JPH0278286A - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JPH0278286A
JPH0278286A JP63228572A JP22857288A JPH0278286A JP H0278286 A JPH0278286 A JP H0278286A JP 63228572 A JP63228572 A JP 63228572A JP 22857288 A JP22857288 A JP 22857288A JP H0278286 A JPH0278286 A JP H0278286A
Authority
JP
Japan
Prior art keywords
laser
solid
state laser
light
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63228572A
Other languages
Japanese (ja)
Inventor
Toshio Shoji
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63228572A priority Critical patent/JPH0278286A/en
Publication of JPH0278286A publication Critical patent/JPH0278286A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0608Laser crystal with a hole, e.g. a hole or bore for housing a flashlamp or a mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • H01S3/0931Imaging pump cavity, e.g. elliptical

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve a solid-state laser device in oscillation efficiency by a method wherein two or more solid-state lasers are provided, and one of the solid-state lasers is made to amplify laser rays oscillated from the other, solid state laser. CONSTITUTION:A second solid-state laser 3 is formed into a cylindrical shape and a first solid-state laser 4 is provided inside the cylinder. The laser 4 is excited by the light rays of specified wavelength of an exciting light source 2 and oscillates first laser rays, the laser 3 is excited by the light rays other than the light rays of the specified wavelength and oscillates second laser rays. Here, light rays emitted from the exciting light, source 2 are reflected by a reflecting mirror 1 of a condenser and incident on the cylinder of the laser 3, and the transmitted second laser rays are made to converge onto the rod of the laser 4. And, the second laser rays are amplified by the laser 4 to be improved in oscillation efficiency to the light rays emitted from the light source 2. And, a concave reflective mirror 7, which enables the second laser rays to be directed from the laser 3 to the laser 4, is provided as an incident means.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザ加工等に用いられるレーザに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a laser used for laser processing and the like.

[従来の技術] 従来、レーザ用には、第5図のような集光器が用いられ
ている。この図のように、楕円筒状の反射鏡51内の夫
々の焦点の位置に励起ランプ53と、固体レーザロッド
を収め、励起光54a、54bを固体レーザロッド52
に集光するように、設置されている。
[Prior Art] Conventionally, a condenser as shown in FIG. 5 has been used for lasers. As shown in this figure, an excitation lamp 53 and a solid-state laser rod are housed at respective focal points within an elliptical cylindrical reflecting mirror 51, and excitation lights 54a and 54b are directed to the solid-state laser rod 52.
It is installed so that the light is focused on the

例えば、Nd:YAGレーザの場合、励起ランプの入力
エネルギーの約2.6%しかレーザ発振に寄与しない。
For example, in the case of a Nd:YAG laser, only about 2.6% of the pump lamp input energy contributes to lasing.

人力エネルギーの50%は、熱に変化し、32%は反射
鏡と励起ランプに吸収される。その他、ロッド内に吸収
され損失となる入力光エネルギーが5%以上ある。Co
 −doped固体レーザ材料であるNd、Cr:GS
GGは、この損失光を有効に用いる手段として開発され
たもので、レーザ媒質であるNdイオンが吸収する波長
以外での吸収帯を有し、その吸収エネルギーをNdイオ
ンへエネルギー遷する増感イオンであるCrイオンをド
ープしたもので、Nd : YAGの2倍以上のレーザ
発振効率を有する。
50% of the human power energy is converted into heat and 32% is absorbed by the reflector and excitation lamp. In addition, 5% or more of the input light energy is absorbed into the rod and becomes a loss. Co
-doped solid-state laser material Nd, Cr:GS
GG was developed as a means to effectively use this lost light, and is a sensitizing ion that has an absorption band at a wavelength other than that absorbed by Nd ions, which are the laser medium, and transfers the absorbed energy to Nd ions. It is doped with Cr ions and has a laser oscillation efficiency more than twice that of Nd:YAG.

[発明が解決しようとする課題]  。[Problem to be solved by the invention].

