JPH0424975A - Laser equipment - Google Patents

Laser equipment

Info

Publication number
JPH0424975A
JPH0424975A JP12477290A JP12477290A JPH0424975A JP H0424975 A JPH0424975 A JP H0424975A JP 12477290 A JP12477290 A JP 12477290A JP 12477290 A JP12477290 A JP 12477290A JP H0424975 A JPH0424975 A JP H0424975A
Authority
JP
Japan
Prior art keywords
light
laser
wavelength
laser medium
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12477290A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12477290A priority Critical patent/JPH0424975A/en
Publication of JPH0424975A publication Critical patent/JPH0424975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To increase energy efficiency and prevent the deterioration of laser medium, by a method wherein, after the outputted light of a pumping light source is converted into pumping light wavelength wherein the laser medium effectively perform laser transition, the laser medium is irradiated with said light. CONSTITUTION:Quartz glass doped with chromium absorbs the light whose wavelength is 400-600nm, and emits the light in the wavelength range of 600-850nm. That is, the spectral distribution of xenon lamp light which has passed the quartz glass doped with chromium loses the light whose wavelength is shorter than 600nm, and the luminance in the wave length region of 600-850nm is doubled. The light subjected to wave length conversion in the above manner is projected on an Nd:YAG rod by using a condenser reflecting mirror, and laser light is led out by using a resonator, thus almost doubling the laser output intensity as compared with the conventional case. In the case where the operating energy of a xenon flash lamp is reduced to one-half while the laser output intensity is kept equal, the life of the xenon lamp is increased nearly ten times.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、エネルギー効率の高いレーザー装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser device with high energy efficiency.

[従来の技術] Nd : YAGレーザーの場合、キセノンフラッシュ
ランプを励起光源とし、集光反射鏡でレーザー媒質であ
るYAGロッドに光を照射し、ミラー系からなる共振器
でレーザー発振をさせている。
[Conventional technology] In the case of Nd: YAG laser, a xenon flash lamp is used as an excitation light source, a condensing reflector is used to irradiate light onto a YAG rod, which is a laser medium, and a resonator made of a mirror system causes laser oscillation. .

[発明が解決しようとする課題] しかし、Nti:YAGは720〜830tLrrLの
励起光に対してのみレーザー遷移を行うが、キセノンラ
ンプの発光スペクトルは、全波長域でほぼフラットであ
る。720 nmより短波長の光はロンドの劣化原因に
、83[]rLmより長波長の光は発熱源となり、エネ
ルギーの大きな損失となっている。
[Problems to be Solved by the Invention] However, although Nti:YAG performs laser transition only for excitation light of 720 to 830 tLrrL, the emission spectrum of a xenon lamp is substantially flat over the entire wavelength range. Light with a wavelength shorter than 720 nm causes deterioration of the Rondo, and light with a wavelength longer than 83[]rLm becomes a heat source, resulting in a large loss of energy.

本発明は励起光源の発光スペクトルを変化させることに
より、エネルギー効率を上げ、レーザー媒質の劣化を防
ぐことを目的としている。また、エネルギー効率の向上
は、励起光源の寿命を延ばすことにもなる。
The present invention aims to improve energy efficiency and prevent deterioration of the laser medium by changing the emission spectrum of the excitation light source. Improving energy efficiency also extends the lifetime of the excitation light source.

[課題を解決するための手段] 本発明は、励起光源、レーザー媒質、共振器から構成さ
れるレーザー装置において、励起光源の出射光をレーザ
ー媒質が効率よくレーザー遷移も行う励起光波長に変換
した後、レーザー媒質に尾射することを特徴とする。
[Means for Solving the Problems] The present invention provides a laser device comprising an excitation light source, a laser medium, and a resonator, in which the emitted light from the excitation light source is converted into an excitation light wavelength in which the laser medium efficiently performs laser transition. After that, it emits a tail into the laser medium.

[実施例コ 以下、実施例によって本発明の詳細を示す。[Example code] Hereinafter, the details of the present invention will be illustrated by examples.

(実施例1) キセノンランプの発光スペクトルを第2図に庁す。クロ
ムをドープした石英ガラス(例えば特屏昭68−769
33)は4 D D 〜600 n mの洪長の光を吸
収し、600〜850Th77Lの波長域て発光する。
(Example 1) The emission spectrum of a xenon lamp is shown in FIG. Chromium-doped quartz glass (e.g. Tokubei 68-769
33) absorbs light with a wavelength of 4 DD to 600 nm and emits light in the wavelength range of 600 to 850 Th77L.

