JPS60136362A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60136362A
JPS60136362A JP58244048A JP24404883A JPS60136362A JP S60136362 A JPS60136362 A JP S60136362A JP 58244048 A JP58244048 A JP 58244048A JP 24404883 A JP24404883 A JP 24404883A JP S60136362 A JPS60136362 A JP S60136362A
Authority
JP
Japan
Prior art keywords
layer
type
diffusion layer
type diffusion
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58244048A
Other languages
Japanese (ja)
Inventor
Shiro Mayuzumi
黛 史郎
Hisataka Tsunoda
尚隆 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP58244048A priority Critical patent/JPS60136362A/en
Publication of JPS60136362A publication Critical patent/JPS60136362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0777Vertical bipolar transistor in combination with capacitors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To build a capacity in a device having no effect upon the miniaturization of chip size by a method wherein a capacity to be composed of the second conductive layer diffused along the surface of the first conductive layer is provided on the first conductive type semiconductor layer. CONSTITUTION:A part 3a of an epitaxially grown N type silicon layer 3 is formed into a collector of an NPN transistor element while a P type diffusion layer 4 as a base and an N<+> type diffusion layer 5 as an emitter are formed on the surface of the part 3a. Another N<+> type diffusion layer 6 as a collector fetching part is formed on the thinly etched surface of the part 3a of the N type silicon layer 3 to be connected to an N<+> type buried layer 2. A channel 7 is opened to encircle the periphery of an NPN transistor element region while a P type diffusion layer 8 is formed along the channel 7 to be connected to an N type substrate 1 directly below the layer 8. Besides an isolation part is formed to electrically separate the element region 3a from the peripheral region. Then the other N<+> type diffusion layer 9 is formed into a latter U-type along the surface of the P type diffusion layer 8 of the isolation part to provide a capacity composed of the P-N junction of the N<+> type diffusion layer 9 and the P type diffusion layer 8.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置、特に微細化構造をもつ半導体集積
回路装置における容量形成技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a capacitance formation technique in a semiconductor device, particularly a semiconductor integrated circuit device having a miniaturized structure.

〔背景技術〕[Background technology]

バイポーラ形IC,LSI等の半導体集積回路装置の高
集積化がすすみ、トランジスタなどの半導体素子の微細
化とともにこれらを相互に分離するアイソレージ9ン部
栴造も微細化の傾向にある。
BACKGROUND ART As semiconductor integrated circuit devices such as bipolar ICs and LSIs become more highly integrated, semiconductor elements such as transistors become smaller, and the isolation circuits that separate them from each other also tend to become smaller.

上記回路の一部を構成する容量素子は、小型化が困難で
あるため容量の占める面積がチップ面積に対して相対的
に増大化していることが問題となることが本発明者によ
ってあきらかとされた。
The inventor has found that the problem is that the area occupied by the capacitor increases relative to the chip area because it is difficult to miniaturize the capacitive element that forms part of the above circuit. Ta.

ところで1本発明者は上記の半導体素子とアイソレージ
覆ン部の微細化技術として、下記の技術を開発した。す
なわち、エピタキシャルn型中4体層の表面に素子を囲
むように溝を掘り、溝にそって溝の直下にp型拡散層を
形成してp型基板との間を接続することによりアイソレ
ージ1ン部を形成した。それにより、アイソレーション
部の面積を微細にした。さらに上記溝により囲まれfc
n型半型体導体層レクタとするバイポーラnpnトラン
ジスタを形成し、上記溝のすくなくとも一部にn型拡散
層を形成しCn型半導体層直下のn+型坤込層に接触さ
せコレクタ取出し部とする技術である。
By the way, the present inventor has developed the following technology as a technology for miniaturizing the above-mentioned semiconductor element and isolation covering portion. That is, a groove is dug in the surface of the epitaxial n-type medium 4-layer to surround the element, and a p-type diffusion layer is formed along the groove and directly under the groove to connect it to the p-type substrate. The inner part was formed. As a result, the area of the isolation section was made smaller. Furthermore, surrounded by the above groove, fc
A bipolar npn transistor is formed as an n-type semi-conductor conductor layer, and an n-type diffusion layer is formed in at least a part of the groove to contact the n+ type embedded layer directly under the Cn-type semiconductor layer to serve as a collector extraction part. It's technology.

