JPS60131446A - Method for measuring dew point in furnace - Google Patents
Method for measuring dew point in furnaceInfo
- Publication number
- JPS60131446A JPS60131446A JP58240678A JP24067883A JPS60131446A JP S60131446 A JPS60131446 A JP S60131446A JP 58240678 A JP58240678 A JP 58240678A JP 24067883 A JP24067883 A JP 24067883A JP S60131446 A JPS60131446 A JP S60131446A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- dew point
- water vapor
- electromagnetic wave
- wave beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 16
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000000137 annealing Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 206010041662 Splinter Diseases 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005261 decarburization Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/56—Investigating or analyzing materials by the use of thermal means by investigating moisture content
- G01N25/66—Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用公平F)
±発明は、鉄鋼製造の各種プロセスにおいて使用されφ
各種高温炉内の露点を測定する方法に関するものである
。[Detailed description of the invention] (Industrial use fairness F) ±The invention is used in various processes of steel manufacturing.
The present invention relates to a method for measuring dew points in various high-temperature furnaces.
(従来技術)、。(prior art).
鉄鋼製造において使用される各種の高温炉、特に電磁鋼
脱炭焼鈍炉、ステンレス光輝焼鈍炉あるいは薄板連続焼
鈍炉などの焼鈍炉の焼鈍プロセスにおいては、炉内の露
点管理が非常に重要である。Control of the dew point inside the furnace is very important in the annealing process of various high-temperature furnaces used in steel manufacturing, especially in annealing furnaces such as electromagnetic steel decarburization annealing furnaces, stainless steel bright annealing furnaces, and continuous thin plate annealing furnaces.
例えば電磁鋼板においては炉内水蒸気と鋼板表面との脱
炭反応が鉄準特性を左右することが明らかにされており
、そのため水蒸気量を保つことが極めて重要である。ま
たステンレス鋼板では、炉内の微量な水蒸気が鋼板表面
に薄い酸化膜を作り、表面性状および美観に決定的に影
響を与える。また冷延鋼板等の薄板においても水蒸気に
よる表面酸化がその後工程で行われるメッキ処理、例え
ば亜鉛メッキ処理などの良否に多大の影響を及ぼす。For example, in electrical steel sheets, it has been revealed that the decarburization reaction between the steam in the furnace and the surface of the steel sheet influences the iron quasi-characteristics, and therefore it is extremely important to maintain the amount of water vapor. Furthermore, with stainless steel sheets, a small amount of water vapor in the furnace forms a thin oxide film on the surface of the steel sheet, which has a decisive effect on the surface quality and aesthetic appearance. Furthermore, surface oxidation caused by water vapor in thin sheets such as cold-rolled steel sheets has a great effect on the quality of subsequent plating treatments, such as zinc plating.
このように焼鈍炉プロセス等の熱処理炉における露点管
理は非常に重要であるが現状の露点管理は充分ではない
。すなわち従来より一般に行われている熱処理炉の露点
管理は例えば日本特許協会線「第3版鉄鋼便覧■二次加
工・表面処理・熱処理・溶接」第561頁に示されてい
るように、塩化リチウムの吸湿飽和特性を利用したデユ
ープローブ(DeW Probe )を炉に取付け、露
点を測定することに行われているが、炉空間はかなり広
く、空間的に大きく変動していると考えられるにも拘わ
らず、炉内の1点の露点を測定して炉全体の露点とみな
している。しかしながらこのようにして得られた露点の
値が炉内の全体の露点を代表するものであるかは疑わし
く、従ってこのような情報を基にしてのプロセスの制御
あるいは炉内材料の品質制御というような具体的な操業
の制御を適確に行うことが困難であろうことは容易に理
解されよう。As described above, dew point control in a heat treatment furnace such as an annealing furnace process is very important, but the current dew point control is not sufficient. In other words, the dew point control of heat treatment furnaces that has been generally carried out in the past is, for example, as shown in the Japanese Patent Association's "3rd Edition Iron and Steel Handbook - Secondary Processing, Surface Treatment, Heat Treatment, Welding", page 561. A DeW Probe, which utilizes the moisture absorption saturation characteristics of , the dew point at one point in the furnace is measured and considered as the dew point of the entire furnace. However, it is doubtful whether the dew point value obtained in this way is representative of the entire dew point in the furnace, and therefore it is difficult to control the process or the quality of the materials in the furnace based on such information. It is easy to understand that it would be difficult to accurately control specific operations.