クロムをドープした石英ガラスを通運したキセノンラン
プのスペクトル分布は、第1図のようになる。600 
nmより短波長の光がカットされ、(S[][]〜85
Dnmの波長域の輝度が倍増した。
The spectral distribution of a xenon lamp carried through chromium-doped quartz glass is shown in FIG. 600
Light with a wavelength shorter than nm is cut, and (S[][]~85
The brightness in the Dnm wavelength range has doubled.

このように波長変換した光を集光反射鏡でN(1: Y
AGロッドに照射し、共振器でレーザー光を取り出した
ところ、レーザーの出射強度は従来のほぼ2倍となった
。また、レーザーの出射強度を同等にし、キセノンフラ
ッシュランプの動作エネルギーをほぼ半分にしたところ
、キセノンランプの寿命が10倍近く延びた。
The wavelength-converted light is converted into N (1: Y
When the AG rod was irradiated with the laser beam and the laser beam was extracted using a resonator, the laser output intensity was almost twice that of the conventional one. Furthermore, when the laser output intensity was made the same and the operating energy of the xenon flash lamp was roughly halved, the life of the xenon lamp was extended nearly 10 times.

(実施例2) セリウムをドープした石英ガラスは、200〜s o 
o nmの紫外線を吸収し、550〜5507Lmの波
長域で発光する。アレキサンドライトレーザーは、40
0〜65 D nmの励起光を吸収し、700〜818
rLmの波長可変レーザー発振を起こす。
(Example 2) Cerium-doped quartz glass is 200 to s o
It absorbs ultraviolet light of 0 nm and emits light in the wavelength range of 550 to 5507 Lm. Alexandrite laser is 40
Absorbs excitation light of 0-65 D nm, 700-818
Causes rLm wavelength tunable laser oscillation.

クリプトンフラッシュランプの出射光が、セリウムをド
ープした石英ガラスを通過すると、6DQnmより短波
長の光がカットされ、550〜550nmの波長域の輝
度が倍増した。このように波長変換した光を集光反射錠
でアレキサンドライトロッドに照射し、共振器でレーザ
ー光を取り出したところ、レーザーの出射強度は従来の
ほぼ2倍となった。また、長時間使用しても、ロッドに
ソーラリゼーションによる劣化が発生せず、レーザー特
性に変化は認められなかった。
When the emitted light from the krypton flash lamp passed through cerium-doped quartz glass, light with wavelengths shorter than 6DQnm was cut, and the brightness in the wavelength range of 550 to 550 nm was doubled. When the wavelength-converted light was irradiated onto an alexandrite rod using a condensing reflective tablet and the laser beam was extracted using a resonator, the laser output intensity was approximately twice that of the conventional one. Furthermore, even after long-term use, the rod did not deteriorate due to solarization, and no change was observed in the laser characteristics.

(実施例6) 代表的な色素レーザーであるクマリン誘導体は4001
′LrrL付近の波長を励起光として吸収し、45a〜
600nmの波長可変レーザーとなる。
(Example 6) A coumarin derivative that is a typical dye laser is 4001
' Absorb wavelength near LrrL as excitation light, 45a~
It becomes a wavelength tunable laser of 600 nm.

色素レーザーをフラッシュランプで励起する場合ランプ
の発光の立ち上がり時間が100ナノ秒以下でないと発
振しない。
When a dye laser is excited with a flash lamp, it will not oscillate unless the lamp's emission rise time is 100 nanoseconds or less.

セリウムをドープした石英ガラスは、200〜5CJO
nmの紫外線を吸収し、550〜550711mの波長
域で発光する。また螢光時間は約10ナノ秒と非常に短
い。
Cerium doped quartz glass is 200~5CJO
It absorbs ultraviolet light in the wavelength range of 550 to 550,711 m. Furthermore, the fluorescence time is very short, about 10 nanoseconds.

キセノンフラッシュランプの出射光が、セリウムをドー
プした石英ガラスを通過すると、500nmより短波長
0光がカットされ、時間的に遅れることなく、550〜
55QyLmの波長域の輝度が倍増した。このように波
長変換した光をクマリン誘導体の循環溶液に照射すると
、従来のほぼ2倍近い強度のレーザー発振が起こった。
When the emitted light from a xenon flash lamp passes through quartz glass doped with cerium, the light with wavelengths shorter than 500 nm is cut off, and the light with wavelengths shorter than 500 nm is cut off, and the light from 550 nm to
The brightness in the 55QyLm wavelength range has doubled. When a circulating solution of a coumarin derivative was irradiated with light whose wavelength had been converted in this way, laser oscillation occurred with an intensity nearly twice that of the conventional method.

