JPH05275793A - Laser glass and laser - Google Patents

Laser glass and laser

Info

Publication number
JPH05275793A
JPH05275793A JP7096892A JP7096892A JPH05275793A JP H05275793 A JPH05275793 A JP H05275793A JP 7096892 A JP7096892 A JP 7096892A JP 7096892 A JP7096892 A JP 7096892A JP H05275793 A JPH05275793 A JP H05275793A
Authority
JP
Japan
Prior art keywords
laser
glass
doped
copper
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7096892A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Tetsuhiko Takeuchi
哲彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7096892A priority Critical patent/JPH05275793A/en
Publication of JPH05275793A publication Critical patent/JPH05275793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser for visible and ultraviolet lights having a high output and a high efficiency by amplifying a second harmonic wave of a fundamental wave generated from an oscillator of a laser medium in which neodymium is active ions by a laser glass amplifier in which silica glass is doped with copper, and further condensing it by a lens. CONSTITUTION:An Nd:YAG is used as an oscillator 31, a KTP is used as an optical nonlinear element 32 to generate a second harmonic wave of a fundamental wave, and an obtained laser light of 532nm is amplified by a laser glass amplifier 33 in which a silica glass is doped with copper. Further, it is condensed by a lens 34 to obtain a laser output having an energy density of 1 GW/cm<2> or more. A quartz glass doped with bivalent copper has a central emitting wavelength of 535nm to become a laser medium for efficiently amplifying the second harmonic wave of the Nd:YAG. A thermal expansion of the laser glass is extremely small, and a repetition pulse operation can be performed at 10pps or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー媒質となるド
ープト石英ガラス及び、エネルギー出力が大きく集光性
に優れたレーザー装置に関する。このようなレーザー装
置は、微細加工に用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a doped quartz glass used as a laser medium and a laser device having a large energy output and an excellent condensing property. Such a laser device can be used for fine processing.

【0002】[0002]

【従来の技術】Nd:YAGレーザーの場合、キセノン
フラッシュランプまたはGaAs半導体レーザーを励起
光源とし、レーザー発振をさせている。Nd:YAGの
均質で大型のレーザー結晶は製造が極めて困難なため、
集光性が悪く高出力も得られなかった。それを改善する
ために、ネオジムがドーピングされているレーザーガラ
スを増幅器に用いて増幅する方式がとられている。レー
ザーガラスは発振の閾値が高いものの、均質性に優れ、
大型化も容易なため、増幅器に適しており珪酸ガラスや
燐酸ガラスが市販されている。高調波を得るためには、
基本波をレーザーガラス増幅器で増幅した後、光非線形
素子を用いて波長変換をしている。
2. Description of the Related Art In the case of an Nd: YAG laser, a xenon flash lamp or a GaAs semiconductor laser is used as an excitation light source for laser oscillation. Since it is extremely difficult to manufacture a large Nd: YAG homogeneous laser crystal,
The light-collecting property was poor and high output could not be obtained. In order to improve it, a method has been adopted in which a laser glass doped with neodymium is used as an amplifier for amplification. Although laser glass has a high threshold of oscillation, it has excellent homogeneity,
Since it is easy to increase the size, silicate glass and phosphate glass are commercially available and suitable for amplifiers. To get harmonics,
After amplifying the fundamental wave with a laser glass amplifier, wavelength conversion is performed using an optical nonlinear element.

【0003】珪酸ガラスや燐酸ガラスは、耐水性、耐熱
性、機械的強度に問題があり、ネオジムをドープした石
英ガラス(特開昭60−76933)をレーザー媒質に
用い、増幅する方式も提言されている。熱レンズ効果が
なく、集光性が良い上、高い信頼性が得られている。
Silicate glass and phosphoric acid glass have problems in water resistance, heat resistance and mechanical strength, and a method of amplifying them by using quartz glass doped with neodymium (JP-A-60-76933) as a laser medium is also proposed. ing. It has no thermal lens effect, good light condensing properties, and high reliability.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前述の従
来技術は、基本波に対する増幅であり、高調波を出力で
用いる場合には、はなはだ転換効率の悪い装置になって
いた。微細加工に用いるため、また透明材料の加工に用
いるためには、短波長のレーザー装置の方が有利であ
り、やむなく高価で維持の大変なエキシマレーザーを用
いざるを得なかった。Nd:YAGの第二高調波を増幅
できるレーザー媒質は存在せず、高出力で効率の良い可
視、紫外光のレーザー装置ができないという課題があっ
た。
However, the above-mentioned conventional technique is an apparatus for amplifying the fundamental wave, and when the higher harmonic wave is used at the output, it has a poor conversion efficiency. In order to use it for fine processing and for processing transparent materials, a short-wavelength laser device is more advantageous, and it is unavoidable to use an excimer laser which is expensive and difficult to maintain. Since there is no laser medium capable of amplifying the second harmonic of Nd: YAG, there is a problem that a high output and efficient visible and ultraviolet laser device cannot be provided.