(発明の目的)
本発明はこのような現状に対して、真に必要な露点を測
定する方法を提供することを目的とするものである。す
なわち、上記の各種プロセスにおいて真に必要な露点は
炉内で熱処理される材料表面近傍の露点であり、本発明
はこの材料表面と直接反応する表面近傍の水蒸気量を計
測することによって露点を測定する方法を提供するもの
である。(Objective of the Invention) It is an object of the present invention to provide a method for measuring the truly necessary dew point in response to the current situation. In other words, the truly necessary dew point in the various processes described above is the dew point near the surface of the material heat-treated in the furnace, and the present invention measures the dew point by measuring the amount of water vapor near the surface that directly reacts with the material surface. This provides a method to do so.
(発明の構成作用)
本発明は水蒸気に対して吸収特性を示す特定の波長の電
磁波ビームが空間を伝播するとき、露点の値の変化に対
応して電磁波ビーム吸収される量が変化することを利用
して、炉内で静止あるいは走行中の材料表面の極く近傍
の平均露点を測定するものである。以下図面により本発
明についても詳細に説明する。(Construction and Effect of the Invention) The present invention detects that when an electromagnetic wave beam of a specific wavelength exhibiting absorption characteristics for water vapor propagates through space, the amount of the electromagnetic wave absorbed changes in response to changes in the dew point value. This method is used to measure the average dew point in the vicinity of the surface of a material that is stationary or moving in a furnace. The present invention will also be explained in detail below with reference to the drawings.
第1図は本発明の基本構成を示すもので、炉1の両側壁
2.2′にそれぞれ小さな孔を設け、炉内雰囲気が洩れ
ないように石英ガラス等の電磁波透過窓3.3′でシー
ルする。一方、該電磁波透過窓3に対向して、水蒸気に
対して吸収特性を示す波長の電磁波ビーム5の光源4と
ビームスプリッタ−7を位置させ、さらにビームスプリ
ッタ−7には対向して検出器8を設ける。また他方の電
磁波透過窓3′の外側には反射ミラー6を設ける。Fig. 1 shows the basic configuration of the present invention. Small holes are provided in both side walls 2 and 2' of a furnace 1, and electromagnetic wave transmitting windows 3 and 3' made of quartz glass or the like are installed to prevent the atmosphere inside the furnace from leaking. Seal. On the other hand, a light source 4 of an electromagnetic wave beam 5 having a wavelength exhibiting absorption characteristics for water vapor and a beam splitter 7 are located opposite the electromagnetic wave transmission window 3, and a detector 8 is further opposed to the beam splitter 7. will be established. Further, a reflecting mirror 6 is provided outside the other electromagnetic wave transmitting window 3'.
そこで光源4から電磁波ビーム5(例えば赤外線ビーム
)を発射し、電磁波透過窓3から炉内1′の水蒸気と界
面反応の生じる材料9の表面9′の極く近傍を通過する
ように電磁波ビームを伝播させ、電磁波透過窓3′の外
側に設けた反射ミラー6で反射させ、再度炉内1′を通
過させ、電磁波透過窓3から炉外に取出し、ビームスプ
リッタ−7で反射させて検出器8に導く。検出器8で検
出された電磁波強度は炉内露点に対応して変化するので
、即ち炉内水分量に対応して変化するので、露点を測定
することができる。この場合炉内の材料9に対して、そ
の幅方向に電磁波ビーム5を通過させるようにすれば、
材料9の極めて近傍の露点の平均値の測定が行われるの
で、従来の露点管理とは全く異なるプロセス制御、材質
制御を行うことが可能となる。しかも電磁波ビームの検
出は高速で行うことができるので材料9が炉内1′を高
速走行しそいる場合でも常時連続的に露点の測 ′定を
行うことができる。Therefore, an electromagnetic wave beam 5 (for example, an infrared beam) is emitted from the light source 4, and the electromagnetic wave beam is transmitted from the electromagnetic wave transmission window 3 very close to the surface 9' of the material 9 where an interfacial reaction occurs with the water vapor in the furnace interior 1'. It is propagated, reflected by a reflection mirror 6 provided outside the electromagnetic wave transmission window 3', passed through the furnace 1' again, taken out from the furnace through the electromagnetic wave transmission window 3, reflected by the beam splitter 7, and sent to the detector 8. lead to. Since the electromagnetic wave intensity detected by the detector 8 changes in accordance with the dew point in the furnace, that is, in accordance with the amount of moisture in the furnace, the dew point can be measured. In this case, if the electromagnetic wave beam 5 is made to pass through the material 9 in the furnace in its width direction,
Since the average value of the dew point in the very vicinity of the material 9 is measured, it becomes possible to perform process control and material control that are completely different from conventional dew point control. Furthermore, since the electromagnetic beam can be detected at high speed, the dew point can be measured continuously even when the material 9 is running at high speed inside the furnace 1'.
