JPS60166846A - Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process - Google Patents

Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process

Info

Publication number
JPS60166846A
JPS60166846A JP59009192A JP919284A JPS60166846A JP S60166846 A JPS60166846 A JP S60166846A JP 59009192 A JP59009192 A JP 59009192A JP 919284 A JP919284 A JP 919284A JP S60166846 A JPS60166846 A JP S60166846A
Authority
JP
Japan
Prior art keywords
water vapor
gas
steel sheet
electromagnetic wave
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59009192A
Other languages
Japanese (ja)
Other versions
JPH0349062B2 (en
Inventor
Toru Inouchi
徹 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59009192A priority Critical patent/JPS60166846A/en
Priority to GB08431441A priority patent/GB2153520B/en
Priority to CA000470214A priority patent/CA1235925A/en
Priority to US06/681,629 priority patent/US4647319A/en
Priority to DE19843446193 priority patent/DE3446193A1/en
Priority to BE0/214193A priority patent/BE901317A/en
Priority to IT24146/84A priority patent/IT1177473B/en
Priority to FR8419557A priority patent/FR2556838B1/en
Publication of JPS60166846A publication Critical patent/JPS60166846A/en
Publication of JPH0349062B2 publication Critical patent/JPH0349062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/66Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To perform the accurate operation control of a decarburizing process by measuring the concns. of steam and CO-gas, by measuring the absorption amounts of electromagnetic wave beam to steam in the vicinity of the surface of a steel plate and CO-gas formed by the reaction of steam and the surface of the steel plate. CONSTITUTION:The electromagnetic wave beam 5 from a beam source 4 transmits a filter 10 passing only a wavelength lambda showing absorbing characteristics to steam to reach a rotary sector 11. Said beam 5 is incident on the interior of a furnace 1' through a window part 11' and propagates through said furnace 1' to be reflected by a reflective mirror 6 while the reflected beam is further reflected by a beam splitter 7 to enter a detector 8. This detection signal is set to I1. The beam 5 is totally reflected by a total reflection mirror 11'' and the reflected beam is reflected by the beam splitter 7 to similarly enter the detector 8. This detection signal is set to I2. In addition, the signal, which is reflected by a total absorbing surface 11''' and detected, is refered as a zero base and set to I3. The mol number (n) of steam per the unit volume in the furnace is calculated by formula. In the formula, alpha is coefficient of attenuation, L is a propagation distance and K is constant. The measurement of CO-gas can be performed in a perfectly similar way.

Description

【発明の詳細な説明】 (腫業上の利用分野) 本発明は、電磁鋼板の製造工程において、脱炭焼鈍炉内
における脱炭及能をオンライン計測する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Medical Application) The present invention relates to a method for online measuring the decarburization efficiency in a decarburization annealing furnace in the manufacturing process of electrical steel sheets.

(従来技術) すでによく知られているように、電磁鋼板の製造におい
ては脱炭焼鈍が行われているが、その主な目的は、銅板
の一次再結晶と脱炭およびシリカ層スケールの生成、す
なわち酸化皮膜の生成にある。しかもこの工程における
シリカ層スクールの生成とその皮膜特性は、その後の一
次皮膜、すなわちフォルステライト皮膜の生成に大きな
影響を及はし、−電磁鋼板の製品としての鉄損特性に重
要なポイントになる。
(Prior Art) As is already well known, decarburization annealing is performed in the production of electrical steel sheets, and its main purpose is to primary recrystallize and decarburize the copper sheet, and to generate silica layer scale. In other words, it lies in the formation of an oxide film. Moreover, the formation of the silica layer school and its film properties in this process have a great influence on the subsequent formation of the primary film, that is, the forsterite film, and are important points for the iron loss characteristics of electrical steel sheets as products. .

このような脱炭焼鈍工程では、まず鋼中炭素と雰囲気中
水蒸気とがC+HxO二CO+ Hzの反応によって脱
炭が行われるが、水蒸気分圧が高過ぎると鋼板表面に酸
化フィルム(FeOr Fe5O4等)を形成し、Cと
HxOの接触の機会を阻害して脱炭反応を抑制しその結
果、磁気特性に致砧的な悪影響を及はすことになる。ま
た該工程の後半は、脱炭後の鋼板表面にシリカ層スケー
ル、すなわち下記の反応等によって、5LOx 、 2
F@0・81(h等の酸化皮膜を生成させる。
In such a decarburization annealing process, decarburization is first performed by a reaction between carbon in the steel and water vapor in the atmosphere at C+HxO2CO+Hz, but if the water vapor partial pressure is too high, an oxide film (FeOr Fe5O4, etc.) will form on the surface of the steel sheet. , which inhibits the opportunity for C and HxO to come into contact and suppresses the decarburization reaction, resulting in a severe negative effect on the magnetic properties. In addition, in the latter half of the process, a silica layer scale is formed on the surface of the steel sheet after decarburization, that is, due to the following reaction, etc., 5LOx, 2
Forms an oxide film such as F@0.81 (h).

St + 2HsO−+ Si O雪+2Hz2Fe 
+St +4HsO−+ 2FeO・5to2+ 4)
hしかしこれらの反応による過一度の酸化は、密着性の
悪化、必要以上の表面層の厚さ増大などをもたらし、特
性の劣化、占積率の低下を招くことになる。
St + 2HsO-+ SiO snow + 2Hz2Fe
+St +4HsO-+ 2FeO・5to2+ 4)
However, excessive oxidation due to these reactions causes deterioration of adhesion, unnecessarily increased thickness of the surface layer, etc., resulting in deterioration of characteristics and reduction in space factor.