【0005】本発明は前記課題を解決するためのもので
あり、ネオジムが活性イオンのレーザー媒質の第二高調
波の波長に合うレーザーガラスの提供を目的としてい
る。また、高出力で効率の良い可視、紫外光のレーザー
装置の提供を目的としている。
The present invention is intended to solve the above problems, and an object thereof is to provide a laser glass in which neodymium has a wavelength of the second harmonic of the laser medium of active ions. Another object is to provide a high-power and efficient visible and ultraviolet laser device.

【0006】[0006]

【課題を解決するための手段】上記目的はシリカガラス
に銅をドーピングすることにより達成される。また、シ
リカガラスに銅がドーピングされているレーザーガラス
を発振器に用いたレーザー装置。ネオジムが活性イオン
のレーザー媒質を発振器とするレーザー装置において、
基本波の第二高調波をシリカガラスに銅がドーピングさ
れているレーザーガラス増幅器で増幅するレーザー装
置。更にその高調波を発生させるレーザー装置を提供す
ることにより達成される。
The above object is achieved by doping silica glass with copper. Also, a laser device using a laser glass in which silica glass is doped with copper as an oscillator. In a laser device in which the neodymium is a laser medium of active ions as an oscillator,
A laser device that amplifies the second harmonic of the fundamental wave with a laser glass amplifier in which silica glass is doped with copper. This is further achieved by providing a laser device that produces its harmonics.

【0007】[0007]

【実施例】(実施例1)エチルシリケートを塩酸水溶液
で加水分解したゾルに、硝酸銅を添加して溶解し、更に
平均粒径0.2ミクロンのコロイダルシリカを混合し
た。シリカに対する銅の添加量は適当な値を選択できる
が、ここでは0.1重量%とした。ゾル中にアンモニア
の希釈水溶液を徐々に添加し、ゾルのpHを3から6の
間に調整してポリフルオロエチレン等の疎水性の容器中
でゲル化させ、適当な開口率の蓋をし、40℃から90
℃の温度で乾燥させドライゲルを得た。適当な昇温プロ
グラムで1100℃から1300℃の温度まで加熱する
と、黄色味がかった透明なドープト石英ガラスが得られ
た。
Example 1 Copper nitrate was added to and dissolved in a sol obtained by hydrolyzing ethyl silicate with an aqueous hydrochloric acid solution, and colloidal silica having an average particle size of 0.2 micron was further mixed. The amount of copper added to silica can be selected as an appropriate value, but here it was 0.1% by weight. Diluted aqueous solution of ammonia is gradually added to the sol, the pH of the sol is adjusted to 3 to 6 to cause gelation in a hydrophobic container such as polyfluoroethylene, and the lid is closed with an appropriate opening ratio. 40 ° C to 90
It was dried at a temperature of ° C to obtain a dry gel. Upon heating to a temperature of 1100 ° C. to 1300 ° C. with a suitable heating program, a yellowish transparent doped quartz glass was obtained.

【0008】銅は2価の状態でドープされており、得ら
れたガラスの蛍光特性を測定したところ、230〜32
0nmの紫外線を吸収し、470〜620nmの広い波
長域で発光した。図1に2価の銅をドープした石英ガラ
スの発光スペクトルを示す。また図2に2価の銅をドー
プした石英ガラスの励起スペクトルを示す。2価の銅を
ドープした石英ガラスは、発光中心が535nmにあ
り、Nd:YAGの第二高調波を効率よく増幅できるレ
ーザー媒質であることが確認できた。また励起波長域か
ら、ガラス母材は石英ガラスである必要があることがわ
かった。
Copper was doped in a divalent state, and when the fluorescence characteristics of the obtained glass were measured, it was 230 to 32.
It absorbed 0 nm ultraviolet light and emitted light in a wide wavelength range of 470 to 620 nm. FIG. 1 shows an emission spectrum of quartz glass doped with divalent copper. In addition, FIG. 2 shows an excitation spectrum of divalent copper-doped quartz glass. It was confirmed that the quartz glass doped with divalent copper has an emission center at 535 nm and is a laser medium capable of efficiently amplifying the second harmonic of Nd: YAG. From the excitation wavelength range, it was found that the glass base material needs to be quartz glass.