ここで本発明の測定原理を説明する。Here, the measurement principle of the present invention will be explained.
いま、水蒸気に対して吸収特性を示す波長λの、伝播距
離2における強度をI (Z)とすると、ランベルト−
ビア(Lambert−Beer)の法則としてよく知
られた次式が成り立つ。Now, if the intensity at the propagation distance 2 of the wavelength λ that exhibits absorption characteristics for water vapor is I (Z), then Lambert-
The following equation, well known as Lambert-Beer's law, holds true.
12(Z) =I2(0) exp’ (−tx・n6
Z) ・=(11(1)式においてI、(0’)はZ
=0、すなわち入射強度をあられす。また、nはビーム
が伝播する空間あ単位体積当りの水蒸気モル数、αは波
長λの水蒸気に対する吸収係数をあられす。第1図にお
いで、入射光は一幅lを往復して検出されるので伝播距
離はL=2#である。したがって、Z=Lを(11式に
代入して整理すると次式が成り立つ。12(Z) =I2(0) exp' (-tx・n6
Z) ・=(11 In formula (1), I, (0') is Z
= 0, that is, the incident intensity is reduced to zero. In addition, n is the number of moles of water vapor per unit volume of the space through which the beam propagates, and α is the absorption coefficient for water vapor at wavelength λ. In FIG. 1, the incident light travels back and forth over one width l and is detected, so the propagation distance is L=2#. Therefore, by substituting Z=L into equation (11) and rearranging, the following equation holds true.
(2)式の両辺の対数をとり、整理すると(3)式にお
いて、右辺のしおよびαは定数であるから、検出強度I
λ(L)と入射強度rλ(0)の比から、水蒸気モル数
nがめる。Taking the logarithm of both sides of equation (2) and rearranging it, in equation (3), the right side and α are constants, so the detection intensity I
The number of moles of water vapor, n, can be determined from the ratio of λ(L) and the incident intensity rλ(0).
ところで、第1図の炉空間は開放系で、外部より水蒸気
が常時供給され、炉内の他成分との割合がほぼ保たれ、
炉内圧はほぼ1気圧に保たれているとする。このとき、
炉内水蒸気分圧Pw、炉容積を■、水蒸気モル数をN、
および炉内雰囲気温度をT (K)とすると、
Pw−V=N−R−T ・・・・・・(4)が成り立つ
。ここでRは期待定数である。(4)式において、単位
体積当りの水蒸気モル数nはn=N/■で表わされるか
ら、水蒸気分圧Pwは次式で与えられる。By the way, the furnace space in Figure 1 is an open system, and steam is constantly supplied from the outside, so that the ratio with other components in the furnace is almost maintained.
It is assumed that the pressure inside the furnace is maintained at approximately 1 atm. At this time,
The partial pressure of steam in the furnace Pw, the furnace volume as ■, the number of moles of steam as N,
And when the furnace atmosphere temperature is T (K), Pw-V=N-R-T (4) holds true. Here R is an expectation constant. In equation (4), the number n of water vapor moles per unit volume is expressed as n=N/■, so the water vapor partial pressure Pw is given by the following equation.