しかしながら、Co−doped固体レーザ材料は、熱
レンズ効果がNd : YAGの約10倍であるため、
拡がり角度が大きくなる。そのため、ビームを絞ったと
きのエネルギー密度を大きく出来ず、スポット溶接等の
レーザ加工に応用できない。
However, co-doped solid-state laser materials have a thermal lensing effect about 10 times that of Nd:YAG, so
The spread angle increases. Therefore, it is not possible to increase the energy density when the beam is focused, and it cannot be applied to laser processing such as spot welding.

Nd:YAGロッドに励起光を集光させると、ランプ人
力9KWからロッドが割れ始めるため、ロッド−本で得
られる最大のレーザ出力は400W程度とされている。
When excitation light is focused on a Nd:YAG rod, the rod begins to crack at a lamp power of 9 kW, so the maximum laser output that can be obtained with a rod is said to be about 400 W.

そのため、KW級のNd:YAGレーザ発振器は、4個
以上の集光器で構成される数段増幅方式を用いている。
Therefore, the KW class Nd:YAG laser oscillator uses a multi-stage amplification method consisting of four or more condensers.

熱レンズの効果は、短波長側に吸収を有するカラーセユ
/ターとNdイオンのレーザ発振に関係しないエネルギ
ー遷移によって起きるもので、固体レーザ材料では、こ
の問題を解決することは、不可能である。また、レーザ
媒質であるNdイオンレーザ発振に寄与する波長での吸
収と同じ発光波長を有する励起ランプがない。
The thermal lens effect is caused by energy transitions that are not related to laser oscillation between color cells and Nd ions that have absorption on the short wavelength side, and it is impossible to solve this problem with solid-state laser materials. Furthermore, there is no excitation lamp that has an emission wavelength that is the same as absorption at a wavelength that contributes to Nd ion laser oscillation, which is a laser medium.

第3図はキセノンフラッシュランプの発光スペクトルを
示す図である。短波長側の波長で、発光が強いため、ロ
ッド内部での発熱量が大きくなる。
FIG. 3 is a diagram showing the emission spectrum of a xenon flash lamp. Since the light emission is strong at shorter wavelengths, the amount of heat generated inside the rod increases.

レーザ発振効率は、Nd:YAGで2%程度しか得られ
ない。
Laser oscillation efficiency is only about 2% with Nd:YAG.

そこで、本発明の技術課題は、レーザ光の拡かり角度が
小さく、レーザ発振効率の高い固体レーザ装置を提供す
ることにある。
Therefore, a technical object of the present invention is to provide a solid-state laser device with a small spread angle of laser light and high laser oscillation efficiency.

[課題を解決するための手段] 本発明によれば、比較的広い波長帯にわたる光を発生す
る励起光源と、この励起光源より一定の距離をおいて配
置され、この励起光源からの先のうち特定波長の光で励
起され第1のレーザ光を発振する第1の固体レーザとを
有する固体レーザ装置において、前記励起光源と、前記
第1の固体レーザとの間に配置され、この励起光源から
の光のうち前記特定波長の光以外の光で励起されて第2
のレーザ光を発振する第2の固体レーザと、この第2の
レーザ光を前記第1の固体レーザに入射させる手段とを
有し、この第1の固体レーザで第2のレーザ光を増幅す
るようにしたことによって、前記励起光源からの光に対
する発振効率を向上したことを特徴とする固体レーザ装
置が得られる。
[Means for Solving the Problems] According to the present invention, there is provided an excitation light source that generates light over a relatively wide wavelength band, and an excitation light source that is placed at a certain distance from the excitation light source, and that In a solid-state laser device having a first solid-state laser that is excited with light of a specific wavelength and oscillates a first laser beam, the solid-state laser device is disposed between the excitation light source and the first solid-state laser, and is arranged between the excitation light source and the first solid-state laser; The second light is excited by light other than the light of the specific wavelength among the light of
a second solid-state laser that oscillates a laser beam, and means for making the second laser beam incident on the first solid-state laser, and the second laser beam is amplified by the first solid-state laser. By doing so, it is possible to obtain a solid-state laser device characterized in that the oscillation efficiency with respect to the light from the excitation light source is improved.

