JPS637689A - Laser device using powdered laser medium - Google Patents

Laser device using powdered laser medium

Info

Publication number
JPS637689A
JPS637689A JP15076486A JP15076486A JPS637689A JP S637689 A JPS637689 A JP S637689A JP 15076486 A JP15076486 A JP 15076486A JP 15076486 A JP15076486 A JP 15076486A JP S637689 A JPS637689 A JP S637689A
Authority
JP
Japan
Prior art keywords
laser
medium
laser medium
powder
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15076486A
Other languages
Japanese (ja)
Inventor
Yasutsugu Osumi
大隅 安次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP15076486A priority Critical patent/JPS637689A/en
Publication of JPS637689A publication Critical patent/JPS637689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Abstract

PURPOSE:To enlarge the extent of selection of a laser medium by a method wherein fine powder such as minute spherical particles and crystals of a substance which acts as a laser medium in solid state are dispersed and suspended into a medium transparent with respect to the oscillating light. CONSTITUTION:Fine powder (YAG powder) 7 which is a laser medium is interposed between mirrors constituting a resonator and the YAG fine powder is floated and dispersed in argon gas which is inactive gas and is turned into a laser oscillation medium. In the forming process of this fine powder, a YAG poly material (YAG poly laser medium) 50 doped with a proper amount of Nd<3+> is turned into fine powder for a laser medium by powdering with a ball mill 51 and so on in such a way as not to change the physical nature other than a form change. As the argon gas is being circulated by an argon gas circulating pump 8, the powdered laser medium 7 being encapsulated in a cylindrical space partitioned by transparent partition plates 14 and 15 are almost uniformly distributed in this space.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体レーザ媒質となりうる物質の球状微粒、
または結晶等の微粉末を発振光に対して透明な媒質中に
分散させて構成した粉末レーザ媒質を用いたレーザ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides spherical fine particles of a substance that can be used as a solid-state laser medium,
The present invention also relates to a laser device using a powder laser medium configured by dispersing fine powder such as crystal in a medium transparent to oscillation light.

(従来の技術) YAGレーザは代表的な固体レーザであり、YACレー
ザロッドをレーザ媒質とするものである。
(Prior Art) A YAG laser is a typical solid-state laser, and uses a YAC laser rod as a laser medium.

加工用またはレーザ干渉などの測定に広く用いられてい
る。
It is widely used for processing purposes and for measuring laser interference.

(発明が解決しようとする問題点) YAGレーザに代表される固体レーザは前述のように、
広く用いられているが、製造とか利用の立場から若干の
問題がある。
(Problems to be solved by the invention) As mentioned above, solid-state lasers represented by YAG lasers have
Although it is widely used, there are some problems in terms of manufacturing and usage.

(1)  レーザ媒質は大きな均一結晶でなくてはなら
ないから、選択範囲がせまくなる。
(1) Since the laser medium must be a large uniform crystal, the selection range becomes narrow.

(2)  YAGレーザロッド等結晶の硬度は高く、媒
質の表面研磨等高度な加工技術が必要となる゛。
(2) Crystals such as YAG laser rods have high hardness and require advanced processing techniques such as surface polishing of the medium.

(3)構造上複数の固体レーザ媒質を同時に使用でき、
ない。
(3) Due to its structure, multiple solid-state laser media can be used simultaneously;
do not have.

(4)媒質の一部が劣化したとき全体の性能が著しく低
下する。
(4) When a part of the medium deteriorates, the overall performance deteriorates significantly.

(5)媒質の冷却に特に留怠しな(ではならず、そのた
めの附属装置を必要とする。
(5) Special care must be taken to cool the medium; an auxiliary device for this purpose is required.

本発明の目的は前述のような固体レーザ媒質に関連する
問題を解決することができる粉末レーザ媒質を用いたレ
ーザ装置を提供することにある。
An object of the present invention is to provide a laser device using a powder laser medium that can solve the problems associated with solid-state laser media as described above.