Pw=n −R−T ・・−(51
すなわち、炉内水蒸気分圧Pwは、(3)式によりnが
測定され、炉内雰囲気温度Tが得られれば、(5)式か
らめられる。一方、第2図に示すように、飽和水蒸気圧
Pwとそれに対応する露点tw(’C)の間には、一定
の関係式があるので、(5)式によりPwがめれば、露
点twが第2図から得られる。Pw=n -R-T...-(51 In other words, the in-furnace water vapor partial pressure Pw can be determined from equation (5) if n is measured by equation (3) and the in-furnace ambient temperature T is obtained.On the other hand, , as shown in Fig. 2, there is a certain relational expression between the saturated water vapor pressure Pw and the corresponding dew point tw ('C), so if Pw is calculated by equation (5), the dew point tw becomes Obtained from Figure 2.
以上が本発明の原理である。本原理を具体化した構成例
を第3図に示す。第3図において、光源±からの電磁波
ビーム】は水蒸気に対して吸収特性を示す波長λだけを
通すフィルター上1を通過したのち、ビームスプリンタ
ー1に達し、さらにおよび全吸収面土工 がある。セク
ター11が回転し電磁波ビームlの光路に該窓部分↓上
′が来たとき、ビームΣは路内上′に入射伝播し、該炉
側壁yに設けられた反射ミラー6で反射されて元の光路
を引き返し、ビームスプリンター7で反射されて検出器
8に入る。この検出信号をI+とする。またセクター1
1の全反射ミラー11“が光路にあるとき、ビーム5は
そこで全反射され、ビームスプリッタ−7で反射して同
様に検出器8に入る。この検出信号を12とする。さら
に全吸収面11”が光路にあるとき、ここで反射して検
出される信号をゼロベースとみなし、I3とする。The above is the principle of the present invention. An example of a configuration embodying this principle is shown in FIG. In FIG. 3, an electromagnetic wave beam from a light source ± passes through a filter 1 that passes only the wavelength λ that exhibits absorption characteristics for water vapor, and then reaches a beam splinter 1, where there is a total absorption surface. When the sector 11 rotates and the window portion ↓Top' comes to the optical path of the electromagnetic beam l, the beam Σ propagates in the path and is reflected by the reflection mirror 6 provided on the furnace side wall Y to return to its original state. The beam returns along its optical path, is reflected by the beam splinter 7, and enters the detector 8. Let this detection signal be I+. Also sector 1
When the total reflection mirror 11'' of No. 1 is in the optical path, the beam 5 is totally reflected there, reflected by the beam splitter 7, and similarly enters the detector 8. This detection signal is designated as 12. Furthermore, the total absorption surface 11 ” is in the optical path, the signal reflected and detected here is regarded as the zero base and is designated as I3.
それぞれの検出信号は次のように記述することができる
。Each detection signal can be written as follows.
1 + =k + lλ(0) exp (−αn′Z
。1 + =k + lλ(0) exp (-αn'Z
.
−αn’L)+Ib・・・・・・(6〕I 2 =k
211(0)eにp−txn′Z o) +Ib・=(
7)−13=Ib ・・・・・・(8)
ここで、k+、に2はミラーの反射率、光学系の幾何学
的係数を含めた係数で定数。n′は回転セクター且とビ
ームスプリンターLおよび検出器8間の光路距離、Ib
は周囲背景光を含む検出雑音値である。(6)〜(8)
式より CI+−13)/(I2−13)を作ると、
(9)式より
ただし、k=に2/に+=(定数)、
すなわち、00式により、路内単位体積当りの水蒸気モ
ル数nがまる。本構成で該ビームΣはもちろん材料表面
ルの近傍を伝播することが肝要である。次に本発明の実
施例を示す。-αn'L)+Ib...(6)I2=k
211(0)e to p-txn'Z o) +Ib・=(
7)-13=Ib (8) Here, k+ and 2 are coefficients including the reflectance of the mirror and the geometric coefficient of the optical system, and are constants. n' is the optical path distance between the rotating sector and the beam splinter L and the detector 8, Ib
is the detection noise value including ambient background light. (6)-(8)
From the formula, CI+-13)/(I2-13) is created. From formula (9), however, k = 2/ + = (constant), that is, by formula 00, the number of moles of water vapor per unit volume in the road n becomes a circle. In this configuration, it is of course important that the beam Σ propagate near the material surface. Next, examples of the present invention will be shown.
