JPH0428155B2 - - Google Patents

Info

Publication number
JPH0428155B2
JPH0428155B2 JP24408783A JP24408783A JPH0428155B2 JP H0428155 B2 JPH0428155 B2 JP H0428155B2 JP 24408783 A JP24408783 A JP 24408783A JP 24408783 A JP24408783 A JP 24408783A JP H0428155 B2 JPH0428155 B2 JP H0428155B2
Authority
JP
Japan
Prior art keywords
laser rod
laser
flow path
circumferential direction
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24408783A
Other languages
Japanese (ja)
Other versions
JPS60136385A (en
Inventor
Ken Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP24408783A priority Critical patent/JPS60136385A/en
Publication of JPS60136385A publication Critical patent/JPS60136385A/en
Publication of JPH0428155B2 publication Critical patent/JPH0428155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • H01S3/0931Imaging pump cavity, e.g. elliptical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はレーザロツドが冷却水によつて冷却
される固体レーザ発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state laser oscillation device in which a laser rod is cooled by cooling water.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、固体レーザ発振装置はたとえば楕円筒
などの集光反射鏡の内部にレーザロツドと励起ラ
ンプとを対向させて収容するとともに、上記レー
ザロツドの端面に各々共振器を形成する一対のミ
ラーを平行に配置してなる。そして、レーザロツ
ドを励起ランプで光励起することにより、上記共
振器の出力側のミラーからレーザ光が出力される
ようになつている。また、レーザロツドは励起ラ
ンプから受ける熱で大きく歪んだり、早期に損傷
するから、上記レーザロツドを流水パイプに挿通
し、この流水パイプに冷却水を流がすことによつ
て水冷するようにしている。
In general, a solid-state laser oscillation device houses a laser rod and an excitation lamp facing each other inside a condensing reflector such as an elliptical cylinder, and a pair of mirrors each forming a resonator are arranged in parallel on the end face of the laser rod. It will be done. By optically exciting the laser rod with an excitation lamp, laser light is output from the mirror on the output side of the resonator. Further, since the laser rod is greatly distorted or damaged early by the heat received from the excitation lamp, the laser rod is inserted into a water pipe and cooled by water flowing through the water pipe.

ところで、従来冷却水は流水パイプ内をレーザ
ロツドの軸方向に沿つて流がされており、またレ
ーザロツドは1本あるいは2本の励起ランプによ
り周方向の1方向あるいは180度ずれた2方向か
ら光励起されていた。そのため、レーザロツドは
励起ランプによつて周方向が均一に加熱されない
ばかりか、周方向の励起ランプによつて励起され
て温度上昇した個所を軸方向に沿つて流れる冷却
水は他の個所を流れる冷却水に比べて温度上昇が
著しいから、レーザロツドと周方向における温度
差が一段と拡大される。
By the way, conventionally, cooling water has flowed in a water pipe along the axial direction of the laser rod, and the laser rod has been optically excited by one or two excitation lamps in one direction in the circumferential direction or in two directions shifted by 180 degrees. was. Therefore, not only is the laser rod not heated uniformly in the circumferential direction by the excitation lamp, but the cooling water that flows along the axial direction in the area where the temperature has risen due to excitation by the excitation lamp in the circumferential direction is not cooled as it flows in other areas. Since the temperature rise is remarkable compared to water, the temperature difference between the laser rod and the circumferential direction is further expanded.