(問題点を解決するための手段) 前記目的を達成するために、本発明による粉末レーザ媒
質を用いたレーザ装置は、レーザ媒質を励起光源で励起
しレーザ発振をさせるレーザ装置において、固体の状態
でレーザ媒質となる物質の球状微粒、または結晶等の微
粉末を発振光に対して透明な媒質に分散、懸濁して形成
して構成されている。
(Means for Solving the Problems) In order to achieve the above object, a laser device using a powder laser medium according to the present invention is a laser device that excites the laser medium with an excitation light source to cause laser oscillation. It is formed by dispersing and suspending fine spherical particles or fine powder such as crystals of a substance that becomes a laser medium in a medium that is transparent to oscillated light.

(実施例) 以下図面等を参照して本発明をさらに詳しく説明する。(Example) The present invention will be described in more detail below with reference to the drawings and the like.

第1図は、本発明による粉末レーザ媒質を用いたレーザ
装置の原理的な構成を示す概略図である。
FIG. 1 is a schematic diagram showing the basic structure of a laser device using a powder laser medium according to the present invention.

レーザ管1の中に粉末レーザ媒質が封入されている。A powder laser medium is enclosed in a laser tube 1.

励起ランプ2は前記レーザ管1と平行に配置されている
An excitation lamp 2 is arranged parallel to the laser tube 1.

集光反射鏡3の内面は楕円面であり、前記楕円の焦点位
置に前記励起ランプ2と前記レーザ管1が位置するよう
に配置されている。
The inner surface of the condensing reflector 3 is an elliptical surface, and the excitation lamp 2 and the laser tube 1 are arranged so as to be located at the focal point of the ellipse.

レーザ管1の両端外測には全反射ミラー4と一部透過ミ
ラー(出力ミラー)5が配置されており、透過ミラー5
を介してレーザ発振出力が取り出される。
A total reflection mirror 4 and a partial transmission mirror (output mirror) 5 are arranged at both ends of the laser tube 1.
Laser oscillation output is taken out through.

第1図には示されていないが、ガラス製のレーザ管1に
は微粉末(粉末レーザ媒質)が封入され、この微粉末を
攪拌と冷却のためにアルゴンガスが供給されている点で
従来の装置と異なり、レーザ管1を単体レーザ用ロッド
とみなせば通常の固体レーザ発振装置と基本構造は大き
く異なるところはない。
Although not shown in Fig. 1, a glass laser tube 1 is filled with fine powder (powder laser medium), and argon gas is supplied to stir and cool the fine powder. Unlike the above device, if the laser tube 1 is regarded as a single laser rod, the basic structure is not significantly different from that of a normal solid state laser oscillation device.

発振するレーザ光の共振条件が2つの反射ミラー4.5
の間をキャビティとする共振器を構成したときに成立す
るのはガスレーザ、固体レーザ等で一般的に見られる共
振条件と同様である。
The resonance condition for the oscillated laser beam is two reflective mirrors 4.5
When a resonator is constructed with a cavity between the two, the resonance conditions that are established are similar to those commonly found in gas lasers, solid-state lasers, and the like.

本発明では、共振器を構成する上記ミラー間にレーザ媒
質である微粉末を介在させる。
In the present invention, fine powder serving as a laser medium is interposed between the mirrors constituting the resonator.

この実施例は、不活性ガスであるアルゴンガス中にYA
G微粉末を浮遊分散させてレーザ発振媒質とするもので
ある。
In this example, YA was used in argon gas, which is an inert gas.
G fine powder is suspended and dispersed to form a laser oscillation medium.

第5図に前記微粉末の製造工程を示す。FIG. 5 shows the manufacturing process of the fine powder.

Nd3+を通量ドープしたYAC多結晶素材50を形状
変化以外の物理的性質を変化させないようにボールミル
51等を用いて粉砕することより、レーザ媒質用の微粉
末とする。
A YAC polycrystalline material 50 doped with Nd3+ is pulverized using a ball mill 51 or the like so as not to change its physical properties other than a change in shape, to obtain a fine powder for a laser medium.

第2図は、本発明による粉末レーザ媒質を用いたレーザ
装置の実施例のレーザ管を管軸を含む面で一部破断して
示した断面図である。
FIG. 2 is a cross-sectional view showing a laser tube of an embodiment of a laser device using a powder laser medium according to the present invention, partially cut away along a plane including the tube axis.