(実施例)
第3図の構成において、光源上としてハロゲン電球を使
用し、フィルター10としてλ−1,39μm1半値幅
Δλ=O,’15μmの干渉フィルターを使用、した。(Example) In the configuration shown in FIG. 3, a halogen bulb was used as the light source, and as the filter 10, an interference filter of λ-1, 39 μm, 1 half-width Δλ=O, 15 μm was used.
ビーム心よ材料、表面l二から10++n+離れた所を
ビーム径3鶴φで伝播させた。検出器8としてゲルマニ
ウム(Ge’)素子を用いた。炉雰囲気温度は約700
℃である。炉内の露点を変化させて(9)式に対応する
信号<1’+−13)/ (I 2、I3’)を検出し
、このデータをもとに00)式を計算し、第4図のよう
に電気出力と露点の関係式を得た。縦軸にはnW mo
l/Nm3 と出ヵ電圧OUT (V)をとってあり、
後者はVsig/ V I?EF(ターミナル出力電圧
)に比例する。The beam was propagated at a distance of 10++n+ from the surface of the material with a beam diameter of 3φ. A germanium (Ge') element was used as the detector 8. The furnace atmosphere temperature is approximately 700
It is ℃. By changing the dew point in the furnace, a signal <1'+-13)/(I2, I3') corresponding to equation (9) is detected, and based on this data, equation 00) is calculated. As shown in the figure, a relational expression between electrical output and dew point was obtained. The vertical axis shows nW mo
l/Nm3 and output voltage OUT (V) are taken,
The latter is Vsig/VI? Proportional to EF (terminal output voltage).
本実施例では、光源としてハロゲンランプを利用したが
、キセノンランプやタングステンランプのような他の電
球、黒体炉等の熱放射源はもとより半導体レーザやCO
2レーザのようなチューナプルなレーザが活用できる。In this example, a halogen lamp was used as the light source, but other light bulbs such as xenon lamps and tungsten lamps, thermal radiation sources such as blackbody furnaces, semiconductor lasers, and CO
Tunable lasers such as 2 lasers can be used.
また、水蒸気に対して吸収特性を示すマイクロ波領域の
波長帯も利用することができるため、ガンダイオードの
ようなマイクロ波発生源も使用することができる。Furthermore, since a wavelength band in the microwave region that exhibits absorption characteristics for water vapor can be used, a microwave generation source such as a Gunn diode can also be used.
(発明の効果)
以上説明したように本発明は鋼板等の路内物体の表面近
傍の水蒸気の状態の変化に検出し、該変化に基ずく露点
の値を平均値として測定することができるので、従来の
一点の測定で路内状筋を代表させていた方式に比較して
はるかに正確であり、従って測定値プロセス制御あるい
は炉内物体の品質制御に活用することができる等その効
果は大きい。(Effects of the Invention) As explained above, the present invention can detect changes in the state of water vapor near the surface of road objects such as steel plates, and measure the dew point value based on the changes as an average value. This method is much more accurate than the conventional method of measuring at a single point to represent the inner path, and therefore has great effects, such as being able to use measured values for process control or quality control of objects in the furnace. .