このように、レーザロツドの周方向における温
度に差が生じると、レーザロツドが温度上昇する
ことによつて生じる凸エンズ作用が不均一とな
る。つまり、レーザロツドの励起ランプを含む第
1の断面方向と、この第1の断面方向と直交する
方向の第2の断面方向とでは、第1の断面方向が
第2の断面方向よりも焦点距離が大きくなる。す
ると、たとえばレーザロツドの断面が円形であつ
ても、出力されるレーザ光のパターンが矩形状と
なつてしまうから、このレーザ光によつて切断加
工を行なう場合など走査方向によつて加工幅が異
なり、精密な切断加工が行なえなくなるという問
題が生じる。また、レーザロツドの周方向におけ
る凸レンズ作用が均一でないと、励起ランプへの
入力を増大させても、レーザ光の出力の飽和点が
低下し、高出力のレーザ光が得られないという問
題もある。
As described above, if a difference occurs in the temperature in the circumferential direction of the laser rod, the convex lens effect caused by the increase in temperature of the laser rod becomes non-uniform. In other words, between the first cross-sectional direction including the excitation lamp of the laser rod and the second cross-sectional direction perpendicular to the first cross-sectional direction, the focal length of the first cross-sectional direction is longer than that of the second cross-sectional direction. growing. For example, even if the cross section of the laser rod is circular, the pattern of the laser beam output will be rectangular, so when cutting with this laser beam, the processing width will differ depending on the scanning direction. , a problem arises in that precise cutting cannot be performed. Furthermore, if the convex lens effect in the circumferential direction of the laser rod is not uniform, even if the input to the excitation lamp is increased, the saturation point of the output of the laser beam will be lowered, and there will be a problem that a high-output laser beam cannot be obtained.

なお、冷却水に流れについては特開昭55−
74919号公報に開示された技術が知られている。
この技術は固体レーザではなく、ガスレーザに関
するもので、レーザ細管の周りに冷却液を流すた
めのウオーダジヤケツト内に螺旋状の整流板を設
け、この整流板によつて冷却液がレーザ細管に一
様に接触るようにしたものである。しかしなが
ら、固体レーザの場合はガスレーザにおけるレー
ザ細管とは異なり、冷却液が一様に接触するとい
うことの他に、励起作用に支障がないように考慮
する必要がある。
Regarding the flow of cooling water, please refer to Japanese Unexamined Patent Application Publication No. 1986-
A technique disclosed in Publication No. 74919 is known.
This technology is related to gas lasers rather than solid-state lasers, and a spiral rectifier plate is installed in the water jacket to flow the cooling liquid around the laser tube. It is designed to make uniform contact. However, in the case of a solid-state laser, unlike the laser tube in a gas laser, in addition to uniform contact with the cooling liquid, consideration must be given to ensure that the excitation action is not hindered.

〔発明の目的〕[Purpose of the invention]

この発明はレーザロツドが周方向においてほぼ
均一な温度になるよう冷却されるようにして、出
力されるレーザ光のパターンが均一で、しかも励
起ランプへの入力に対してレーザ光の出力の飽和
点を十分高くすることができるようにした固体レ
ーザ発振装置を提供することにある。
In this invention, the laser rod is cooled to a substantially uniform temperature in the circumferential direction, so that the pattern of the output laser light is uniform, and the saturation point of the laser light output relative to the input to the excitation lamp is maintained. An object of the present invention is to provide a solid-state laser oscillation device that can be made sufficiently high.

〔発明の概要〕[Summary of the invention]

集光反射鏡の内部に励起ランプに対向して設け
られるレーザロツドを流水パイプに収容し、この
流水パイプによつてレーザロツドの外周に流通路
を区画形成し、この流通路に流通路を流れる例水
をレーザロツドの周方向に旋回させる螺旋状のガ
イド体を設けることにより、レーザロツドの周方
向全体が均一な温度の冷却水で冷却されるように
したものである。
The laser rod, which is installed inside the condensing reflector and facing the excitation lamp, is housed in a water pipe, and the water pipe defines a flow path around the laser rod, and the water flowing through the flow path is defined by the water pipe. By providing a spiral guide body that rotates the laser rod in the circumferential direction of the laser rod, the entire circumferential direction of the laser rod is cooled with cooling water at a uniform temperature.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面を参照して説
明する。図中1は内周面が楕円状に形成された発
振装置の本体である。この本体1の軸方向両端開
口は端板2によつて閉塞されている。また、本体
1の内周面には軸方向両端部を除く個所に本体1
の内周面と同様な楕円筒状でその内周面が鏡面加
工された集光反射鏡3が設けられている。この集
光反射鏡3の一方の焦点位置にはYAGロツドや
その他のレーザロツドなどの断面円形のレーザロ
ツド4、他方の焦点位置には励起ランプ5がそれ
ぞれ軸線を本体1の軸線と平行にして設けられて
いる。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, reference numeral 1 denotes the main body of the oscillation device whose inner peripheral surface is formed into an elliptical shape. Openings at both axial ends of the main body 1 are closed by end plates 2. In addition, the inner peripheral surface of the main body 1 is provided with the main body 1 at locations other than both ends in the axial direction.
A condensing and reflecting mirror 3 is provided, which has an elliptical cylindrical shape similar to the inner circumferential surface of the mirror, and whose inner circumferential surface is mirror-finished. A laser rod 4 having a circular cross section, such as a YAG rod or other laser rod, is installed at one focal point of the converging reflector 3, and an excitation lamp 5 is installed at the other focal point, with their axes parallel to the axis of the main body 1. ing.