これら皮膜の適切な組成と量は、その後の工程である高
温仕上げ焼鈍を行うことによって、主として7オルステ
ライト(2Mg0・5iOz)なるガラス状の絶縁皮膜
(−次皮膜とよぶ)の品質を左右する。
The appropriate composition and amount of these films determine the quality of the glass-like insulating film (referred to as the secondary film), which is mainly made of 7-orsterite (2Mg0.5iOz), through the subsequent high-temperature finishing annealing process. .

このように、脱炭焼鈍工程は、脱炭と酸化皮膜生成の両
方の反応を進行させることを特徴としている。
In this way, the decarburization annealing step is characterized by allowing both decarburization and oxide film formation reactions to proceed.

従って、充分な脱炭と適切な戚化反課庄成を両立させる
ためには、炉内焼鈍雰囲気ガス、露点、温度、時間等の
きめ細い管理が重要でおる。
Therefore, in order to achieve both sufficient decarburization and appropriate formation of the reaction mixture, careful control of the furnace annealing atmosphere gas, dew point, temperature, time, etc. is important.

このような脱炭反応の管理として、例えば特公昭5B−
43691号公報に示されているように、従来から、炉
内水蒸気と水嵩ガスの分圧比PI[、o/PHffiあ
るいは露点を管理することが行われている。
For the management of such decarburization reactions, for example,
As disclosed in Japanese Patent No. 43691, the partial pressure ratio PI[, o/PHffi, or dew point of in-furnace steam and water bulk gas has been managed.

しかしながら、このような従来技術における分圧比おる
いは露点は炉内に抽入する前の水蒸気と水素量の割合を
測定することによ請求めたり、あるいは日本鉄鋼協会編
「第3版鉄鋼便覧■」第561負に示されているように
、塩化リチウムの吸湿飽和特性を利用したデユー・プロ
ーブ(Dew Probe )を炉に取付け、炉内雰囲
気を炉外に吸引することにより露点観測を行っfc勺し
ている。ところが脱炭焼鈍炉内の空間はかなシ広く、分
圧比あるいは露点は空間的に大きく変動していると考え
るのが自然であ)、従ってこのような方法では脱炭、酸
化皮膜生成に関与している真の情報を捉えているとは云
えない。すなわち、脱炭反応、酸化HL膜生成は、電磁
鋼板の表面付近に存在する水蒸気と該鋼板表面が反応し
て生じるものであるから、真の情報は正にこの鋼板表面
付近に存在する案囲気の状態にある訳である。従って、
上述の従来技術における管理では電磁鋼板の脱炭プロセ
スの制御は充分であるとは云えない。しかしながら従来
から上述の真の情報を捕捉するための適当な手段がなく
、従ってこの情報によシ辱炭反応を制御することは行わ
れていない。
However, in the conventional technology, the partial pressure ratio or dew point can be determined by measuring the ratio of water vapor and hydrogen before being extracted into the furnace, or the 3rd edition of the Iron and Steel Handbook, edited by the Iron and Steel Institute of Japan. ■ As shown in No. 561, a Dew Probe that utilizes the moisture absorption saturation characteristics of lithium chloride is attached to the furnace, and the dew point is observed by sucking the atmosphere inside the furnace to the outside of the furnace. I'm yelling. However, the space inside the decarburization annealing furnace is vast and it is natural to think that the partial pressure ratio or dew point varies greatly spatially. Therefore, this method does not involve decarburization and oxide film formation. It cannot be said that the true information that is being captured is captured. In other words, since the decarburization reaction and the formation of an oxidized HL film occur when water vapor existing near the surface of the electrical steel sheet reacts with the surface of the steel sheet, the true information is precisely due to the presence of the surrounding air near the surface of the steel sheet. This means that the situation is as follows. Therefore,
It cannot be said that the control in the prior art described above is sufficient to control the decarburization process of electrical steel sheets. However, until now there has been no suitable means for capturing the above-mentioned true information, and therefore no attempt has been made to control the charcoal reaction using this information.

(@明の目的) 本発明はこのような現状に対して、電磁鋼板の脱炭プロ
セスの適確な操業制御に資する情報を提供することを目
的とするものである。すなわち本発明は脱炭反応が生じ
る鋼板狭面近傍の水蒸気と、反応生成物であるCOガス
の繊度を同時測定する方法または水蒸気とCOガスの分
圧あるいはそれらの分圧比PH!o/Pcoを測定する
方法を提供しようとするものである。
(@Akira's purpose) In view of the current situation, it is an object of the present invention to provide information that contributes to accurate operational control of the decarburization process of electrical steel sheets. That is, the present invention provides a method for simultaneously measuring the fineness of water vapor near the narrow surface of a steel plate where a decarburization reaction occurs and CO gas, which is a reaction product, or the partial pressure of water vapor and CO gas, or their partial pressure ratio PH! The present invention attempts to provide a method for measuring o/Pco.