【0009】銅をドープした石英ガラスをロッド状に加
工し、適度な反射率のミラーで共振器を構成し、XeB
rエキシマレーザーで励起したところ、レーザー発振が
起こり、発振波長は500〜850nmの範囲で可変で
あった。また長時間レーザー発振させても、銅をドープ
した石英ガラスロッドには、ソーラリゼーションによる
劣化が発生せず、レーザー特性に変化は認められなかっ
た。
[0009] Copper-doped quartz glass is processed into a rod shape, and a resonator is constituted by a mirror having an appropriate reflectance.
When excited by the r excimer laser, laser oscillation occurred and the oscillation wavelength was variable in the range of 500 to 850 nm. Further, even if the laser was oscillated for a long time, the quartz glass rod doped with copper did not deteriorate due to solarization, and no change was observed in the laser characteristics.

【0010】(実施例2)メチルシリケートを硝酸水溶
液で加水分解したゾルに、塩化第二銅を添加して溶解
し、更に平均粒径0.15ミクロンのコロイダルシリカ
を混合した。銅の添加量は適当な値を選択できるが、こ
こでは0.05重量%とした。ゾル中にアンモニアの希
釈水溶液を徐々に添加し、ゾルのpHを4から6の間に
調整して、円筒状のポリプロピレン等の疎水性の容器中
でゲル化させた。適当な開口率の容器にゲルを移し、4
0℃から90℃の温度で乾燥させ管状のドライゲルを得
た。適当な昇温プログラムで1100℃から1300℃
の温度まで加熱すると、透明なドープト石英ガラス管が
得られた。
Example 2 Cupric chloride was added to and dissolved in a sol obtained by hydrolyzing methyl silicate with an aqueous nitric acid solution, and colloidal silica having an average particle size of 0.15 micron was further mixed. Although an appropriate amount of copper can be selected, it is set to 0.05% by weight here. A diluted aqueous solution of ammonia was gradually added to the sol, the pH of the sol was adjusted to 4 to 6, and gelation was carried out in a hydrophobic container such as a cylindrical polypropylene. Transfer the gel to a container with an appropriate opening ratio, and
A tubular dry gel was obtained by drying at a temperature of 0 ° C to 90 ° C. 1100 ° C to 1300 ° C with appropriate heating program
When heated to a temperature of 1, a transparent doped quartz glass tube was obtained.

【0011】銅をドープした石英ガラスロッドを石英ガ
ラス管で囲み、冷却水を流した。その周りにキセノンフ
ラッシュランプを数本配置し、集光反射鏡を設けガラス
レーザー増幅器を組み立てた。この増幅器を使ったレー
ザー装置の基本要素の配置図を図3に示す。必要に応じ
てQスイッチやポッケルスセル、ファラデー回転子、空
間フィルタ等を配置させればよい。
A quartz glass rod doped with copper was surrounded by a quartz glass tube, and cooling water was supplied. Several xenon flash lamps were placed around it, and a condenser mirror was installed to assemble a glass laser amplifier. A layout of the basic elements of a laser device using this amplifier is shown in FIG. If necessary, a Q switch, a Pockels cell, a Faraday rotator, a spatial filter, etc. may be arranged.

【0012】Nd:YAGを発振器31に用い、光非線
形素子32にKTPを用いて、基本波の第二高調波を発
生させ、得られた532nmのレーザー光をシリカガラ
スに銅がドーピングされているレーザーガラス増幅器3
3で増幅させた。更にレンズ34で集光し、1ギガW/
cm2以上のエネルギー密度のレーザー出力が得られ
た。レーザーガラスの熱膨張が極めて小さいため、繰り
返しパルス動作も10pps以上取ることが可能であっ
た。またキセノンフラッシュランプによる励起を長時間
行なっても、ソーラリゼーションによる劣化が発生せ
ず、レーザー特性に変化は認められなかった。
Nd: YAG is used for the oscillator 31 and KTP is used for the optical nonlinear element 32 to generate the second harmonic of the fundamental wave, and the obtained 532 nm laser light is doped with silica glass with copper. Laser glass amplifier 3
Amplified at 3. Further, the light is condensed by the lens 34 and 1 giga W /
A laser output with an energy density of cm 2 or more was obtained. Since the thermal expansion of the laser glass is extremely small, the repeated pulse operation could be 10 pps or more. In addition, no deterioration due to solarization occurred and no change was observed in the laser characteristics even after excitation with a xenon flash lamp for a long time.