これにより、アイソレーション部の微細化と、さらには
、素子の微細化をも達成できる様になつ飢 しかし、かかる技術においても容i素子のチップ面積に
しめる割合は大きくなり、チップサイズの小型化が防げ
られるという問題点があることが本発明者によりあきら
かとされた。
As a result, it becomes possible to achieve miniaturization of the isolation section and further miniaturization of the element.However, even with this technology, the proportion of the chip area of the capacitor element becomes large, making it difficult to miniaturize the chip size. The inventors have found that there are problems that can be prevented.

本発明は上記したアイソレーション部を容量として利用
するものである。
The present invention utilizes the above-described isolation section as a capacitor.

〔発明の目的] 本発明の目的とするところは、半導体集積回路装置にお
いて、チップサイズの小型化を損うことなく容itを装
置内に組込むことのできる構造を提供することにある。
[Object of the Invention] An object of the present invention is to provide a structure in which a capacitor can be incorporated into a semiconductor integrated circuit device without compromising miniaturization of the chip size.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に朕明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、第1導を型半導体基板となるp型半導体基板
の上に第2導電型半導体層となるn型半導体層が形成さ
れ、このnW層の表面に半導体素子が形成されこの半導
体素子はその周囲をかこむように細られた溝と、この壽
にそってその直下に形成されp型基板に接続される第1
導電型半導体層であるp型半導体層とによって周辺の半
導体領域から電気的に分離された半導体装置において、
上記p型半導体層はその表面にそって拡散された第2導
車型層であるnfJJ層とで構成されたpn接合容量を
有するもので、これにより半導体装置の微細化を損うこ
となく容量が形成でき、前記発明の目的が達成できる。
That is, an n-type semiconductor layer that becomes a second conductivity type semiconductor layer is formed on a p-type semiconductor substrate that becomes a first conductivity type semiconductor substrate, and a semiconductor element is formed on the surface of this nW layer. A narrow groove encircling the circumference and a first groove formed just below the groove and connected to the p-type substrate.
In a semiconductor device electrically isolated from a surrounding semiconductor region by a p-type semiconductor layer that is a conductive type semiconductor layer,
The p-type semiconductor layer has a pn junction capacitance composed of the nfJJ layer, which is a second conductor type layer, diffused along its surface, and this allows the capacitance to be increased without impairing the miniaturization of the semiconductor device. The object of the invention can be achieved.

〔実施例1〕 第1図及び第2図は本発明の一実施例を示すもの〒あっ
て、第1図はバイポーラICにおけるトランジスタとそ
の周辺部に形成した容量の平面図、第2図は第1図にお
けるA−A’切断断面図である、 】はp型シリコン単結晶基板、2けn 型埋込層、3は
その上にエピタキシャル成長させたn型シリコン層であ
る。
[Example 1] Figures 1 and 2 show an example of the present invention. Figure 1 is a plan view of a transistor in a bipolar IC and a capacitor formed around it, and Figure 2 is a plan view of a transistor and a capacitor formed around it. This is a cross-sectional view taken along the line AA' in FIG. 1. ] is a p-type silicon single crystal substrate, 2 is an n-type buried layer, and 3 is an n-type silicon layer epitaxially grown thereon.

このn型シリコ7層3の一部3&はnpn)ランジスタ
累子のコレクタを形成するものであって、その表面にト
ランジスタのペースとなるp型拡散1M4.エミッタと
なるn+n型拡散層が形成される。n8!Iシリコン(
@3hの一部はエッチされて薄くなった表面にコレクタ
取出し部となるn+型型数散層6n++埋込層2に接続
するように形成されるr、npn)ランジスタ素子領域
の周囲を取囲むように溝7が掘られ、n7にそってp型
拡散層8が形成されてその直下のp型基板1に接続し、
周辺領域から素子頭載3aをγ電気的に分離するアイソ
レーション部をつくっている。
A part 3& of this n-type silicon 7 layer 3 forms the collector of the npn) transistor transistor, and p-type diffusion 1M4. An n+n type diffusion layer serving as an emitter is formed. n8! I silicon (
A part of @3h is formed on the etched and thinned surface so as to be connected to the n+ type scattered layer 6n++ buried layer 2, which will serve as the collector extraction part.R, npn) surrounds the transistor element region A groove 7 is dug as shown in FIG.
An isolation section is created that electrically isolates the element head 3a from the surrounding area.