(発明の構成・作用) 本発明は、水蒸気およびCOガスに対して吸収特性を示
す物足の波長の電磁反ビームが空間を伝播するとき、該
水蒸気およびCOガス量の変化に対して、電磁波ビーム
の吸収されるtが変化するととr利用して脱炭焼鈍炉内
の璽蝋鋼板衣面の極く近傍の水蒸気およびCOガスの一
度、または両者の分圧ないし分圧比、あるいは水蒸気濃
度に対応する露点を測定するものである。以下、図面に
ょ9本発明について詳細に説明する。
(Structure and operation of the invention) When an electromagnetic anti-beam with a sufficient wavelength that exhibits absorption characteristics for water vapor and CO gas propagates in space, the electromagnetic wave is When the absorbed beam t changes, r is used to change the partial pressure or partial pressure ratio of water vapor and CO gas, or both, or the water vapor concentration in the close vicinity of the coating surface of the brazed steel plate in the decarburization annealing furnace. The corresponding dew point is measured. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の基本的構成を示すもので、脱炭焼鈍炉
1の両側壁2,2′にそれぞれ小さな孔を設け、炉内雰
囲気が洩れないように電磁波に対して透過する窓3,3
′でシールする。一方、該電磁波透過窓3に対向して水
蒸気およびCOガスに対する吸収帯波長を放射する電磁
波ビーム5の光源4とビームスプリッターフを位置させ
、さらに該ビームスプリッタ−7に対向して検出器8を
設ける。また、他方の電磁波透過窓3′の外側にはりド
ロリフレクタ−などの反射ミラー6を設ける。そこで、
光源4から電磁波ビーム5例えば扉外蔵ビーム(水蒸気
の吸収帯としては1.39μm、1.84μm。
FIG. 1 shows the basic configuration of the present invention, in which small holes are provided on both side walls 2 and 2' of a decarburization annealing furnace 1, and windows 3 that transmit electromagnetic waves so as to prevent the atmosphere inside the furnace from leaking. ,3
Seal with '. On the other hand, a light source 4 of an electromagnetic wave 5 that emits an absorption band wavelength for water vapor and CO gas and a beam splitter are positioned opposite to the electromagnetic wave transmission window 3, and a detector 8 is positioned opposite to the beam splitter 7. establish. Further, a reflecting mirror 6 such as a dolly reflector is provided on the outside of the other electromagnetic wave transmitting window 3'. Therefore,
An electromagnetic wave beam 5 is emitted from a light source 4, for example, a beam outside the door (absorption band of water vapor is 1.39 μm, 1.84 μm).

2.7 tlm 、 5.5〜6.5,4mなどがあシ
、マたCOガス吸収帯として4.6〜4.7μmなどが
ある)を放射し、電磁波透過窓3から該脱炭焼純炉内1
′の水蒸気と界面反応する電磁鋼板9の次回9′の極く
近傍を通過するように該ビームを伝播させ、電磁波透過
窓3′の外側に設けた反射ミ2−6で反射させ、再び該
炉内1′を通過させ、該電磁波透過窓3から炉外に取出
し、該ビームスプリッタ−7で反射させて検出器8に導
く。なお、この電磁波ビーム5の断面寸法は光学的技術
により任意の寸法に制御できるが、通常0.1mφから
50wφの範囲であることが望ましい。また該ビームの
鋼板表面9′からの間隔り小さい#止ど望ましいが、現
実的には走行する鋼板面の振動等の問題もあるので、通
常0.1削以上100■以下が望ましい。なお電磁波ビ
ームの波長は、水蒸気の吸収帯として1.39μ期。
2.7 tlm, 5.5 to 6.5.4 m, etc., and the CO gas absorption band is 4.6 to 4.7 μm), and the decarburized sintered puree is emitted from the electromagnetic wave transmission window 3. Inside the furnace 1
The beam is propagated so as to pass very close to the next point 9' of the electromagnetic steel plate 9 that undergoes an interfacial reaction with the water vapor of The beam passes through the furnace 1', is taken out of the furnace through the electromagnetic wave transmission window 3, is reflected by the beam splitter 7, and is guided to the detector 8. Although the cross-sectional dimension of this electromagnetic wave beam 5 can be controlled to any dimension by optical technology, it is usually desirable that it be in the range of 0.1 mφ to 50 wφ. Although it is desirable that the distance between the beam and the steel plate surface 9' be as small as possible, in reality there are problems such as vibrations on the surface of the steel plate on which it runs, so it is usually desirable that the distance is 0.1 or more and 100 or less. The wavelength of the electromagnetic beam is 1.39 μ period, which is the absorption band of water vapor.

1.84 μm 、 2.7 ttm 、 5.5〜6
.5 itmなどがメジ、オたC02ガス吸収帝として
4.6〜4.7μmなどがあるので、これらに通合する
ものを使用する。該樵出器8で検出された電磁波強度は
炉内水蒸気お上び脱炭反応によって生成したCOガスの
一度に対応して変化するので、水蒸気とCOガスの磯夏
ないしはそれらの分圧または分圧比、芒らに水蒸気量に
対応する露点をオンライン的に測定することができる。
1.84 μm, 2.7 ttm, 5.5-6
.. There are 4.6 to 4.7 μm for CO2 gas absorption, so use one that meets these standards. The electromagnetic wave intensity detected by the extractor 8 changes depending on the amount of steam in the furnace and the CO gas generated by the decarburization reaction. The dew point corresponding to the pressure ratio and the amount of water vapor can be measured online.

この場合、該脱炭焼鈍炉内1′の電磁鋼板9に対してそ
の幅方向に電磁波ビーム5を通過させるようにすれば該
鋼板9の近傍における水蒸気とc。
In this case, if the electromagnetic wave beam 5 is passed through the electromagnetic steel sheet 9 in the width direction of the electromagnetic steel sheet 9 in the decarburization annealing furnace 1', water vapor and c in the vicinity of the steel sheet 9 can be reduced.

ガス、すなわち界面反応に関与する成分の平均値の測定
が行われるので、従来の電磁鋼脱炭焼鈍炉の管理とは全
く異るプロセス制御、材質制御を行うことが可能となる
。しかも電磁波ビームの検出は茜速で行うことができる
ので、該鋼板9が該炉内1′を関連走行している場合で
も常時連続的に測定することか′できる。
Since the average value of the gas, that is, the components involved in interfacial reactions, is measured, it becomes possible to perform process control and material control that are completely different from the management of conventional electromagnetic steel decarburization annealing furnaces. Furthermore, since the electromagnetic beam can be detected at a diagonal speed, continuous measurement can be carried out at all times even when the steel plate 9 is traveling in the furnace 1'.