上記レーザロツド4の両端には各々支持パイプ
6の一端が液密に嵌着されている。これら支持パ
イプ6の他端は上記端板2に穿設された通孔7に
液密に嵌挿されている。各端板2から突出した支
持パイプ6の他端開口には共振器を形成する全反
射ミラー8と出力ミラー9とがそれぞれ上記レー
ザロツド4の端面に対して平行に対向して配設さ
れている。そして、レーザロツド4が励起ランプ
5によつて光励起されると、上記出力ミラー9か
らレーザ光Lが出力されるようになつている。ま
た、レーザロツド4は光学的に透明な材料で作ら
れた流水パイプ10に挿通されている。この流水
パイプ10はレーザロツド4よりも大径で、この
内周面とレーザロツド4の外周面との間に冷却水
の流通路11を区画形成している。この流通路1
1つまりレーザロツド4の外周面には、光学的に
透明な材料によつて外径寸法が流水パイプ10の
内径寸法とほぼ同径に形成された螺旋状のガイド
体12が取着されている。
One end of a support pipe 6 is fitted to each end of the laser rod 4 in a fluid-tight manner. The other ends of these support pipes 6 are fitted into through holes 7 formed in the end plate 2 in a liquid-tight manner. At the other end opening of the support pipe 6 protruding from each end plate 2, a total reflection mirror 8 and an output mirror 9 forming a resonator are arranged parallel to and opposite to the end surface of the laser rod 4. . When the laser rod 4 is optically excited by the excitation lamp 5, a laser beam L is output from the output mirror 9. The laser rod 4 is also inserted into a water pipe 10 made of an optically transparent material. This water flow pipe 10 has a larger diameter than the laser rod 4, and defines a cooling water flow path 11 between its inner peripheral surface and the outer peripheral surface of the laser rod 4. This flow path 1
1, that is, on the outer peripheral surface of the laser rod 4, a spiral guide body 12 made of an optically transparent material and having an outer diameter approximately equal to the inner diameter of the water pipe 10 is attached.