このアイソレーション部のp銅拡散層80表面にそって
n+型型数散層9コの字形に形成され、このn+型型数
散層9p型拡散N8とのpn接合が容量となる。一方の
n+型型数散層9容it極(N+ )10が設けられ、
他方はp型基板に接続する接地電極(GND )11と
なっている。上記n+型型数散層はエミッタn+型拡散
層5の拡散工程を利用して形成されるものでその拡散層
5゜9表面に酸化膜が欠除する場合、この上をトランジ
スタのアルミニウム配線を通すことはできないので、第
1図に示すようにトランジスタの各を称からの引き出し
配線はコの字形のn+型型数散層9形成されない部分か
ら実線で示す方向に取り出す(B、C,E’)。あるい
は気相化学堆積法(CVD)によるリンシリケートガラ
ス(PSG)又はポリイミド系樹脂などからなる層間絶
縁膜を介した2層配線構造を利用する。
Nine n+ type scattered layers are formed in a U-shape along the surface of the p copper diffusion layer 80 in this isolation section, and the pn junction between this n+ type scattered layer 9 and the p type diffusion N8 becomes a capacitor. On the other hand, an n+ type scattering layer 9 and an it pole (N+) 10 are provided,
The other side is a ground electrode (GND) 11 connected to the p-type substrate. The above n+ type scattering layer is formed using the diffusion process of the emitter n+ type diffusion layer 5, and if the oxide film is missing on the surface of the diffusion layer 5.9, the aluminum wiring of the transistor is formed over this. As shown in FIG. '). Alternatively, a two-layer wiring structure using an interlayer insulating film made of phosphosilicate glass (PSG) or polyimide resin by chemical vapor deposition (CVD) is used.

〔効果〕〔effect〕

以上実施例で述べlζ本発明によれば、従来利用されて
いないアイソレーション領域を容量として活用するもの
であり、微細楢造を損うことなく容量面枳を確保できる
。一つのIC,LSIのチップには多数のトランジスタ
、例えば2000個のトランジスタを具えるものであれ
ば、それらの周辺のアイソレーション領域にそって20
00個の容おを形成することができる、これらを並列に
接続1れはチッブナイズを増すことなく大容量を確保す
ることができる。
According to the present invention, which has been described in the embodiments above, an isolation area that has not been used conventionally is utilized as a capacitor, and a capacitance can be secured without damaging the fine structure. If one IC or LSI chip has a large number of transistors, for example 2000 transistors, 20
By connecting these in parallel, a large capacity can be secured without increasing the number of chips.

〔実施例2〕 第3図乃至第10図は本発明の他の一夾施例な示すもの
であって、一つの導体体基体にnpnトランジスタ素子
とI IL(注入集積論理素子)とを有し、それらの間
に設けられた溝アイソレージ・9ン部を利用して容量な
形成する場合のプロセスの工程1析1ω図である。
[Embodiment 2] FIGS. 3 to 10 show another embodiment of the present invention, in which an npn transistor element and an IIL (implant integrated logic element) are provided on one conductive substrate. FIG. 6 is a diagram showing a step 1 analysis of a process in which a capacitance is formed by utilizing a groove isolation portion provided between them.

Jソ、下沓工程に従って説明する。J So, I will explain according to the step-by-step process.

ill am3図に示すように、p型シリコン基板1を
用意し、表面にn+型埋込層2を拡散してその上にn型
ドープ7リコンIV13を厚さ1.75mμにエピタキ
シャル成長させ、このn型シリコン層表面に熱酸化1嘆
12. CV D−酸化V< sho、 ) 13を生
成させる。
As shown in Figure ill am 3, a p-type silicon substrate 1 is prepared, an n+ type buried layer 2 is diffused on the surface, and an n-type doped 7 recon IV13 is epitaxially grown on it to a thickness of 1.75 mμ. 12. Thermal oxidation on the surface of the mold silicon layer. Generate CV D-oxidation V<sho, ) 13.