【0013】(実施例3)エチルシリケートを塩酸水溶
液で加水分解したゾルに、平均粒径0.3ミクロンのコ
ロイダルシリカを混合した。ゾル中にアンモニアの希釈
水溶液を徐々に添加し、ゾルのpHを4から6の間に調
整してゲル化させた。適当な開口率の容器で、40℃か
ら90℃の温度で乾燥させ板状のドライゲルを得た。適
当な昇温プログラムで700℃から1000℃の温度ま
で加熱すると、多孔質で適度な強度を有する石英ガラス
前駆体が得られた。エタノールに硝酸銅を0.5重量%
溶解し、石英ガラス前駆体を浸して、充分に拡散させ
た。表面をエタノールで洗浄した後、適当な昇温プログ
ラムで1100℃から1300℃の温度まで加熱する
と、透明なドープト石英ガラス板が得られた。更に17
00℃まで加熱して、ガラス内に残存する散乱源を消滅
させた。発光特性は実施例1と同じであった。
Example 3 Colloidal silica having an average particle size of 0.3 micron was mixed with a sol obtained by hydrolyzing ethyl silicate with an aqueous hydrochloric acid solution. A diluted aqueous solution of ammonia was gradually added to the sol, and the pH of the sol was adjusted to 4 to 6 to cause gelation. A plate-shaped dry gel was obtained by drying at a temperature of 40 ° C. to 90 ° C. in a container having an appropriate opening ratio. When heated to a temperature of 700 ° C. to 1000 ° C. with an appropriate heating program, a porous silica glass precursor having a proper strength was obtained. 0.5% by weight of copper nitrate in ethanol
It was melted, dipped in the quartz glass precursor, and sufficiently diffused. The surface was washed with ethanol and then heated to a temperature of 1100 ° C. to 1300 ° C. by an appropriate heating program to obtain a transparent doped quartz glass plate. 17 more
It was heated to 00 ° C. to extinguish the scattering source remaining in the glass. The light emission characteristics were the same as in Example 1.

【0014】銅をドープした石英ガラス板をブルースタ
ー角に設置し、窒素ガスで満たした。その周りにキセノ
ンフラッシュランプを数本配置し、反射鏡を設けガラス
レーザー増幅器を組み立てた。この増幅器を使ったレー
ザー装置の基本要素の配置図を図4に示す。必要に応じ
てQスイッチやポッケルスセル、ファラデー回転子、空
間フィルタ等を配置させればよい。また、増幅器を複数
用いてもよい。
A quartz glass plate doped with copper was placed at Brewster's angle and filled with nitrogen gas. Several xenon flash lamps were placed around it, a reflector was installed, and a glass laser amplifier was assembled. A layout of the basic elements of a laser device using this amplifier is shown in FIG. If necessary, a Q switch, a Pockels cell, a Faraday rotator, a spatial filter, etc. may be arranged. Also, a plurality of amplifiers may be used.

【0015】半導体レーザー励起のNd:YVO4 を発
振器に用い、光非線形素子にKTPを用いて、基本波の
第二高調波を発生させ、得られた532nmのレーザー
光をシリカガラスに銅がドーピングされているレーザー
ガラス増幅器で増幅させた。次に光非線形素子41にB
BOを用いて、増幅させたレーザー光の第二高調波を発
生させ、得られた266nmのレーザー光を更にレンズ
で集光し、100メガW/cm2以上のエネルギー密度の
レーザー出力が得られた。レーザーガラスの熱膨張が極
めて小さいため、繰り返しパルス動作も10pps以上
取ることが可能であった。またキセノンフラッシュラン
プによる励起を長時間行なっても、ソーラリゼーション
による劣化が発生せず、レーザー特性に変化は認められ
なかった。
Semiconductor laser-excited Nd: YVO 4 was used as an oscillator, and KTP was used as an optical nonlinear element to generate a second harmonic of the fundamental wave, and the obtained 532 nm laser light was doped into silica glass with copper. It was amplified with a laser glass amplifier that is already used. Next, add B to the optical nonlinear element 41.
Using BO, the second harmonic of the amplified laser light is generated, and the obtained 266 nm laser light is further focused by a lens to obtain a laser output with an energy density of 100 MW / cm 2 or more. It was Since the thermal expansion of the laser glass is extremely small, the repeated pulse operation could be 10 pps or more. In addition, no deterioration due to solarization occurred and no change was observed in the laser characteristics even after excitation with a xenon flash lamp for a long time.