また、上記流水パイプ10の両端は、上記本体
1の軸方向両端部に仕切壁13によつて区画形成
された断面円形状の第1の流路14と第2の流路
15にそれぞれ液密に接続されている。したがつ
て、本体1内は流水パイプ10と上記一対の仕切
壁13とによつてレーザロツド4が収容された径
方向上側の上部室16と、励起ランプ5が収容さ
れた下側の下部室17そとに隔別されている。さ
らに、本体1には上記第1の流路14に連通する
供給管18および下部室17の上記第1の流路1
4と対応する一端に連通する排出管19が接続さ
れている。また、上記第2の流路15を形成する
仕切壁13には、この第2の流路15と下部室1
7とを連通する透孔20が穿設されている。上記
供給管18からは冷却水が供給される。したがつ
て、供給管18から第1の流路14に流入した冷
却水は、第1図に矢印で示すように流水パイプ1
0、第2の流路15、透孔20および下部室17
に通つて上記排出管19から流出するようになつ
ている。
Further, both ends of the water pipe 10 are liquid-tightly connected to a first flow path 14 and a second flow path 15 each having a circular cross section and partitioned by partition walls 13 at both ends of the main body 1 in the axial direction. It is connected to the. Therefore, inside the main body 1, the water pipe 10 and the pair of partition walls 13 form an upper chamber 16 on the radially upper side in which the laser rod 4 is housed, and a lower chamber 17 on the lower side in which the excitation lamp 5 is housed. It is segregated. Further, the main body 1 includes a supply pipe 18 communicating with the first flow path 14 and the first flow path 1 of the lower chamber 17.
A discharge pipe 19 is connected to one end corresponding to the discharge pipe 4 . In addition, the partition wall 13 forming the second flow path 15 has a space between the second flow path 15 and the lower chamber 1.
A through hole 20 communicating with 7 is bored. Cooling water is supplied from the supply pipe 18 . Therefore, the cooling water flowing into the first flow path 14 from the supply pipe 18 flows through the water flow pipe 1 as shown by the arrow in FIG.
0, second flow path 15, through hole 20 and lower chamber 17
The water passes through the drain pipe 19 and flows out from the discharge pipe 19.

このように構成されたレーザ発振装置におい
て、レーザ光Lを出力させる場合に、供給管18
から冷却水を供給するとともに、励起ランプ5に
通電してレーザロツド4を光励起すれば、共振器
を形成する出力ミラー9からレーザ光Lが出力さ
れる。一方供給管18から第1の流路14の供給
された冷却水がレーザロツド4の外周に流通路1
1を形成した流水パイプ10に流入すると、この
流通路11に設けられた螺旋状のガイド体12に
沿つてレーザロツド4の外周面を旋回しながら流
れる。そのため、レーザロツド4の周方向が全周
にわたつて同じ温度の冷却水で冷却されるから、
レーザロツド4が周方向の一方向からだけ励起ラ
ンプ5で光励起されていても、このレーザロツド
4の周方向は同じ温度の冷却水によつてほぼ均一
な温度に冷却される。したがつて、レーザロツド
4の凸レンズ作用は、励起ランプ5によつて光励
起される径方向と、この径方向と直交する方向に
おいてほぼ同一となうから、出力ミラー9から出
力されるレーザ光Lのパターン形状はレーザロツ
ド4の端面形状に等しい円形となる。そして、レ
ーザロツド4の断面形状と同じ円形のレーザ光L
が出力されると、このレーザ光Lによつて切断加
工を行なうような場合、走査方向が異なつても切
断幅が一定となるから、切断加工を精密に行なう
ことができる。また、レーザロツド4の凸レンズ
作用が周方向において均一化されると、励起ラン
プ5への入力に対してレーザ光Lの出力がほぼ比
例的に変化するから、レーザ光Lの出力の飽和点
が上昇する。つまり、高出力のレーザ光Lを得る
ことができる。
In the laser oscillation device configured in this way, when outputting the laser beam L, the supply pipe 18
When the laser rod 4 is optically excited by supplying cooling water from the pump and excitation lamp 5, laser light L is output from the output mirror 9 forming a resonator. On the other hand, the cooling water supplied from the supply pipe 18 to the first flow path 14 flows into the flow path 1 on the outer periphery of the laser rod 4.
When the water flows into the water pipe 10 formed with the water flow passage 11, it flows along the spiral guide body 12 provided in the flow passage 11 while swirling around the outer peripheral surface of the laser rod 4. Therefore, the entire circumferential direction of the laser rod 4 is cooled with cooling water at the same temperature.
Even if the laser rod 4 is optically excited by the excitation lamp 5 from only one direction in the circumferential direction, the circumferential direction of the laser rod 4 is cooled to a substantially uniform temperature by cooling water of the same temperature. Therefore, the convex lens action of the laser rod 4 is almost the same in the radial direction in which it is optically excited by the excitation lamp 5 and in the direction orthogonal to this radial direction, so that the pattern of the laser beam L output from the output mirror 9 is The shape is circular, which is equal to the end face shape of the laser rod 4. Then, the laser beam L has the same circular cross-sectional shape as the laser rod 4.
When this laser beam L is output, when cutting is performed using this laser beam L, the cutting width is constant even if the scanning direction is different, so that the cutting can be performed precisely. Furthermore, when the convex lens action of the laser rod 4 is made uniform in the circumferential direction, the output of the laser beam L changes almost proportionally to the input to the excitation lamp 5, so the saturation point of the output of the laser beam L increases. do. In other words, high-power laser light L can be obtained.