(2)ホトレジスト技術により第4図に示すように上記
酸化膜を部分的にエッチしたマスク12a。
(2) A mask 12a in which the oxide film is partially etched using a photoresist technique as shown in FIG.

13aを通してシリコン層のエッチ(異方性エッチ)を
行ないアイソレーション部となる深さ0.8μm程度の
テーパ状溝14を掘る。
The silicon layer is etched (anisotropically etched) through the silicon layer 13a to dig a tapered groove 14 having a depth of about 0.8 μm to serve as an isolation section.

(3)第5図に示すようにIILを形成すべき側のn型
シリコン層の表面をd−03μm8度エッチする。
(3) As shown in FIG. 5, the surface of the n-type silicon layer on the side where the IIL is to be formed is etched d-03 μm 8 times.

(4)酸化膜マスク12a、13aを取除き、新たに酸
化膜14を生成した後、ホトレジストマスク15を介し
ボロンイオン杓込み、拡散を行なって第6図に示すよう
にアイソレーション部となる溝14とp型基板1との曲
にp銅拡散層(アイソレーション部)17を形成する。
(4) After removing the oxide film masks 12a and 13a and forming a new oxide film 14, boron ions are poured in through the photoresist mask 15 and diffused into grooves that will become isolation parts as shown in FIG. A p copper diffusion layer (isolation section) 17 is formed between the p-type substrate 14 and the p-type substrate 1.

(51マスク16を取除き、ホトエッチを行い、第7図
に示すように上記酸化w7415の一部を窓開する。
(Remove the mask 16 and perform photoetching to open a part of the oxidized w7415 as shown in FIG. 7.

(61CVD@酸化膜18で上記酸化膜15の窓開した
一部を覆った状態でボロンイオン打込み(ぺ′−ス拡散
)を行い、第8図に示すようにnpn)ランジスタのベ
ースpWI14及びIILf7)インジェクタp型層1
9インバーストランジスタのベースp型層20を形成す
る。
(Boron ion implantation (peace diffusion) is performed with the 61CVD@oxide film 18 covering the open part of the oxide film 15, and npn as shown in FIG. 8) Bases of the transistor pWI14 and IILf7 ) Injector p-type layer 1
9. A base p-type layer 20 of an inverse transistor is formed.

(力 上記CVD−酸化膜18を取除き、新たに酸化、
ホトエッチ工程を軽でリン・イオン打込み(エミッタ拡
散)を行い、第9図に示すようにnpnトランジスタの
エミッタn 型層5、コレクタ取出しti−1i n+
型層6、IILのマルチコレクタn+型層21を形成す
るとともに、アイソレーション部であるp型拡散層17
の表面に接合容量のためのn+型層9を拡散する・ (8)最後に表面酸化膜に対しコンタクトアロイ・ソチ
、アルミニウム、スパッタ(又tjAA着)、アルミニ
ウムポトエノチ、コンタクトアロイを行なって、第10
図に示すように各領域にコンタクトするアルミニウム1
i’、4i(配線)を完成させる。
(Force) Remove the above CVD-oxide film 18, oxidize it anew,
Phosphorus ion implantation (emitter diffusion) is performed using a light photoetch process, and as shown in FIG.
The type layer 6 forms the multi-collector n+ type layer 21 of IIL, and also forms the p type diffusion layer 17 which is the isolation part.
Diffusion of n+ type layer 9 for junction capacitance onto the surface of , 10th
Aluminum 1 contacting each area as shown in the figure
Complete i', 4i (wiring).

すなわち、npnトランジスタ側でエミッタ市松E、ベ
ースit極B1コレクタ電極C1IIL側でイン伏、ク
タ電極Inj、ベース電、tkB、マルチコレクタ電極
CI+C2が形成され、アイソレーション部に形成した
接合容量のn+m層側に電極N+接合容量のp型層側に
接地(GND)’iff、極が形成される。
That is, an emitter checkerboard E is formed on the npn transistor side, an indentation electrode Inj, a base electrode, tkB, and a multi-collector electrode CI+C2 are formed on the base IT electrode B1 collector electrode C1IIL side, and an n+m layer of junction capacitance formed in the isolation part. An electrode is formed on the N+ side of the p-type layer of the junction capacitance, and a ground (GND) pole is formed on the side of the p-type layer.