第1図は本発明の測定原理を示す説明図、第2図は飽和
蒸気圧と露点の関係を示すグラフ、第3図は本発明方法
の実例を示す説明図、第4図は本発明方法における出力
電圧と露点の関係を示すグラフである。
1:炉、 1′ :炉内、 2. 2′F側壁、3.3
′ :電磁波透過窓、 4:光源、や5:電磁波ビー4
、6;反射ミラー、 7:ビームスブリソター、 8:
検出器、 9:材料、 9′:表面、10:フィルター
、11:回転セクター、 11′ :透過窓部分、 1
1〃:全反射ミラー、 11 :全吸収面。
出 願 人 新日本製鐵株式会社
代理人弁理士 青 柳 稔
手続補正書(自発)
1、事件の表示
昭和58年特許願第240678号
2、発明の名称
炉内露点測定方法
3、補正をする者
事件との関係 特許出願人
住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社
代表者 武 1) 豊
4、代理人 〒101Figure 1 is an explanatory diagram showing the measurement principle of the present invention, Figure 2 is a graph showing the relationship between saturated vapor pressure and dew point, Figure 3 is an explanatory diagram showing an example of the method of the present invention, and Figure 4 is the method of the present invention. 2 is a graph showing the relationship between output voltage and dew point in FIG. 1: Furnace, 1': Inside the furnace, 2. 2'F side wall, 3.3
′: Electromagnetic wave transmission window, 4: Light source, 5: Electromagnetic wave beam 4
, 6; Reflection mirror, 7: Beam subsoter, 8:
Detector, 9: Material, 9': Surface, 10: Filter, 11: Rotating sector, 11': Transmission window portion, 1
1: Total reflection mirror, 11: Total absorption surface. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Procedural amendment (voluntary) 1. Indication of the case Patent Application No. 240678 filed in 1982. 2. Name of the invention Method for measuring dew point in a furnace 3. Amendments to be made Relationship with the case Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 101
Claims (1)
の水蒸気に対する電磁波の吸収特性により、物体表面附
近の露点を測定することを特徴とする炉内露点測定方法
。 (2)炉内物体の近傍に、炉内の水蒸気に対して吸収特
性をもつ波長の電磁波ビームと吸収特性をもたない電磁
波ビームとを、炉内物体表面近傍を通過させ、物体表面
附近の露点を測定することを特徴とする炉内露点測定方
法。 (3)電磁波ビームの発信源として、ハロゲンランプ、
キセノンランプ等の赤外線発生電球、波長可変の赤外線
半導体レーザー、CO2レーザー等の赤外線発生レーザ
ー、あるいはガンダイオード等のマイクロ波発生器を使
用することを特徴とする特許請求の範囲第1項または第
2項記載の炉内露点測定方法。 (4)炉内を走行する物体の走行方向と直角方向におけ
る該一体の表面附近の平均露点を測定することを特徴と
する特許請求の範囲第1項または第2項記載の炉内露点
測定方Φ。 (5)電磁波ビーム発信源と受信器とを炉の側壁または
炉外に設定することを特徴とする特許請求の範囲第1項
または第2項記載の炉内露点測定方法。[Scope of Claims] +11 An in-furnace dew point measuring method characterized by passing an electromagnetic wave beam near an in-furnace object and measuring the dew point near the object's surface based on the absorption characteristics of electromagnetic waves for water vapor in the furnace. (2) An electromagnetic wave beam with a wavelength that has absorption characteristics for water vapor in the reactor and an electromagnetic wave beam that does not have absorption characteristics are passed near the surface of the object in the reactor, and An in-furnace dew point measuring method characterized by measuring dew point. (3) As a source of electromagnetic wave beam, a halogen lamp,
Claims 1 or 2, characterized in that an infrared generating bulb such as a xenon lamp, a wavelength tunable infrared semiconductor laser, an infrared generating laser such as a CO2 laser, or a microwave generator such as a Gunn diode is used. Furnace dew point measurement method described in section. (4) The in-furnace dew point measuring method according to claim 1 or 2, characterized in that the average dew point near the surface of the object in the direction perpendicular to the traveling direction of the object traveling in the furnace is measured. Φ. (5) The in-furnace dew point measuring method according to claim 1 or 2, characterized in that the electromagnetic wave beam source and the receiver are set on a side wall of the furnace or outside the furnace.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58240678A JPS60131446A (en) | 1983-12-20 | 1983-12-20 | Method for measuring dew point in furnace |
GB08431441A GB2153520B (en) | 1983-12-20 | 1984-12-13 | Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet |
CA000470214A CA1235925A (en) | 1983-12-20 | 1984-12-14 | Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet |
US06/681,629 US4647319A (en) | 1983-12-20 | 1984-12-14 | Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet |
DE19843446193 DE3446193A1 (en) | 1983-12-20 | 1984-12-18 | METHOD FOR QUANTITATIVELY DETERMINING THE DECOLORING REACTION IN THE MANUFACTURE OF ELECTRIC STEEL SHEET |
BE0/214193A BE901317A (en) | 1983-12-20 | 1984-12-19 | METHOD FOR QUANTITATIVELY MEASURING THE DECARBURIZATION REACTION IN THE PRODUCTION OF ELECTRIC STEEL SHEETS. |
IT24146/84A IT1177473B (en) | 1983-12-20 | 1984-12-20 | PROCEDURE FOR QUANTITATELY DETECTING THE DECARBURATION REACTION IN THE PRODUCTION PROCESS OF A STEEL SHEET IN THE ELECTRIC OVEN |
FR8419557A FR2556838B1 (en) | 1983-12-20 | 1984-12-20 | METHOD FOR QUANTITATIVELY DETECTING THE DECARBURIZATION REACTION IN THE PROCESS OF MANUFACTURING AN ELECTRIC STEEL SHEET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58240678A JPS60131446A (en) | 1983-12-20 | 1983-12-20 | Method for measuring dew point in furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60131446A true JPS60131446A (en) | 1985-07-13 |
JPH0350981B2 JPH0350981B2 (en) | 1991-08-05 |
Family
ID=17063075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58240678A Granted JPS60131446A (en) | 1983-12-20 | 1983-12-20 | Method for measuring dew point in furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60131446A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5263790A (en) * | 1975-11-22 | 1977-05-26 | Shimadzu Corp | Measurement of steam content |
JPS54146697A (en) * | 1978-05-10 | 1979-11-16 | Nisshin Steel Co Ltd | Method and device for measuring dew point of atmosphere gas in bellltype annealing furnace |
-
1983
- 1983-12-20 JP JP58240678A patent/JPS60131446A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5263790A (en) * | 1975-11-22 | 1977-05-26 | Shimadzu Corp | Measurement of steam content |
JPS54146697A (en) * | 1978-05-10 | 1979-11-16 | Nisshin Steel Co Ltd | Method and device for measuring dew point of atmosphere gas in bellltype annealing furnace |
Also Published As
Publication number | Publication date |
---|---|
JPH0350981B2 (en) | 1991-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5727017A (en) | Method and apparatus for determining emissivity of semiconductor material | |
US2269674A (en) | Method for photometric analysis | |
GB2074722A (en) | Measuring surface temperature and emmissivity of a heated sample | |
JPS5847657B2 (en) | Ryu Taibun Sekiki | |
CN107345904A (en) | Method and device based on optical absorption and interferometry gas concentration | |
US3446558A (en) | Method for measuring the characteristics of a gas | |
US4647319A (en) | Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet | |
US4818102A (en) | Active optical pyrometer | |
JP4472156B2 (en) | Gas component measuring apparatus and method | |
JPH03221843A (en) | Analyzer by light | |
CN113639891A (en) | High-speed optical fiber temperature sensing demodulation method based on equivalent wavelength | |
JPH03216526A (en) | Method of measuring temperature of semiconductor material by light transmission factor | |
JPS60131446A (en) | Method for measuring dew point in furnace | |
US4310762A (en) | Calorimetric trace analysis by laser induced thermal lens method | |
US5376592A (en) | Method of heat-treating a semiconductor wafer to determine processing conditions | |
JPH0638058B2 (en) | Gas concentration and partial pressure measuring device | |
JPS6047538B2 (en) | How to measure the temperature and emissivity of an object | |
JPS60166846A (en) | Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process | |
Stephens | Long-path infrared spectroscopy for air pollution research | |
GB1337273A (en) | Interferometer thickness gauge | |
JPH0310128A (en) | Method for simultaneously measuring temperature and emissivity in high temperature furnace | |
JPS6252436A (en) | Gas detector | |
JPH0565023B2 (en) | ||
JPS6221953Y2 (en) | ||
Horita et al. | Improvement of sensitivity of photothermal deflection spectroscopy by a double pass method |