さらに、レーザロツド4を収容した流水パイプ
10と、レーザロツド4の外周面に設けられたガ
イド体12とは、ともに光学的に透明な材料で作
られているから、これらが励起ランプ5の光を遮
断し、レーザロツド4が効率よく光励起されなく
なるということがない。
Furthermore, since the water pipe 10 that accommodates the laser rod 4 and the guide body 12 provided on the outer peripheral surface of the laser rod 4 are both made of optically transparent material, they block the light from the excitation lamp 5. However, there is no possibility that the laser rod 4 will not be optically excited efficiently.

なお、この発明は上記一実施例に限定されず、
たとえばレーザ発振装置としては、レーザロツド
の周方向180度ずれを位置に2本の励起ランプが
設けられたものであつてもよい。また、ガイド体
はレーザロツドの外周でなく、流水パイプの内周
または流水の上流部と下流部において仕切壁など
に取着してもよく、要は流水パイプによつて形成
された流通路に固定的に設けられていればよい。
Note that this invention is not limited to the above embodiment,
For example, the laser oscillation device may be one in which two excitation lamps are provided at positions 180 degrees apart in the circumferential direction of the laser rod. In addition, the guide body may be attached to a partition wall, etc., not on the outer circumference of the laser rod, but on the inner circumference of the water pipe, or at the upstream and downstream parts of the water flow.In short, the guide body may be fixed to the flow path formed by the water flow pipe. It suffices if it is set up accordingly.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明は、集光反射鏡の内
部に励起ランプと対向して設けられるレーザロツ
ドを流水パイプに収容し、この流水パイプによつ
てレーザロツドの外周に流通路を区画形成し、こ
の流通路に冷却水をレーザロツドの周方向に旋回
させて流がす螺旋状のガイド体を設けたから、レ
ーザロツドの周方向が励起ランプにより不均一に
光励起されても、レーザロツドの周方向に旋回す
る冷却水によりこのレーザロツドの周方向におけ
る温度分布はほぼ均一になる。したがつて、レー
ザロツドの凸レンズ作用は周方向においてほぼ均
一となるから、レーザロツドの断面形状と同じパ
ターンのレーザ光が得られ、たとえば切断加工な
どを走査方向によつて切断幅が変わるようなこと
なく高精度に行なえるばかりか、励起ランプへの
入力に比例して飽和点の高い高出力のレーザ光を
得ることができるなどの利点を有する。
As described above, the present invention accommodates the laser rod, which is provided inside a condensing reflector and faces an excitation lamp, in a water pipe, and defines a flow path on the outer periphery of the laser rod by the water pipe. Since a spiral guide body is provided in the flow path to circulate the cooling water in the circumferential direction of the laser rod, even if the laser rod is optically excited unevenly in the circumferential direction by the excitation lamp, the cooling water can be rotated in the circumferential direction of the laser rod. The water makes the temperature distribution of the laser rod substantially uniform in the circumferential direction. Therefore, since the convex lens effect of the laser rod is almost uniform in the circumferential direction, it is possible to obtain a laser beam with the same pattern as the cross-sectional shape of the laser rod, making it possible to perform cutting without changing the cutting width depending on the scanning direction. This method not only can be performed with high precision, but also has the advantage of being able to obtain a high-output laser beam with a high saturation point in proportion to the input to the excitation lamp.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示し、第1図は概
略的構成を示す縦断面図、第2図は第1図−
線に沿う断面図である。 3……集光反射鏡、4……レーザロツド、5…
…励起ランプ、10……流水パイプ、11……流
通路、12……ガイド体。
The drawings show one embodiment of the present invention, with FIG. 1 being a vertical cross-sectional view showing a schematic configuration, and FIG.
It is a sectional view along a line. 3... Concentrating reflector, 4... Laser rod, 5...
...Excitation lamp, 10...Water pipe, 11...Flow path, 12...Guide body.