第3図は、本発明による粉末レーザ媒質を用いたレーザ
装置の実施例のレーザ管を管軸に垂直な平面で破断して
示した断面図である。
FIG. 3 is a cross-sectional view of a laser tube of an embodiment of a laser device using a powder laser medium according to the present invention, taken along a plane perpendicular to the tube axis.

レーザ管1の内壁面13は内部の発光が外部に散逸しな
いように反射面が形成されている。
The inner wall surface 13 of the laser tube 1 is formed with a reflective surface so that the light emitted from the inside does not dissipate to the outside.

各図に示されているように、レーザ管1の側面にはスリ
ット状のノズル12が設けられており、このスリット状
のノズル12に対応する側面にフィルり11が配置され
ており、アルゴンガスi脂環ポンプ8 (第3図参照)
により、アルゴンガスが循環されている。
As shown in each figure, a slit-shaped nozzle 12 is provided on the side surface of the laser tube 1, and a fill 11 is arranged on the side surface corresponding to this slit-shaped nozzle 12, and an argon gas i Alicyclic pump 8 (see Figure 3)
Argon gas is circulated.

これにより、透明な仕切板14.15(第2図参照)で
区画される円柱状の空間内に封入されている粉末レーザ
媒質7はこの空間内に略均−に分布させられている。
As a result, the powder laser medium 7 enclosed in a cylindrical space defined by transparent partition plates 14, 15 (see FIG. 2) is distributed approximately evenly within this space.

その分散浮遊状態は微粉末の濃度はできる限り一定であ
ることが望ましいが、ゆっくりと対流するような状態は
レーザ発振に対して障害とはならない。本発明による装
置の共振器は第4図に示すように、非常に多数の媒質微
粉末内を光学的に反射、屈折等を繰り返し行ないながら
一組の共振ミラー4.5間で共振条件を満足する光路が
統計的にみて十分形成されると考えてよい。
It is desirable that the concentration of the fine powder be as constant as possible in the dispersed floating state, but a state in which it slowly convects does not pose an obstacle to laser oscillation. As shown in FIG. 4, the resonator of the device according to the present invention satisfies the resonance condition between a set of resonant mirrors 4.5 while repeating optical reflection, refraction, etc. within a very large number of medium fine powders. From a statistical point of view, it can be considered that a sufficient number of optical paths are formed.

前述したアルゴンガス循環ポンプ8により形成される循
環系にはアルゴンガスを一定温度に保つような温度調節
機能を付加することも可能である。
It is also possible to add a temperature control function to the circulation system formed by the aforementioned argon gas circulation pump 8 to keep the argon gas at a constant temperature.

これによりレーザ媒質の放熱がアルゴンガスを介して行
われる。
As a result, heat radiation from the laser medium is performed via the argon gas.

(変形例) 以上詳しく説明した実施例について、本発明の範囲内で
種々の変形を施すことができる。
(Modifications) Various modifications can be made to the embodiments described in detail above within the scope of the present invention.

ガスによっては循環させずガス源から常に新しいガスを
供給し外部へ放出するように構成することも可能である
Depending on the gas, it is also possible to configure the system so that new gas is constantly supplied from the gas source and discharged to the outside without being circulated.

ここで、循環させるガスはアルゴンに限ることはなく、
レーザ発振光を吸収する等の2次的妨害をしない安定な
ガスならば選択は自由である。
Here, the gas to be circulated is not limited to argon,
Any stable gas can be selected as long as it does not cause secondary interference such as absorption of laser oscillation light.

また、レーザ媒質も結晶体である必要はなく、ガラスの
ような非晶質の媒質であっても同様な考え方が通用でき
る。
Furthermore, the laser medium does not need to be a crystalline material, and the same concept can be applied to an amorphous medium such as glass.

(発明の効果) 以上詳しく説明したように、本発明による粉末レーザ媒
質を用いたレーザ装置は、レーザ媒質を励起光源で励起
しレーザ発振をさせるレーザ装置において、固体の状態
でレーザ媒質となる物質の球状微粒、または結晶等の微
粉末を発掘光に対して透明な媒質に分散、1び濁して形
成して構成しである。
(Effects of the Invention) As explained in detail above, in a laser device using a powder laser medium according to the present invention, in a laser device that excites the laser medium with an excitation light source to oscillate, It is constructed by dispersing fine powder such as spherical particles or crystals in a medium transparent to the excavation light, and forming a turbidity.