本発明によれば、前記固体レーザ装置において、前記第
2の固体レーザは円筒形状を有し、前記第1の固体レー
ザは、この第2の固体レーザの円筒内に配されているこ
とを特徴とする固体レーザ装置が得られる。
According to the present invention, in the solid-state laser device, the second solid-state laser has a cylindrical shape, and the first solid-state laser is disposed within the cylinder of the second solid-state laser. A solid-state laser device is obtained.

[作 用コ 本発明の固体レーザ装置においては、励起光源は通常比
較的広い波長帯にわたる光を発生する。
[Function] In the solid-state laser device of the present invention, the excitation light source usually generates light over a relatively wide wavelength band.

第1の固体レーザは、励起光源より一定の距離をおいて
配置され、この励起光源からの光のうち特定波長の光で
励起され第1のレーザ光を発振する。
The first solid-state laser is placed at a certain distance from the excitation light source, and is excited with light of a specific wavelength from the excitation light source to oscillate the first laser beam.

この様な固体レーザ装置に、第2の固体レーザを、励起
光源と、第1の固体レーザとの間に配置し、この励起光
源からの光のうち特定波長以外の光で第1の固体レーザ
が励起されて第2のレーザ光を放射するように構成し、
更に、第2の固体レーザと、この第2のレーザ光を第1
の固体レーザに入射させる手段を設ける。この手段は、
例えば、対向する反射鏡の一方で、この第1の固体レー
ザで第2のレーザ光を増幅するようにすることによって
、励起光源からの光に対する発振効率を向上させる。
In such a solid-state laser device, a second solid-state laser is arranged between the excitation light source and the first solid-state laser, and the first solid-state laser is illuminated with light of a wavelength other than the specific wavelength from the excitation light source. is configured to be excited and emit a second laser beam,
Furthermore, a second solid-state laser and a second laser beam are connected to the first solid-state laser.
A means for making the light incident on the solid-state laser is provided. This means
For example, by amplifying the second laser beam with the first solid-state laser on one of the opposing reflecting mirrors, the oscillation efficiency with respect to the light from the excitation light source is improved.

例えば、第2の固体レーザは円筒形状を有し、第1の固
体レーザは、この第2の固体レーザの円筒内に配されて
いるように、構成すると、励起光源よりの光の内の特定
波長の光は、第2の固体レーザに吸収され、残りの励起
光の内の吸収されなかった特定波長以外の光は、第2の
固体レーザを透過し、第1の固体レーザに入射し、第1
のレーザ光を励起させる。第2の固体レーザにおいては
、吸収された光により励起され第1のレーザ光が発振さ
れる。この第1のレーザ光は、例えば、凹面鏡等、によ
りこの円筒部内に配された第1の固体レーザの端面に入
射する。第1の固体レーザは、第1のレーザ光を増幅し
て発振する。
For example, if the second solid-state laser has a cylindrical shape and the first solid-state laser is disposed within the cylinder of the second solid-state laser, a certain amount of light from the excitation light source is generated. The light with the wavelength is absorbed by the second solid-state laser, and the remaining excitation light with a wavelength other than the specific wavelength that is not absorbed passes through the second solid-state laser and enters the first solid-state laser, 1st
Excite the laser beam. The second solid-state laser is excited by the absorbed light to oscillate the first laser beam. This first laser beam is incident on the end face of the first solid-state laser disposed within the cylindrical portion by, for example, a concave mirror or the like. The first solid-state laser amplifies and oscillates the first laser beam.

したがって、励起光源からの光の人力エネルギーに対す
るレーザ光の発振効率の良いレーザ装置が得られる。
Therefore, it is possible to obtain a laser device with high efficiency in oscillating laser light with respect to the human power energy of light from the excitation light source.

