser device | |
Laser | dimer vapor transversetly-umped by &+ 7 & L |