色素レーザー媒体は紫外線に弱く、化学分解を起こしや
すいバー7のレーザー貼着は非常に窩い安宙忰を示した
The dye laser medium is sensitive to ultraviolet light and prone to chemical decomposition, and the laser attachment of bar 7 showed very poor stability.

以上数種類のレーザー装置について実施例を述べてきた
が、励起光源やレーザー媒質の種類に何ら限定されるこ
とはない。また、波長変換の方法も種々考えられる。
Although embodiments have been described above regarding several types of laser devices, the excitation light source and the type of laser medium are not limited in any way. Furthermore, various methods of wavelength conversion can be considered.

[発明の効果コ 以上述べたように本発明によれば、励起光源、レーザー
媒質、共振器から構成されるレーザー装置において、励
起光源の出射光をレーザー媒質が効率よくレーザー遷移
を行5励起光波長に変換した後、レーザー媒質に照射す
ることにより、エネルギー効率を上げ、レーザー媒質の
劣化を防ぐことができた。また、エネルギー効率の向上
により励起光源の寿命を延ばすことができた。
[Effects of the Invention] As described above, according to the present invention, in a laser device composed of an excitation light source, a laser medium, and a resonator, the laser medium efficiently transfers the light emitted from the excitation light source to the excitation light. By irradiating the laser medium after converting it to a wavelength, it was possible to increase energy efficiency and prevent deterioration of the laser medium. Furthermore, the lifetime of the excitation light source could be extended due to improved energy efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における、クロムをドープし
た石英ガラスを通過したキセノンランプ小−7A+力L
 F+、八女も生才口鴫セ1第2図は、 キセノンランプの発光スペクトルを 表す図である。 以 上
Figure 1 shows a xenon lamp small -7A + power L that passed through chromium-doped quartz glass in Example 1 of the present invention.
Figure 2 is a diagram showing the emission spectrum of a xenon lamp. that's all

Claims (1)

【特許請求の範囲】[Claims] 励起光源、レーザー媒質、共振器から構成されるレーザ
ー装置において、励起光源の出射光をレーザー媒質が効
率よくレーザー遷移を行う励起光波長に変換した後、レ
ーザー媒質に照射することを特徴とするレーザー装置。
A laser device comprising an excitation light source, a laser medium, and a resonator, characterized in that the laser medium is irradiated with the excitation light after converting the emitted light from the excitation light source into an excitation light wavelength at which the laser medium efficiently undergoes laser transition. Device.
JP12477290A 1990-05-15 1990-05-15 Laser equipment Pending JPH0424975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12477290A JPH0424975A (en) 1990-05-15 1990-05-15 Laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12477290A JPH0424975A (en) 1990-05-15 1990-05-15 Laser equipment

Publications (1)

Publication Number Publication Date
JPH0424975A true JPH0424975A (en) 1992-01-28

Family

ID=14893735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12477290A Pending JPH0424975A (en) 1990-05-15 1990-05-15 Laser equipment

Country Status (1)

Country Link
JP (1) JPH0424975A (en)

Similar Documents

Publication Publication Date Title
Yarborough CW dye laser emission spanning the visible spectrum
US5488624A (en) Rare earth ion upconversion laser system
JPS63503501A (en) How to provide continuous lasing behavior
JP5324453B2 (en) Frequency-converted solid-state laser in the cavity for the visible wavelength region
Webb et al. Sixteen new IR laser dyes
JPH0424975A (en) Laser equipment
Voĭtovich et al. Investigation of spectral and energy characteristics of green radiation generated in lithium fluoride with radiation color centers
WO2008050258A2 (en) Optically pumped solid-state laser with co-doped gain medium
JPH0475393A (en) Laser device
JPH02186685A (en) Solid-state laser oscillation device
JPH0423479A (en) Laser device
Morey Active filtering for neodymium lasers
Erickson Flashlamp-pumped titanium: sapphire laser
JPH0453282A (en) Laser device
Bhawalkar et al. Improving the pumping efficiency of a Nd 3+ glass laser using dyes
JPH079409Y2 (en) Solid-state laser device
JPH05254879A (en) Fluorescent glass and laser device using the same
Anderson et al. Photostability of dye-doped modified polymers at extremely high intensities: Medlite laser systems
JPH04292436A (en) Fluorescent glass and laser device using the same glass
US20100316073A1 (en) Optically pumped solid-state laser with co-doped gain medium
Wallace Rapidly tunable dye-laser-pumped parametric oscillator
KR100249226B1 (en) Lcd projector lighting apparatus
JPH0410481A (en) High-efficiency solid-state laser device
Jusza et al. UV Luminescence in Ho: ZBLAN Glasses
Guochang et al. A multi-joule Ti: sapphire laser with coaxial flashlamp excitation