したがって、以下のような特徴が得られる。Therefore, the following features are obtained.

従来の固体レーザは一般に媒質の大きさ、特に媒質が結
晶体の場合は良質な均一結晶(例えば単結晶)を得なけ
ればならないが、大型の単結晶を成長させるには技術的
に困難な場合が多い。
Conventional solid-state lasers generally require the size of the medium, especially if the medium is a crystal, to obtain a good quality uniform crystal (for example, a single crystal), but it is technically difficult to grow a large single crystal. There are many.

また、仮に結晶を成長させることができたとしても、光
学的な端面の研摩、平行度など機械的加工に高度な技術
を要求される。
Furthermore, even if it were possible to grow crystals, advanced mechanical processing techniques such as polishing optical end faces and parallelism would be required.

本発明による装置では、まずそれらの技術的困難さを解
決できる。
With the device according to the invention, first of all these technical difficulties can be solved.

すなわち、レーザ媒質である固体物質は粉末にされるか
ら、素材として大きさの制約はない。
That is, since the solid material that is the laser medium is made into powder, there are no restrictions on the size of the material.

結晶体は破砕されても一般にその結晶構造は保存され、
臂開面は光学的に良好な平滑面となるから、特に形状変
化による問題は生じない。
Even if a crystal is crushed, its crystal structure is generally preserved;
Since the arm-opening surface becomes an optically good smooth surface, no particular problem arises due to a change in shape.

以上の特長からいえることは大形単結晶は得られにくい
がレーザ媒質として良質な結晶素材(例えばYLF (
L 1YF4 : Nd3+))であればレーザ発振が
可能になるということである。
From the above features, it can be said that although large single crystals are difficult to obtain, they are good quality crystal materials (for example, YLF (
L 1YF4 : Nd3+)), laser oscillation becomes possible.

これにより媒質の選択範囲が拡大される。This expands the selection range of media.

例えば多結晶しか得られないような素材や、複数種の固
体レーザ媒質が混合されて使用されることにより同−共
振ミラー内で同時に使用できる等の従来の固体レーザに
はない新しいレーザ発振が期待できる。
For example, new laser oscillations not found in conventional solid-state lasers are expected, such as the use of materials that can only be obtained from polycrystals or the use of a mixture of multiple types of solid-state laser media, which can be used simultaneously within the same resonant mirror. can.

次にレーザ媒質の冷却の問題が本発明により解決できる
Next, the problem of cooling the laser medium can be solved by the present invention.

一般にレーザ媒質は外部からの励起エネルギーにより、
高温になりやすく、温度変化により本来の特性が損なわ
れるのでその対策として、水冷、強制空冷などの手段が
とられる。
Generally, a laser medium is stimulated by external excitation energy.
They tend to reach high temperatures and their original characteristics are impaired by temperature changes, so measures such as water cooling and forced air cooling are taken as a countermeasure.

本発明ではレーザ媒質である微粉末を発振光に対して透
明な媒質に分散、1ワ濁させて配置しである。したがっ
て、前記発振光に対して透明な媒質として実施例に示し
たように還流可能なガス等にすれば、ガスは粉末をたえ
ず攪拌しているので、そのアルゴンガスを間接的に放熱
冷却すれば、結果として粉末を含む系全体を冷却したり
、−定温度に保つことが可能である。
In the present invention, fine powder, which is a laser medium, is dispersed in a medium that is transparent to the oscillation light, and is arranged so as to be turbid. Therefore, if a gas that can be refluxed as shown in the example is used as a medium transparent to the oscillation light, the gas constantly stirs the powder, so if the argon gas is indirectly cooled by heat radiation, As a result, it is possible to cool the entire system including the powder or to keep it at a constant temperature.