ここで、本発明の測定原理を詳細に説明する。Here, the measurement principle of the present invention will be explained in detail.

い゛ま、水蒸気に対して吸収特性を示す波長λの距離2
における赤外線の強度をIw (Z)とすると、Lam
bert−Beerの法則により一般に次式でhpされ
る。
Now, the distance 2 of the wavelength λ that exhibits absorption characteristics for water vapor
If the intensity of infrared rays at is Iw (Z), then Lam
According to the Bert-Beer law, hp is generally given by the following equation.

Iw(Z) = Iw(o)eXP C−αw−mW 
HZ ) −(1)ここで 工w(0)二 z=0における強度、すなわち入射強度
nw:単位体績当9の水蒸気モル数 αW:水蒸気に対する赤外線の減衰係数Fig、 1に
おいて、光源から反射ミラーまでの距離をtとすると、
伝播距離はL=21であるから、Z=Lを(1)式に代
入すると、 となるから、両辺の対数をと9、整理すると、(3)式
において、LおよびαWは定数でわるから、検出強度i
w(L、)と入射強度Iw(0)の比から、水蒸気モル
数nWがめられる。
Iw(Z) = Iw(o)eXP C-αw-mW
HZ ) - (1) where w (0) 2 Intensity at z = 0, that is, incident intensity nw: Number of moles of water vapor per unit performance 9 αW: Attenuation coefficient of infrared rays for water vapor Fig, 1, reflected from the light source If the distance to the mirror is t, then
Since the propagation distance is L = 21, substituting Z = L into equation (1), we get: Therefore, the logarithms of both sides are rearranged as 9. In equation (3), L and αW are divided by a constant, so , detection intensity i
The number of moles of water vapor, nW, can be determined from the ratio of w(L,) and the incident intensity Iw(0).

ところで、第1図で炉空間は開放系で、炉内露点が富に
一定になるように、外から加湿AXガスが供給さlして
いて炉内圧がはげl気圧に保たれているとする。このと
き、炉内水蒸気分圧をPw、炉容積をV1水蒸気モル数
をNwおよび炉内称囲気温度をT(K)とすると、 Pw−V = Nw−ft−T 曲曲・(4)が成シ立
つ。ここでRは気体定数。
By the way, in Figure 1, it is assumed that the furnace space is an open system, humidifying AX gas is supplied from the outside so that the dew point inside the furnace is kept constant, and the pressure inside the furnace is maintained at 1 atm. . At this time, if the partial pressure of steam in the furnace is Pw, the furnace volume is V1, the number of moles of steam is Nw, and the ambient temperature inside the furnace is T (K), then Pw-V = Nw-ft-T Curve (4) is It will come true. Here R is the gas constant.

(4)式において、単位体積当りの水蒸気モルanyは
、!IW =NW/yで辰わされるから、PWは次式で
与えられる。
In equation (4), the water vapor moles per unit volume are ! Since IW = NW/y, PW is given by the following equation.

p v = nw −R−T −−−−−・−・(5)
すなわち、炉内水蒸気分圧PWは、(3)式によJJ 
nwが測定され、炉温Tが得られれは、(5)式からめ
られる。
p v = nw −R−T −−−−−・−・(5)
In other words, the steam partial pressure PW in the reactor is expressed as JJ by equation (3).
The nw is measured and the furnace temperature T is obtained using equation (5).

さらに、第2図に示すように飽和水蒸気圧Pwと対応す
る露点tw(C)の間には、一義的な関係式があるので
、Pwがまればtwが得られる。
Furthermore, as shown in FIG. 2, there is a unique relational expression between the saturated water vapor pressure Pw and the corresponding dew point tw (C), so if Pw is equal, tw can be obtained.

一方、炉内COガスの単位体積当シのモル数ncoとそ
の分圧pcoも全く同様にそれぞれ次式で与えられる。
On the other hand, the number nco of moles per unit volume of CO gas in the furnace and its partial pressure pco are also given by the following equations in exactly the same way.

Pco −n Co ・R−T −・−(7)また、(
3)式と(6)式とから(8)式が、(5)式と(7)
式から(9)式がそれぞれまる。
Pco −n Co ・R−T −・− (7) Also, (
From equation 3) and equation (6), equation (8) becomes equation (5) and equation (7).
Equation (9) is obtained from Eq.

特に(9)式は、界面反応を生起する原因である水蒸気
の分圧と、反応によって生じたCOガス分圧の比である
から、反応状態を表わす適切な指標になる。
In particular, equation (9) is a ratio of the partial pressure of water vapor, which is the cause of interfacial reaction, and the partial pressure of CO gas produced by the reaction, and is therefore an appropriate index representing the reaction state.

第3図に測定系のプロ、クダイアグラムを示す。Figure 3 shows a professional diagram of the measurement system.

、以上が本発明の原理である。本原理を具体化した構成
例を第4図に示す。第4図において、光源4からの電磁
波ビーム5は水蒸気に対して吸収特性を示す波長λだけ
を通すフィルター10t−通過したのち、ビームスプリ
ッタ−7に達し、さらに回転セクター11に到達する。
The above is the principle of the present invention. FIG. 4 shows an example of a configuration embodying this principle. In FIG. 4, an electromagnetic wave beam 5 from a light source 4 passes through a filter 10t that passes only a wavelength λ exhibiting absorption characteristics for water vapor, reaches a beam splitter 7, and then reaches a rotating sector 11.