【0016】以上数種類のレーザー装置について実施例
を述べてきたが、励起光源やレーザ装置の配置に何ら限
定されることはない。また、石英ガラスへの銅のドーピ
ング濃度や製造方法も種々考えられる。
Although the embodiments have been described with respect to several kinds of laser devices, the arrangement of the excitation light source and the laser device is not limited at all. In addition, various doping concentrations of copper to the quartz glass and manufacturing methods can be considered.

【0017】[0017]

【発明の効果】以上述べたように本発明によれば、シリ
カガラスに銅をドーピングすることにより、ネオジムが
活性イオンのレーザー媒質の第二高調波の波長に合うレ
ーザーガラスを達成できた。石英ガラスの性質を合わせ
持つので、化学的にも熱的にも安定で、光学部品として
広く応用が期待できる。
As described above, according to the present invention, by doping copper into silica glass, a laser glass in which neodymium matches the wavelength of the second harmonic of the laser medium of active ions can be achieved. Since it has the properties of quartz glass, it is chemically and thermally stable and can be widely applied as an optical component.

【0018】また、シリカガラスに銅がドーピングされ
ているレーザーガラスを発振器に用いたレーザー装置。
ネオジムが活性イオンのレーザー媒質を発振器とするレ
ーザー装置において、基本波の第二高調波をシリカガラ
スに銅がドーピングされているレーザーガラス増幅器で
増幅するレーザー装置。更にその高調波を発生させるレ
ーザー装置を提供することにより高出力で効率の良い可
視、紫外光のレーザー装置を達成できた。微細加工用、
さらにはレーザー核融合用へと応用が可能である。
A laser device using a laser glass in which silica glass is doped with copper as an oscillator.
Neodymium is a laser device that uses a laser medium of active ions as an oscillator, and a laser device that amplifies the second harmonic of the fundamental wave with a laser glass amplifier in which silica glass is doped with copper. Furthermore, by providing a laser device for generating the higher harmonics, a high output and efficient visible and ultraviolet laser device can be achieved. For fine processing,
Furthermore, it can be applied to laser fusion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の銅をドープした石英ガラスの発光スペ
クトル図である。
FIG. 1 is an emission spectrum diagram of quartz glass doped with copper of the present invention.

【図2】本発明の銅をドープした石英ガラスの励起スペ
クトル図である。
FIG. 2 is an excitation spectrum diagram of copper-doped silica glass of the present invention.

【図3】本発明の実施例2における、レーザー装置の配
置図である。
FIG. 3 is a layout diagram of a laser device according to a second embodiment of the present invention.

【図4】本発明の実施例3における、レーザー装置の配
置図である。
FIG. 4 is a layout view of a laser device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11‥‥銅をドープした石英ガラスの発光スペクトル 21‥‥銅をドープした石英ガラスの励起スペクトル 31‥‥発振器 32‥‥光非線形素子 33‥‥レーザーガラス増幅器 34‥‥集光レンズ 41‥‥光非線形素子 11 ... Emission spectrum of copper-doped silica glass 21 ... Excitation spectrum of copper-doped silica glass 31 ... Oscillator 32 ... Optical non-linear element 33 ... Laser glass amplifier 34 ... Condensing lens 41 ... Optical Non-linear element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカガラスに銅がドーピングされてい
ることを特徴とするレーザーガラス。
1. A laser glass, characterized in that silica glass is doped with copper.
【請求項2】 シリカガラスに銅がドーピングされてい
るレーザーガラスを発振器に用いることを特徴とするレ
ーザー装置。
2. A laser device characterized by using a laser glass in which silica glass is doped with copper for an oscillator.
【請求項3】 ネオジムが活性イオンのレーザー媒質を
発振器とするレーザー装置において、基本波の第二高調
波をシリカガラスに銅がドーピングされているレーザー
ガラス増幅器で増幅することを特徴とするレーザー装
置。
3. A laser device using a laser medium of neodymium as an active material as an oscillator, wherein the second harmonic of the fundamental wave is amplified by a laser glass amplifier in which silica glass is doped with copper. ..
【請求項4】 ネオジムが活性イオンのレーザー媒質を
発振器とするレーザー装置において、基本波の第二高調
波をシリカガラスに銅がドーピングされているレーザー
ガラス増幅器で増幅し、更にその高調波を発生させるこ
とを特徴とするレーザー装置。
4. In a laser device using a laser medium of neodymium as an active ion as an oscillator, the second harmonic of the fundamental wave is amplified by a laser glass amplifier in which silica glass is doped with copper, and the higher harmonic is generated. A laser device characterized by:
JP7096892A 1992-03-27 1992-03-27 Laser glass and laser Pending JPH05275793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7096892A JPH05275793A (en) 1992-03-27 1992-03-27 Laser glass and laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096892A JPH05275793A (en) 1992-03-27 1992-03-27 Laser glass and laser