本発明による装置は、固体レーザ媒質を用いるものであ
る。しかし、媒質粉末を入れる容器(例えばガラス管)
は長さ方向での寸法的制約があまりないので、レーザ発
振装置の出力として比較的選択性がある。したがって、
冷却効果とあわせて出力の大きなレーザ発振装置が可能
となる。
The device according to the invention uses a solid state laser medium. However, the container in which the medium powder is placed (e.g. a glass tube)
Since there are not many dimensional restrictions in the length direction, the output of the laser oscillation device is relatively selective. therefore,
In addition to the cooling effect, a laser oscillation device with high output becomes possible.

また従来の固体レーザでは実現できなかった組合せによ
る複合固体レーザが可能となり、波長の異なった複数の
発振が同時に可能となる。
Furthermore, it becomes possible to create a composite solid-state laser by combining combinations that could not be achieved with conventional solid-state lasers, and it becomes possible to oscillate multiple wavelengths at the same time.

例えば、Ndを含むYACとYLFとの複合レーザが可
能であり、同時に1.0641μm、1.0−17μm
の発振光が得られる。また、大きな結晶が得られにくい
アレキサンドライト (B e A 12+ Q 4:
 Cr 3 + )の粉末で700〜818nmの波長
可変レーザが実現できる。
For example, a composite laser of YAC and YLF containing Nd is possible, and at the same time 1.0641 μm, 1.0-17 μm
oscillation light can be obtained. In addition, alexandrite (B e A 12+ Q 4:
A wavelength tunable laser of 700 to 818 nm can be realized using powder of Cr 3 + ).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による粉末レーザ媒質を用いたレーザ
装置の原理を示す概略構成図である。 第2図は、本発明による粉末レーザ媒質を用いたレーザ
装置の実施例のレーザ管を管軸を含む面で一部破断して
示した断面図である。 第3図は、本発明による粉末レーザ媒質を用いたレーザ
装置の実施例のレーザ管を管軸に垂直な平面で破断して
示した断面図である。 第4図は、本発明による粉末レーザ媒質を用いたレーザ
装置の実施例のレーザ管の動作原理を説明するための説
明図である。 第5図は、粉末レーザ媒質の製作方法を説明するための
略図である。 1・・・レーザ管 2・・・励起ランプ 3・・・集光反射鏡 4・・・全反射ミラー 5・・・−部透過ミラー(出力ミラー)7・・・粉末レ
ーザ媒質 8・・・循環ポンプ 11・・・レーザ管のフィルタ 12・・・レーザ管のスリット上噴出口14.15・・
・透明板 50・・・YAG多結晶 51・・・ボールミル 特許出願人 浜松ホトニクス株式会社 代理人 弁理士  井 ノ ロ  溝 外1 図 励起ランプ %2図 馬3図 易4図
FIG. 1 is a schematic diagram showing the principle of a laser device using a powder laser medium according to the present invention. FIG. 2 is a cross-sectional view showing a laser tube of an embodiment of a laser device using a powder laser medium according to the present invention, partially cut away along a plane including the tube axis. FIG. 3 is a cross-sectional view of a laser tube of an embodiment of a laser device using a powder laser medium according to the present invention, taken along a plane perpendicular to the tube axis. FIG. 4 is an explanatory diagram for explaining the operating principle of the laser tube of the embodiment of the laser device using the powder laser medium according to the present invention. FIG. 5 is a schematic diagram for explaining a method of manufacturing a powder laser medium. 1...Laser tube 2...Excitation lamp 3...Condensing reflector 4...Total reflection mirror 5...-partial transmission mirror (output mirror) 7...Powder laser medium 8... Circulation pump 11... Laser tube filter 12... Laser tube slit upper spout 14,15...
・Transparent plate 50...YAG polycrystalline 51...Ball mill Patent applicant Hamamatsu Photonics Co., Ltd. Agent Patent attorney Inoro Mizogai 1 Fig. Excitation lamp % 2 Fig. Horse 3 Fig. Easy 4 Fig.