[実施例] 本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明によるレーザ装置の一例を示す横断面図
である。
FIG. 1 is a cross-sectional view showing an example of a laser device according to the present invention.

この図において、楕円筒型反射鏡1の焦点に置かれた励
起ランプ2から発した励起光は反射鏡1で反射あるいは
直接Co −doped Nd、  Cr : GSG
G円筒3の側面に入射し、励起光の一部が吸収される。
In this figure, excitation light emitted from an excitation lamp 2 placed at the focal point of an elliptical cylindrical reflector 1 is reflected by the reflector 1 or directly Co-doped Nd, Cr: GSG.
The excitation light is incident on the side surface of the G cylinder 3, and a part of the excitation light is absorbed.

この場合、とくに短波長側の吸収が大きくなるようにC
rを高濃度でドープしておいたものを用いる。円筒3を
透過した励起光は、Nd:YAGロッド4に集光される
In this case, C
A material doped with r at a high concentration is used. The excitation light transmitted through the cylinder 3 is focused on the Nd:YAG rod 4.

第2図はレーザ発振器の要部の構成を示す側1m図であ
る。励起ランプ2より発した光は、集光器の反射鏡1で
反射又は直接にCo −doped N d 。
FIG. 2 is a 1m side view showing the configuration of the main parts of the laser oscillator. The light emitted from the excitation lamp 2 is reflected by the reflecting mirror 1 of the collector or directly Co-doped N d .

Cr:GSGG円筒3に入射し、励起する。Cr: GSGG enters the cylinder 3 and is excited.

第3図は固体レーザ装置に使用されるキセノンフラッシ
ュランプの発光スペクトルを示す図である。
FIG. 3 is a diagram showing the emission spectrum of a xenon flash lamp used in a solid-state laser device.

第4図はNd:YAGの吸収スペクトルで波長0.6〜
0.9μmの間に吸収ピーク持ち、この波長での励起光
がレーザ発振に有効に寄与する。
Figure 4 shows the absorption spectrum of Nd:YAG with a wavelength of 0.6~
It has an absorption peak between 0.9 μm and excitation light at this wavelength effectively contributes to laser oscillation.

この吸収ピークは、第3図に示される励起ランプの発光
スペクトルと余り一致せず、066μm以下の波長領域
での発光エネルギーがかなり大きい。
This absorption peak does not match well with the emission spectrum of the excitation lamp shown in FIG. 3, and the emission energy in the wavelength region of 066 μm or less is quite large.

一方、増感イオンであるCrイオンとレーザ媒質である
NdイオンとをCo −doped したNd、Cr 
: GSGGでは、0.7μm以下での吸収が非常に大
きく、0.6μm以下の励起光をレーザ発振に寄与させ
る事ができ、Nd : YAGの2倍以上レーザ発振効
率が得られる。ビームの拡がり角度は、Nd:YAGの
10倍ある。円筒3を透過した励起光は、Nd:YAG
ロッド4を励起する。
On the other hand, Nd, Cr, which is Co-doped with Cr ions as sensitizing ions and Nd ions as a laser medium,
: GSGG has very large absorption at 0.7 μm or less, and can contribute excitation light of 0.6 μm or less to laser oscillation, resulting in a laser oscillation efficiency more than twice that of Nd:YAG. The beam spread angle is 10 times that of Nd:YAG. The excitation light transmitted through the cylinder 3 is Nd:YAG
Excite rod 4.