〔効果〕〔effect〕

以上本実施例で述べた本発明によれば、下記の効果が得
られる。
According to the present invention described above in this embodiment, the following effects can be obtained.

(1)容量素子の形成に、ノくイボーラ・トランジスタ
(npn)ランジスタ素子及びIIL素子)の製造プロ
セスをそのまま適用できるため、該容量素子の形成のた
めのプロセスを追加する心安がなく、プロセスの単純化
が計れる。
(1) Since the manufacturing process of the Nokuibora transistor (NPN transistor element and IIL element) can be applied as is to the formation of the capacitive element, there is no need to worry about adding a process to form the capacitive element, and the process Simplification is possible.

(2)容量素子を、従来素子の形成に利用出来なかった
領域たとえば、アイソレーション領域に形成するため、
チッブザイズの小型化が可能となる。
(2) To form a capacitive element in an area that could not be used for conventional element formation, such as an isolation area,
It becomes possible to reduce the chip size.

(3)上記2より、生導体装置の低コスト化が達成でき
る。
(3) From 2 above, cost reduction of the live conductor device can be achieved.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で釉々変更可
能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on examples, it is to be understood that the present invention is not limited to the above-mentioned examples, and can be modified without departing from the gist thereof. Not even.

〔利用分野〕[Application field]

本発明はバイポーラICの全てに適用することができ、
特に素子の数の多い半導体装置に適用して有効である。
The present invention can be applied to all bipolar ICs,
This is particularly effective when applied to semiconductor devices with a large number of elements.

図【0jの簡単な駅間 第1図及び第2図は本発明の一実施例を示し、第1図は
バイポーラトランジスタ素子とその周辺部を含むICの
平面図、 第2図t[11図におけるA−A’断面図である8第3
図乃至第10図は本発明の他の実施例を示し、一つの導
体体基体にトランジスタとIILを形成する場合のプロ
セスの工程断面図である。
Figures 1 and 2 show an embodiment of the present invention, and Figure 1 is a plan view of an IC including a bipolar transistor element and its surrounding area, and Figure 2 is a plan view of an IC including a bipolar transistor element and its surrounding area. 8-3, which is a cross-sectional view taken along line A-A' in
10 to 10 show other embodiments of the present invention, and are cross-sectional views of a process in which a transistor and an IIL are formed on one conductive substrate.

1・・・p型シリコン単結晶基板、2・・・1型埋込層
、3,3a・・・エピタキシャルn型シリコン層、4・
・・ベースp型拡散層、5・・・エミッタn 型拡散層
、6・・・コレクタn″岱拡散層、7・・・u・1.8
・・・アイソレーションp型拡散層、9・・・nlJ拡
散層、10・・・¥I叶低椿−11・・・接地ta他、
12・・・熱酸化膜、13・・・CVD酸化膜、14・
・・テーバ状溝、15・・・酸化膜、16・・・ホトレ
ジストマスク、17・・・アイソレーショyp型酸化層
、18・・・CVD酸化膜、19・・・インジェクタp
型層、20・・・インバーストランジスタのベースp型
層、21・・・マルチコレクタn+型層。
DESCRIPTION OF SYMBOLS 1... P-type silicon single crystal substrate, 2... 1-type buried layer, 3, 3a... Epitaxial n-type silicon layer, 4...
...Base p-type diffusion layer, 5...Emitter n-type diffusion layer, 6...Collector n''-diffusion layer, 7...U-1.8
...Isolation p-type diffusion layer, 9...nlJ diffusion layer, 10...¥I Kano Low Tsubaki-11...Grounding ta, etc.
12... Thermal oxide film, 13... CVD oxide film, 14.
... Tapered groove, 15 ... Oxide film, 16 ... Photoresist mask, 17 ... Isolation yp type oxide layer, 18 ... CVD oxide film, 19 ... Injector p
type layer, 20... Base p-type layer of inverse transistor, 21... Multi-collector n+ type layer.