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ媒質を励起光源で励起しレーザ発振をさせ
るレーザ装置において、固体の状態でレーザ媒質となる
物質の球状微粒、または結晶等の微粉末を発振光に対し
て透明な媒質に分散、懸濁して形成して構成したことを
特徴とする粉末レーザ媒質を用いたレーザ装置。
(1) In a laser device that excites a laser medium with an excitation light source to cause laser oscillation, fine spherical particles or fine powder such as crystals of a substance that becomes the laser medium in a solid state are dispersed in a medium transparent to the oscillation light. A laser device using a powder laser medium characterized in that it is formed by suspending the powder laser medium.
(2)前記微粉末はYAG多結晶の微粉末である特許請
求の範囲第1項記載の粉末レーザ媒質を用いたレーザ装
置。
(2) A laser device using a powder laser medium according to claim 1, wherein the fine powder is a fine powder of YAG polycrystal.
(3)前記発振光に対して透明な媒質は気体、液体ある
いはガラスや樹脂である特許請求の範囲第1項記載の粉
末レーザ媒質を用いたレーザ装置。
(3) A laser device using a powder laser medium according to claim 1, wherein the medium transparent to the oscillation light is gas, liquid, glass, or resin.
(4)前記透明な媒質はアルゴンガスである特許請求の
範囲第1項記載の粉末レーザ媒質を用いたレーザ装置。
(4) A laser device using a powder laser medium according to claim 1, wherein the transparent medium is argon gas.
JP15076486A 1986-06-27 1986-06-27 Laser device using powdered laser medium Pending JPS637689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15076486A JPS637689A (en) 1986-06-27 1986-06-27 Laser device using powdered laser medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15076486A JPS637689A (en) 1986-06-27 1986-06-27 Laser device using powdered laser medium

Publications (1)

Publication Number Publication Date
JPS637689A true JPS637689A (en) 1988-01-13

Family

ID=15503904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15076486A Pending JPS637689A (en) 1986-06-27 1986-06-27 Laser device using powdered laser medium

Country Status (1)

Country Link
JP (1) JPS637689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116794A (en) * 1989-09-28 1991-05-17 Nec Corp Laser device
EP0877453A1 (en) * 1996-09-04 1998-11-11 Fanuc Ltd. Laser oscillator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497397A (en) * 1972-05-12 1974-01-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497397A (en) * 1972-05-12 1974-01-23

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116794A (en) * 1989-09-28 1991-05-17 Nec Corp Laser device
EP0877453A1 (en) * 1996-09-04 1998-11-11 Fanuc Ltd. Laser oscillator
EP0877453A4 (en) * 1996-09-04 1999-01-13 Fanuc Ltd Laser oscillator

Similar Documents

Publication Publication Date Title
GB2313951A (en) Single longitudinal mode frequency-converted laser
US6888859B2 (en) Compensation of thermal optical effects
JPH04233290A (en) Solid state laser
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JPS637689A (en) Laser device using powdered laser medium
Smith et al. Operation of the continuously pumped, repetitive Q-switched YAlG: Nd laser
JPH11121855A (en) Solid-state laser crystal, its forming method and solid-state laser device
US5640408A (en) Quasi four-level Tm:LuAG laser
US6034979A (en) Laser oscillator
US3663891A (en) Cell for use in a circulating liquid laser
US5692005A (en) Solid-state laser
EP0897206A1 (en) Laser oscillator
JPS59195892A (en) Solid state laser oscillator
CA1281402C (en) Continuous wave, frequency-doubled solid state laser systems with stabilized output
KR102025773B1 (en) Fixture for fabricating hole of flow tubeand manufacturing method of flow tubeusing the same
JPH022196A (en) Chrome-doped forsterite single crystal laser
JPH06120586A (en) Solid state laser equipment
JPH1187813A (en) Solid laser oscillator
US4794616A (en) Laser system with solid state fluorescent converter matrix having distributed fluorescent converter particles
KR100385094B1 (en) A DIODE-PUMPED Yb:YAG DISK LASER UTILIZING A COMPOUND PARABOLIC CONCENTRATOR
Wittrock High‐power Nd: YAG lasers
JPS6038893A (en) Laser oscillator
Vladimirov et al. Conversion of optical signals in a laser with an intracavity liquid-crystal spatial modulator
JP3617864B2 (en) Lithography laser equipment
JPS6094786A (en) Q switch solid laser oscillator