この時の、円筒3を透過した励起光のスペクトルは、0
.6μm以下の波長領域が非常に弱められたものとなる
。円筒3の端面は、片面に100%反射膜5.もう一面
に50%反射膜6コートが形成されていて、反射膜間で
共振してレーザ発振する。このレーザ光を、励起状態に
あるNd:YAGロッド4に、ミラー7を用いて入射さ
せ、ミラー8との間で増幅発振させる。このミラー8は
50%の反射鏡である。励起光の密度は、Nd:YAG
ロッドの中心からの距離の2乗に反比例する。
At this time, the spectrum of the excitation light transmitted through the cylinder 3 is 0
.. The wavelength region of 6 μm or less is extremely weakened. The end face of the cylinder 3 is coated with a 100% reflective film 5 on one side. Six 50% reflective films are formed on the other surface, and the laser oscillates due to resonance between the reflective films. This laser beam is made incident on the Nd:YAG rod 4 in an excited state using a mirror 7, and is amplified and oscillated between it and the mirror 8. This mirror 8 is a 50% reflective mirror. The density of excitation light is Nd:YAG
It is inversely proportional to the square of the distance from the center of the rod.

Nd、Cr :GSGGのレーザしきい値は、Nd:Y
AGの]/2である。このデータをもとに、Nd : 
YAGロッドが割れない程度の励起光がNd:YAGに
集光され、Nd、Cr:GSGGのレーデしきい値以上
のエネルギー密度になる位置にNd、Cr:GSGG円
筒3を設けである。このときの、レーザ効率は、Nd、
Cr:GSGG単体を用いた場合よりも悪くなる。しか
し、Nd:YAGより高い効率が得られ、しかも、Nd
:YAGに達する励起光の短波長側(0,6μm以下)
の強度が弱められるために熱レンズ効果が非常に小さく
なり、拡がり角度の小さい良質のレーザビーム光を得る
ことができる。
Nd, Cr:GSGG laser threshold is Nd:Y
AG's]/2. Based on this data, Nd:
The Nd, Cr: GSGG cylinder 3 is provided at a position where excitation light that does not break the YAG rod is focused on the Nd:YAG, and the energy density is higher than the Rede threshold of the Nd, Cr: GSGG. At this time, the laser efficiency is Nd,
It is worse than when Cr:GSGG alone is used. However, higher efficiency than Nd:YAG can be obtained, and Nd
: Short wavelength side of excitation light reaching YAG (0.6 μm or less)
Since the intensity of the laser beam is weakened, the thermal lens effect becomes extremely small, and a high-quality laser beam with a small divergence angle can be obtained.

また、ランプに人力できる電力も大きく出来るので、集
光器−台で、KW級のレーザ発振が、可能となる。
Furthermore, since the electric power that can be manually applied to the lamp can be increased, KW class laser oscillation is possible with the condenser stand.

[発明の効果] 以上説明したように、本発明によれば、励起ランプを用
いたレーザ装置において、拡がり角度が小さく良質で、
且つ高出力で高効率な固体レーザ装置を得ることが出来
る。
[Effects of the Invention] As explained above, according to the present invention, a laser device using an excitation lamp has a small divergence angle, high quality,
Moreover, a high-output and highly efficient solid-state laser device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレーザ装置の一例を示す横断面図
、第2図は第1図のレーザ装置の構成を示す図、第3図
はキセノンフラッシュランプの発光スペクトルを示す図
、第4図はNd : YAGの吸収スペクトルを示す図
、第5図は従来の集光器の〜例を示す断面図である。 図中1は楕円筒型反射鏡、2は励起ランプ、3はCo 
−doped Nd、  Cr : 0300円筒、4
はNd:YAGロッド、5は100%反射コート膜、6
は50%反射コート膜、7は100%反射ミラー、8は
50%反射ミラー、9はレーザ光である。 第1図 第2図 一一一」
FIG. 1 is a cross-sectional view showing an example of a laser device according to the present invention, FIG. 2 is a diagram showing the configuration of the laser device in FIG. 1, FIG. 3 is a diagram showing the emission spectrum of a xenon flash lamp, and FIG. The figure shows the absorption spectrum of Nd:YAG, and FIG. 5 is a sectional view showing an example of a conventional condenser. In the figure, 1 is an elliptical cylindrical reflector, 2 is an excitation lamp, and 3 is a Co
-doped Nd, Cr: 0300 cylinder, 4
is Nd:YAG rod, 5 is 100% reflective coating film, 6 is
is a 50% reflective coating film, 7 is a 100% reflective mirror, 8 is a 50% reflective mirror, and 9 is a laser beam. Figure 1 Figure 2 Figure 111