第 2 図 J冗 2 / 第 3 図 、3 第 6 図 第 7 図 第 8 図 第 9 図 第10図 ?tr7LTl?G IILFigure 2 J Jyo 2 / Figure 3, 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 ? tr7LTl? G IIL

Claims (1)

【特許請求の範囲】 1、@1導電型牛導体基板の上に第2導電型半導体層が
形成され、この第2導を型牛導体層表面に半導体素子が
形成され、この半導体素子はその同曲をかこむように掘
られた溝と、この溝にそってその直下に形成され第1導
電型牛導体基板に接続される第1導電型牛導体層とによ
って周辺の導体体領域から電気的に分離された半導体装
置であって、上記第1導電型牛導体層はその表面にそっ
て拡散された第2導電型層とで構成された容量を有する
ことを特徴とする半導体装置。 2、上記半導体素子の形成された第2導電型半導体領域
とその下の@1導を警手導体基板との間には高濃度第2
導亀型埋込層が埋込まれ、上記纂24vL型牛導体領域
をコレクタとし、上記溝の一部に設けられた高a度第2
導電型層を上記埋込層に接触させてコレクタ取出しfI
lSとするトランジスタが形++2されている特1′r
−請求の範囲第1項に記載の半導体装置。
[Claims] 1. A second conductivity type semiconductor layer is formed on the first conductivity type conductor substrate, and a semiconductor element is formed on the surface of the second conductivity type conductor layer. A groove is dug to surround the same groove, and a first conductive type conductor layer is formed directly below the groove and connected to the first conductive type conductive substrate, thereby electrically connecting the surrounding conductor area. 1. A separated semiconductor device, wherein the first conductive type conductor layer has a capacitance formed by a second conductive type layer diffused along its surface. 2. A high-concentration second conductor substrate is placed between the second conductivity type semiconductor region where the semiconductor element is formed and the @1 conductor substrate below it.
A conductive tortoise-shaped buried layer is embedded, the above-mentioned 24vL type cow conductor region is used as a collector, and a high-a degree second layer provided in a part of the above-mentioned groove is used.
The conductivity type layer is brought into contact with the buried layer to take out the collector fI
The characteristic 1'r in which the transistor designated as lS is of the shape ++2
- A semiconductor device according to claim 1.
JP58244048A 1983-12-26 1983-12-26 Semiconductor device Pending JPS60136362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58244048A JPS60136362A (en) 1983-12-26 1983-12-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58244048A JPS60136362A (en) 1983-12-26 1983-12-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60136362A true JPS60136362A (en) 1985-07-19

Family

ID=17112944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58244048A Pending JPS60136362A (en) 1983-12-26 1983-12-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60136362A (en)

Similar Documents

Publication Publication Date Title
US4855257A (en) Forming contacts to semiconductor device
KR19990055422A (en) Inductor device on silicon substrate and manufacturing method thereof
KR850003068A (en) Semiconductor integrated circuit and manufacturing method thereof
US4806999A (en) Area efficient input protection
JP2570148B2 (en) Semiconductor device
KR20000027485A (en) Method for manufacturing a smart power ic.
JPS60136362A (en) Semiconductor device
JPS5950104B2 (en) Hand tie souchi
JPS6323335A (en) Isolation and substrate connection for bipolar integrated circuit
JPS59161060A (en) Method of producing semiconductor device
US3718843A (en) Compact semiconductor device for monolithic integrated circuits
JPS60241261A (en) Semiconductor device and manufacture thereof
JPH0553303B2 (en)
EP0428067A2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP3157187B2 (en) Semiconductor integrated circuit
JPS5915494B2 (en) Manufacturing method of semiconductor device
JPS6153756A (en) Semiconductor device
JPS61172347A (en) Manufacture of semiconductor integrated circuit device
JPS61253852A (en) Semiconductor device and manufacture thereof
JPS60103640A (en) Semiconductor device
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPH01248560A (en) Manufacture of semiconductor device
KR19990044370A (en) Semiconductor device with special emitter connection
JPS58111373A (en) D-mos semiconductor device and method of producing same