Claims (1)

【特許請求の範囲】[Claims] 1 集光反射鏡と、この集光反射鏡の内部に互い
に対向して設けられたレーザロツドおよび励起ラ
ンプと、上記レーザロツドを内部に収容しこのレ
ーザロツドの外周に冷却水の流通路を区画形成し
た流水パイプと、上記流通路に設けあらこの流通
路を流れる冷却水をレーザロツドの周方向に旋回
させる螺旋状で透光性を有するガイド体とを具備
したことを特徴とする固体レーザ発振装置。
1. A condensing reflector, a laser rod and an excitation lamp that are provided inside the condensing reflector to face each other, and a flowing water that accommodates the laser rod inside and defines a cooling water flow path on the outer periphery of the laser rod. A solid-state laser oscillation device characterized by comprising a pipe and a spiral guide body provided in the flow path and configured to swirl cooling water flowing through the flow path in the circumferential direction of the laser rod.
JP24408783A 1983-12-26 1983-12-26 Solid state laser oscillator Granted JPS60136385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24408783A JPS60136385A (en) 1983-12-26 1983-12-26 Solid state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24408783A JPS60136385A (en) 1983-12-26 1983-12-26 Solid state laser oscillator

Publications (2)

Publication Number Publication Date
JPS60136385A JPS60136385A (en) 1985-07-19
JPH0428155B2 true JPH0428155B2 (en) 1992-05-13

Family

ID=17113538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24408783A Granted JPS60136385A (en) 1983-12-26 1983-12-26 Solid state laser oscillator

Country Status (1)

Country Link
JP (1) JPS60136385A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797668B2 (en) * 1987-02-19 1995-10-18 株式会社東芝 Solid-state laser oscillator
US5331652A (en) * 1993-03-22 1994-07-19 Alliedsignal Inc. Solid state laser having closed cycle gas cooled construction
US6813289B2 (en) * 2001-07-25 2004-11-02 Innotech, Usa, Inc. Portable laser device

Also Published As

Publication number Publication date
JPS60136385A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
US5619522A (en) Laser pump cavity
US4751716A (en) Hollow cylindrical solid state laser medium and a laser system using the medium
JPH0428155B2 (en)
JPH07235714A (en) Solid laser apparatus
US3675156A (en) Laser pump cavity with conical geometry
JPH0797668B2 (en) Solid-state laser oscillator
KR100272728B1 (en) Pumping apparatus for a laser diode pumped solid-state laser
KR100257401B1 (en) Output controlling laser beam generator
US20050147140A1 (en) Integrated laser cavity with transverse flow cooling
JPH053355A (en) Solid-state laser medium
JPH056356B2 (en)
JPS63110683A (en) Gas laser oscillator
JPS59150488A (en) Solid-state laser oscillating device
JPH11284256A (en) Solid laser device
JPH06237030A (en) Laser oscillator
JPS6310916B2 (en)
JPH02209779A (en) Solid state laser apparatus
CA1067190A (en) Optical imaging of flashlamp discharge to laser medium
JPS61212078A (en) Slab-type laser device
EP1385239A1 (en) Laser pumping chambers
JPH0458719B2 (en)
JPH0832154A (en) Structure for fitting laser rod holder
JP2002237636A (en) Solid-state laser
JPH0750440A (en) Slab type solid-state laser equipment
JPH1146024A (en) Slab-type solid-state laser device