Claims (1)

【特許請求の範囲】[Claims] 1、比較的広い波長帯にわたる光を発生する励起光源と
、該励起光源より一定の距離をおいて配置され、該励起
光源からの光のうち特定波長の光で励起され第1のレー
ザ光を発振する第1の固体レーザとを有する固体レーザ
装置において、前記励起光源と、前記第1の固体レーザ
との間に配置され、該励起光源からの光のうち前記特定
波長の光以外の光で励起されて第2のレーザ光を発振す
る第2の固体レーザと、該第2のレーザ光を前記第1の
固体レーザに入射させる手段とを有し、該第1の固体レ
ーザで第2のレーザ光を増幅するようにしたことによっ
て、前記励起光源からの光に対する発振効率を向上した
ことを特徴とする固体レーザ装置。
1. An excitation light source that generates light over a relatively wide wavelength band, and a first laser beam that is placed at a certain distance from the excitation light source and that is excited with light of a specific wavelength from the excitation light source. A solid-state laser device having a first solid-state laser that oscillates, the solid-state laser device being disposed between the excitation light source and the first solid-state laser, and comprising a light other than the light of the specific wavelength among the light from the excitation light source. a second solid-state laser that is excited to oscillate a second laser beam; and means for making the second laser beam incident on the first solid-state laser; A solid-state laser device characterized in that the oscillation efficiency of light from the excitation light source is improved by amplifying laser light.
JP63228572A 1988-09-14 1988-09-14 Solid-state laser device Pending JPH0278286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228572A JPH0278286A (en) 1988-09-14 1988-09-14 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228572A JPH0278286A (en) 1988-09-14 1988-09-14 Solid-state laser device

Publications (1)

Publication Number Publication Date
JPH0278286A true JPH0278286A (en) 1990-03-19

Family

ID=16878464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228572A Pending JPH0278286A (en) 1988-09-14 1988-09-14 Solid-state laser device

Country Status (1)

Country Link
JP (1) JPH0278286A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239076A (en) * 1984-05-11 1985-11-27 Toshiba Corp Solid-state laser oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239076A (en) * 1984-05-11 1985-11-27 Toshiba Corp Solid-state laser oscillator

Similar Documents

Publication Publication Date Title
US20110150013A1 (en) Resonant pumping of thin-disk laser with an optically pumped external-cavity surface-emitting semiconductor laser
Erhard et al. Pumping schemes for multi-kW thin disk lasers
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
JPH0278286A (en) Solid-state laser device
JPS60239078A (en) Solid-state laser oscillator
JPH0983048A (en) Solid state laser
JP2003158325A (en) Passive q switch laser
JPH04291976A (en) Shg element
JP2666548B2 (en) Semiconductor laser pumped solid-state laser device
JPH0637373A (en) Semiconductor laser-excited solid state laser
JPH0448664A (en) Array semiconductor laser edge excitation solid state laser
JP3265644B2 (en) Semiconductor laser pumped solid-state laser device
JP2865057B2 (en) Laser diode pumped solid-state laser oscillator.
JPH1079550A (en) Solid laser device of exciting semiconductor laser
JP3493373B2 (en) Laser oscillator
JP2743584B2 (en) Laser device
JPH033379A (en) Solid-state laser device
JPH04330792A (en) Solid-state laser
JPH03155687A (en) Semiconductor laser excited solid state laser
JPH11220194A (en) Semiconductor laser pumped solid-state laser
JPH06132586A (en) Solid state laser system
JPH06112559A (en) End face excitation type solid-state laser
JPH04123480A (en) Laser-exciting laser
JPS61287287A (en) Solid state laser element
JP2005217281A (en) Multipath amplifier