該セクターl↓には完全な透過窓部分11’と全反射ミ
ラーllNおよび全吸収面11″がある。セクター11
が回転し、電磁波ビーム5の光路に該窓部分11’が来
たとき、該ビーム5は炉内1′に入射伝播し、該炉側壁
2′に設けられた反射ミラー6で反射されて元の光路を
引き返し、ビームスプリッタ−7で反射されて検出器8
に入る。この検出信号に11とする。またセクター11
の全反射ミ2− i 1’が光路にあるとき、ビーム5
はそこで全反射され、ビームスグリツタ−7で反射して
同様に検出器8に入る。この検出信号を■2とする。さ
らに全吸収面11/#が光路にあるとき、ここで反射し
て検出される信号をゼロベースとみなし工1とする。そ
れぞれの検出1シ号は次のように記述することができる
The sector l↓ has a completely transparent window portion 11', a total reflection mirror LLN and a total absorption surface 11''. Sector 11
rotates and when the window portion 11' comes into the optical path of the electromagnetic wave beam 5, the beam 5 propagates into the furnace 1', is reflected by the reflection mirror 6 provided on the furnace side wall 2', and returns to its original state. The optical path is returned and reflected by the beam splitter 7 to the detector 8.
to go into. This detection signal is set to 11. Also sector 11
When the total internal reflection of 2-i 1' is in the optical path, the beam 5
is totally reflected there, reflected by the beam sinter 7, and similarly enters the detector 8. This detection signal is assumed to be 2. Furthermore, when the total absorption surface 11/# is in the optical path, the signal reflected and detected here is assumed to be the zero base. Each detection signal can be written as follows.

If = ks Ia (0) @XF (−αn’Z
o−αn L)+ I b−=αQ−I!= kg l
2(0) exp (−αn’Zo ) + Ib −
・・=・al工畠=Ib ・・・・・・・・・(6)こ
こで、kl r kzはミラーの反射率、光学系の幾何
学的係数を含めた係数で定数 n/は回転セクター11
とビームスプリッタ−7および検出器8間の光路距離、
Ibは周囲背景光を含む検出雑音値である。四〜(6)
式よjJ(It Is)/(Iz l5)k作ると、(
2)式よシ ただし、k=に冨/kt=(定数)。
If = ks Ia (0) @XF (-αn'Z
o−αn L)+I b−=αQ−I! = kg l
2(0) exp (-αn'Zo) + Ib -
・・・=・Al Kobatake=Ib ・・・・・・・・・(6) Here, kl r kz is a constant including the reflectance of the mirror and the geometric coefficient of the optical system. n/ is the rotation. sector 11
and the optical path distance between the beam splitter 7 and the detector 8,
Ib is a detection noise value including ambient background light. Four to (6)
If we create the formula jJ(It Is)/(Iz l5)k, (
2) Formula: where k=total/kt=(constant).

すなわち、α◆式によシ、炉内単位体積当シの水蒸気モ
ル数nがまる。従って検出器8と接続した演算機構12
によシ上記の演算を行えば直ちにその値を知ることがで
きる(第3図参照)。本構成で該ビーム5はもちろん電
磁鋼板表面9の近傍を伝播することが肝要である。
That is, the number of moles of water vapor per unit volume in the furnace, n, is calculated by the formula α◆. Therefore, the calculation mechanism 12 connected to the detector 8
By performing the above calculation, the value can be immediately obtained (see Figure 3). In this configuration, it is of course important that the beam 5 propagate near the surface 9 of the electromagnetic steel sheet.

以上、構成例として水蒸気の測定方法について述べたが
、COガスの測定も全く同様に実施でさる。または、両
者の吸収波長ビームが同一光路上を伝播するようにして
、両@を同時測定することもできる。
Although the method for measuring water vapor has been described above as an example of the configuration, the measurement of CO gas can be carried out in exactly the same manner. Alternatively, both absorption wavelength beams can be propagated on the same optical path so that both @ can be measured simultaneously.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

(実施例1) 本発明による水蒸気の測定・列を示す。第4図の構成に
おいて、光源4としてハロゲン電球を使用し、フィルタ
ー10としてλ=1.39μm1半値幅Δλ=0.15
μmの干渉フィルターを使用した。
(Example 1) A measurement and sequence of water vapor according to the present invention is shown. In the configuration shown in FIG. 4, a halogen bulb is used as the light source 4, and as the filter 10, λ=1.39 μm1 half width Δλ=0.15
A μm interference filter was used.

ビーム5は材料表面9′から10m離れた所tビーム径
3龍φで伝播させた。検出器8としてゲルマニウム(G
o)素子を用いた。
The beam 5 was propagated at a distance of 10 m from the material surface 9' with a beam diameter of 3 mm. Germanium (G) is used as the detector 8.
o) The element was used.

820℃の雰囲気温度に設定された開放系の炉内に水蒸
気を含んだ一定量のN2ガスを供給1上述の構成によっ
て、炉内水蒸気のモル数およびその水蒸気圧を測定した
。単位体積当シのモル数nWとしてn = 3.5 m
ol/m”を得た。これよシ(5)式に従って水蒸気分
圧を測定したところ、Pv= 0.32 atm中24
0簡H,であった。さらに、このhから第2図によって
露点をめたところtw中70℃を得九一方、炉内気体を
炉外に吸引し、市販の塩化リチウム露点計で露点を測定
したところ、71℃であった。両者の露点測定値がtな
ぼ一致していることから本方法による水蒸気モル曖度お
よび水蒸気分圧の測定が正しいことが実証された。
A fixed amount of N2 gas containing water vapor was supplied into an open furnace set at an ambient temperature of 820° C. 1 Using the above-described configuration, the number of moles of water vapor in the furnace and its water vapor pressure were measured. As the number of moles per unit volume nW, n = 3.5 m
When the water vapor partial pressure was measured according to equation (5), Pv = 0.32 24 in atm.
It was 0 easy H. Furthermore, when the dew point was determined from this h according to Figure 2, it was found to be 70°C during tw.9 On the other hand, when the gas inside the furnace was sucked out of the furnace and the dew point was measured with a commercially available lithium chloride dew point meter, it was found to be 71°C. there were. Since both dew point measurements were in close agreement, it was verified that the measurement of water vapor molar ambiguity and water vapor partial pressure by this method was correct.