Publications (1)

Publication Number Publication Date
JPH05275793A true JPH05275793A (en) 1993-10-22

Family

ID=13446837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096892A Pending JPH05275793A (en) 1992-03-27 1992-03-27 Laser glass and laser

Country Status (1)

Country Link
JP (1) JPH05275793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508798A (en) * 1994-07-18 1998-09-02 エレクトロ サイエンティフィック インダストリーズ インコーポレイテッド Ultraviolet laser device and method for forming holes in multilayer target
WO1999046835A1 (en) * 1998-03-11 1999-09-16 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus comprising the ultraviolet laser apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508798A (en) * 1994-07-18 1998-09-02 エレクトロ サイエンティフィック インダストリーズ インコーポレイテッド Ultraviolet laser device and method for forming holes in multilayer target
WO1999046835A1 (en) * 1998-03-11 1999-09-16 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus comprising the ultraviolet laser apparatus
US6590698B1 (en) 1998-03-11 2003-07-08 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
US7126745B2 (en) 1998-03-11 2006-10-24 Nikon Corporation Method of irradiating ultraviolet light onto an object
US7277220B2 (en) 1998-03-11 2007-10-02 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
KR100819239B1 (en) * 1998-03-11 2008-04-03 가부시키가이샤 니콘 Ultraviolet laser apparatus and exposure apparatus comprising the ultraviolet laser apparatus
KR100841147B1 (en) * 1998-03-11 2008-06-24 가부시키가이샤 니콘 Laser apparatus, apparatus and method for irradiating ultravilolet light , and apparatus and method for detecting pattern of object

Similar Documents

Publication Publication Date Title
Payne et al. Laser, optical, and thermomechanical properties of Yb-doped fluorapatite
US4951294A (en) Diode pumped modelocked solid state laser
Wang et al. High-power Q-switched TEM 00 mode diode-pumped solid state lasers with> 30W output power at 355nm
JP2008028379A (en) Mode-locked laser device
Balembois et al. Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr: LiSAF laser
Zhang et al. Efficient Laser Performance of Nd3+: Sr5 (PO4) 3F at 1.059 and 1.328 μm
US7801187B2 (en) Mode-locked laser device
Limpert et al. 150 W Nd/Yb codoped fiber laser at 1.1/spl mu/m
WO2004100330A1 (en) Eye-safe solid state laser system
Kravtsov Basic trends in the development of diode-pumped solid-state lasers
CN111262120A (en) Based on mix Nd3+Method for generating 1.8-micron waveband pulse laser of ceramic optical fiber
CN110036542B (en) High-power rare earth doped crystal amplifier based on ultra-low quantum defect pumping scheme by utilizing single-mode or low-order mode fiber laser
Decker Excited state absorption and laser emission from infrared laser dyes optically pumped at 532 nm
JPS594092A (en) Yttrium gallium garnet laser doped with chromium
Saiki et al. Effective fluorescence lifetime and stimulated emission cross-section of Nd/Cr: YAG ceramics under CW lamplight pumping
JPH05275793A (en) Laser glass and laser
Gloster et al. Diode-pumped Q-switched Yb: S-FAP laser
CN209217426U (en) Small-Sized Pulsed mid-infrared laser device
Dong et al. Laser performance of monolithic Cr, Nd: YAG self-Q-switched laser
CN203932662U (en) Kerr lens self mode locking Yb:LYSO laser
Sulc et al. V: YAG saturable absorber for flash-lamp and diode-pumped solid state lasers
Jing-liang et al. Generation of cw Radiation of 273mW at 671nm from a Diode-Pumped Intracavity-Doubled Nd: YVO4 Laser
Tonelli et al. Comparison of Tm-sensitized Ho: Yag and Ho: YLF crystals for a laser-pumped 2 μm CW oscillator
JPH06140696A (en) Laser glass rod and laser system using same
CN109412003A (en) Small-Sized Pulsed mid-infrared laser device