(実施例2) 同じく、第4図の構成においてCOガスの測定を試みた
。光源4として800℃の黒体炉を使用し、フィルター
ioとして224.68m1 Δλ=0.1μmの干渉
フィルターを使用した。また検出器8としてHgCd’
pe素子を用いた。常温に設定した炉内にCOガスのモ
ル濃度がnco”” 1.8 mol /In’になる
ようにボンベから供給して1.上述の構成によってα◆
式に対応するCOガスモル濃度を測定したところ、n(
0= 1.9 mol 7m”を侍、供給モル濃度には
は近い値であった。この値を(7)式に代入してCOガ
スの分圧PCO= 0.047 atm= 35.7+
wfigを得た。
(Example 2) Similarly, CO gas measurement was attempted using the configuration shown in FIG. A blackbody furnace at 800° C. was used as the light source 4, and an interference filter of 224.68 m1 Δλ=0.1 μm was used as the filter io. Also, as a detector 8, HgCd'
A PE element was used. 1. Supply CO gas from a cylinder into a furnace set at room temperature so that the molar concentration is nco"" 1.8 mol/In'. With the above configuration, α◆
When we measured the CO gas molarity corresponding to the formula, we found that n(
0 = 1.9 mol 7m'' was a value close to the supply molar concentration. Substituting this value into equation (7), the partial pressure of CO gas PCO = 0.047 atm = 35.7 +
I got the wfig.

(実施例3) 電磁鋼連続脱炭焼鈍炉壁に実施例1,2の構成の測定装
置を試作して組み込春、走行鋼板に対して直焚する方向
の該鋼板近傍(狭面よシlO■)の平均露点および平均
COガス表度を連続長時間モニター、第5図に示す結果
を得た。この結果からCOガス#度が時間と共に変化す
る様子が明らかである。本測定は正常な生座状悪で行わ
れたので、両者の信号の変化は小さいが、ラインスピー
ドが変化した多温度が変化した)して異常な信号が発生
したとき直ちに本計測信号を利用して制御することによ
Q安定した脱炭焼鈍プロセスを実現することができる。
(Example 3) A measuring device with the configuration of Examples 1 and 2 was prototyped and installed on the wall of a continuous decarburization annealing furnace for electromagnetic steel. The average dew point of lO■) and the average CO gas surface level were continuously monitored for a long time, and the results shown in FIG. 5 were obtained. From this result, it is clear that the CO gas degree changes with time. This measurement was carried out under normal sitting conditions, so the changes in both signals were small, but when an abnormal signal occurred (the line speed changed or the temperature changed), this measurement signal was immediately used. By controlling this, a Q-stable decarburization annealing process can be realized.

なおこれらの実施例では光源としてノ為ロゲン2ンプや
黒体炉を利用したが、キセノンンング、り1ングステン
ランプのような他の光源はもとよシ、半導体レーザーや
C(hレーザーのようなチューナプルなレーザーも使用
することができる。また水蒸気やCOガスに対して吸収
特性を示すマイクロ波領域の波長帯も使用することがで
きる。
In these examples, a nitrogen lamp or a blackbody furnace was used as a light source, but other light sources such as a xenon lamp or a nitrogen lamp, a semiconductor laser, a C(h laser), etc. A tunable laser can also be used. Also, a wavelength band in the microwave region that exhibits absorption characteristics for water vapor and CO gas can also be used.

まだ、本方法は該脱炭焼鈍炉の長手方向(鋼板走行方向
)の複数個の場所で実施することによって、該電磁鋼板
の脱炭状態の進行、すなわち界面反応の進行を適確に測
定することができる。
However, this method accurately measures the progress of the decarburization state of the electrical steel sheet, that is, the progress of the interfacial reaction, by carrying out the method at multiple locations in the longitudinal direction (travel direction of the steel sheet) of the decarburization annealing furnace. be able to.

(%明の効果) 以上説明したように、本発明は脱炭焼鈍炉内の電磁鋼板
次面近傍の水蒸気とCOガスの濃度を検出しそれぞれの
分圧および分圧比、さらに水蒸気量に対応する露点を測
定することができ、しかもそれらの情報はまさに電磁鋼
板の品質に直接影響のめる界面反応の情報であるから、
従来存在しなかった新しい脱炭反応計測を提供するもの
であル、諸態定値を該脱炭焼鈍プロセスあるいは該電磁
鋼板の品質制御に活用することができる等その効果は大
きい。
(Effect of % light) As explained above, the present invention detects the concentration of water vapor and CO gas near the next surface of the electrical steel sheet in the decarburization annealing furnace, and corresponds to the respective partial pressures and partial pressure ratios, as well as the amount of water vapor. It is possible to measure the dew point, and this information is information on interfacial reactions that directly affect the quality of electrical steel sheets.
It provides a new decarburization reaction measurement that did not exist before, and has great effects such as being able to utilize fixed values of various states for the decarburization annealing process or quality control of the electrical steel sheet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定原理を示す説明図、第2図は飽和
蒸気圧と露点の関係を示すグラフ、第3図は本発明の測
定系のブロックダイアグラム、第4図は本発明方法の実
例を示す説明図、第5図は本発明を適用した14L磁鋼
連続説炭焼鈍炉における鋼板近傍の平均露点および平均
COガス濃度の測定結果でおる。 1:脱炭焼鈍炉、1′:脱炭焼鈍炉内、2.2’:側壁
、3.3’:電磁波透過窓、4:光源、5:電磁波ビー
ム、6:反射ミラー、7:ビームスプリッタ−,8:検
出器、9:電磁鋼板、9′:電磁鋼板表面、10:フィ
ルター、11:回転セクター、11′:透過窓部分、1
1“:全反射ミラー、111y/ +、全吸収面。 出願人 新日本mM株式会社 代理人弁理士 青 柳 稔 第2図 0 20 40 60 80 (00(・c)露点 第3図 手続補正書(自発) 昭和60年3月10日 り事件の表示 昭和59年特許願第9192号 λ発明の名称 電磁鋼板製造プロセスにおける 脱炭反応計測方法 3、補正をする者 事件との関係 特許出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 代表者 武 1) 豊 4、代理人 〒101 8、補正の内容 (1)明細書第11頁14行と15行の間に次の文を挿
入する。 「ここで Ico(0):距離z=:0におけるCOガス吸収波長
に対応する入射強度 Ico(Z) :距離2におけるCOガス吸収波長に対
応する入射強度 αco:cOガスに対する赤外線の減衰係数 」(2)
同第14頁5行の「(第3図参照)」を「(第3図およ
び第4図参照)」と補正する。 (3)図面第3図および第4図を別紙のとおシ補正する
Figure 1 is an explanatory diagram showing the measurement principle of the present invention, Figure 2 is a graph showing the relationship between saturated vapor pressure and dew point, Figure 3 is a block diagram of the measurement system of the present invention, and Figure 4 is a diagram of the method of the present invention. An explanatory diagram showing an example, FIG. 5 shows the measurement results of the average dew point and average CO gas concentration near the steel plate in a 14L magnetic steel continuous coal-burning annealing furnace to which the present invention is applied. 1: Decarburization annealing furnace, 1': Inside the decarburization annealing furnace, 2.2': Side wall, 3.3': Electromagnetic wave transmission window, 4: Light source, 5: Electromagnetic wave beam, 6: Reflection mirror, 7: Beam splitter -, 8: Detector, 9: Electromagnetic steel plate, 9': Electromagnetic steel plate surface, 10: Filter, 11: Rotating sector, 11': Transmission window part, 1
1": Total reflection mirror, 111y/+, total absorption surface. Applicant: Minoru Aoyagi, Patent Attorney, Shin Nihon MM Co., Ltd. Figure 2 0 20 40 60 80 (00 (・c) Dew point Figure 3 Procedure Amendment (Voluntary) Display of the case dated March 10, 1985 Patent Application No. 9192 λ of 1985 Name of the invention Method for measuring decarburization reaction in the manufacturing process of electrical steel sheet 3, person making the amendment Relationship with the case Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 〒101 8. Contents of amendment (1) The following sentence is inserted between lines 14 and 15 on page 11 of the specification. “Here, Ico(0): Incident intensity corresponding to the CO gas absorption wavelength at distance z=:0 Ico(Z): Incident intensity corresponding to the CO gas absorption wavelength at distance 2 αco: Attenuation coefficient of infrared rays for CO gas.” (2)
"(See Figure 3)" on page 14, line 5 is corrected to "(See Figures 3 and 4)." (3) Correct the drawings in Figures 3 and 4 as shown in the attached sheet.

Claims (4)

【特許請求の範囲】[Claims] (1)脱炭焼鈍炉内に位置する電磁鋼板の表面近傍に、
水蒸気およびCOガスに対して吸収特性を示す波長の電
磁波ビームを通過させ、該鋼板表面近傍の水蒸気および
、該水蒸気と鋼板表面が反応して生成きれるCOガスに
対する前記電磁波ビームの吸収量を測定することによジ
、該水蒸気およびCOガスの濃度を測定することを特徴
とする電磁鋼板製造プロセスにおける脱炭反応1測方法
(1) Near the surface of the electrical steel sheet located in the decarburization annealing furnace,
An electromagnetic wave beam having a wavelength that exhibits absorption characteristics for water vapor and CO gas is passed through, and the amount of absorption of the electromagnetic wave beam by water vapor near the surface of the steel sheet and CO gas generated by the reaction between the water vapor and the surface of the steel sheet is measured. A method for measuring a decarburization reaction in an electrical steel sheet manufacturing process, which is characterized in that the concentration of water vapor and CO gas is measured.
(2)脱炭焼鈍炉内に位置するT!電磁鋼板表面近傍に
、水蒸気およびCOガスに対して吸収G性を示す波長の
電磁波ビームを通過させ、該鋼板表面近傍の水蒸気およ
び、該水蒸気と鋼板表面が反応して生成されるCOガス
に対する前記電磁波ビームの吸収fを測定することによ
p践水蒸気およびCOガスの濃度を測定し、さらにそれ
ぞれの分圧および分圧比をめることを特徴とする電磁鋼
板製造プロセスにおける脱炭反応計測方法。
(2) T located in the decarburization annealing furnace! An electromagnetic wave beam having a wavelength that exhibits absorption G properties for water vapor and CO gas is passed near the surface of the electrical steel sheet, and the water vapor near the surface of the steel sheet and the CO gas generated by the reaction between the water vapor and the surface of the steel sheet are A method for measuring a decarburization reaction in an electrical steel sheet production process, characterized by measuring the concentration of water vapor and CO gas by measuring the absorption f of an electromagnetic wave beam, and further calculating their respective partial pressures and partial pressure ratios.
(3)脱炭焼鈍炉内に位置する電磁鋼板の表面近傍に、
水蒸気およびCOガスに対して吸収特性を示す波長の電
磁波ビームを通過させ、該鋼板表面近傍の水蒸気に対す
る前記電磁波ビームの吸収蓋を測定することによシその
濃度を測定し、該濃度から露点をめることを特徴とする
電磁鋼板製造プロセスにおける脱炭反応計測方法。
(3) Near the surface of the electrical steel sheet located in the decarburization annealing furnace,
An electromagnetic wave beam having a wavelength that exhibits absorption characteristics for water vapor and CO gas is passed through, and the concentration of the electromagnetic wave beam is measured by measuring the absorption cap of the electromagnetic wave beam for the water vapor near the surface of the steel sheet, and the dew point can be determined from the concentration. A method for measuring decarburization reactions in the manufacturing process of electrical steel sheets.
(4)電磁波ビームを電磁鋼板の幅方向に通過させるこ
とを特徴とする特許請求の範囲第1項乃至第3項記載の
電磁鋼板製造プロセスにおける脱炭反応計測方法。
(4) A method for measuring a decarburization reaction in an electromagnetic steel sheet manufacturing process according to claims 1 to 3, characterized in that an electromagnetic wave beam is passed in the width direction of the electromagnetic steel sheet.
JP59009192A 1983-12-20 1984-01-20 Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process Granted JPS60166846A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59009192A JPS60166846A (en) 1984-01-20 1984-01-20 Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process
GB08431441A GB2153520B (en) 1983-12-20 1984-12-13 Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet
CA000470214A CA1235925A (en) 1983-12-20 1984-12-14 Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet
US06/681,629 US4647319A (en) 1983-12-20 1984-12-14 Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet
DE19843446193 DE3446193A1 (en) 1983-12-20 1984-12-18 METHOD FOR QUANTITATIVELY DETERMINING THE DECOLORING REACTION IN THE MANUFACTURE OF ELECTRIC STEEL SHEET
BE0/214193A BE901317A (en) 1983-12-20 1984-12-19 METHOD FOR QUANTITATIVELY MEASURING THE DECARBURIZATION REACTION IN THE PRODUCTION OF ELECTRIC STEEL SHEETS.
IT24146/84A IT1177473B (en) 1983-12-20 1984-12-20 PROCEDURE FOR QUANTITATELY DETECTING THE DECARBURATION REACTION IN THE PRODUCTION PROCESS OF A STEEL SHEET IN THE ELECTRIC OVEN
FR8419557A FR2556838B1 (en) 1983-12-20 1984-12-20 METHOD FOR QUANTITATIVELY DETECTING THE DECARBURIZATION REACTION IN THE PROCESS OF MANUFACTURING AN ELECTRIC STEEL SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009192A JPS60166846A (en) 1984-01-20 1984-01-20 Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process

Publications (2)

Publication Number Publication Date
JPS60166846A true JPS60166846A (en) 1985-08-30
JPH0349062B2 JPH0349062B2 (en) 1991-07-26

Family

ID=11713652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009192A Granted JPS60166846A (en) 1983-12-20 1984-01-20 Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process

Country Status (1)

Country Link
JP (1) JPS60166846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110347A (en) * 1988-10-20 1990-04-23 Teijin Ltd Measuring method of adhering amount of oil to fiber
JP2018115994A (en) * 2017-01-19 2018-07-26 株式会社島津製作所 Gas concentration measurement apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110347A (en) * 1988-10-20 1990-04-23 Teijin Ltd Measuring method of adhering amount of oil to fiber
JP2018115994A (en) * 2017-01-19 2018-07-26 株式会社島津製作所 Gas concentration measurement apparatus

Also Published As

Publication number Publication date
JPH0349062B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
KR102056460B1 (en) Method and device for measuring gas component concentration inside a glass unit
GB2074722A (en) Measuring surface temperature and emmissivity of a heated sample
US4647319A (en) Method for quantitatively detecting the decarburization reaction in the production process of an electrical steel sheet
Schlesinger et al. Infrared surface wave interferometry
JPS60166846A (en) Measurement of decarburizing reaction in electromagnetic steel plate manufacturing process
US2685649A (en) Analyzer
Weil Interference of 10.6‐μ Coherent Radiation in a 5‐cm Long Gallium Arsenide Parallelepiped
Heitmann et al. Determination of surface roughness from light scattering measurements
JPH0638058B2 (en) Gas concentration and partial pressure measuring device
JPS60131446A (en) Method for measuring dew point in furnace
US1691138A (en) Determining the contents of a. gas
JPS6086431A (en) Method and apparatus for measuring temperature of plate body
JPH1010044A (en) Gas concentration measuring method by multiple wave length light
Jensen et al. Opacity properties of sunspots.
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH0565023B2 (en)
CN110657893B (en) Method for determining radiation temperature measurement colorimetric wavelength in water vapor medium environment
JP2672909B2 (en) Carbon coated core wire
JPH0232578B2 (en)
Chiasera et al. Brillouin scattering in planar waveguides. II. Experiments
Garo et al. Recombination kinetics of OH radicals on a quartz wall in a propane oxygen flame at 25 Torr
DE2963233D1 (en) Radiation assembly and method for assessing web parameters
JP2644323B2 (en) Hermetically coated optical fiber and method of manufacturing the same
JP2023552906A (en) Estimating the temperature of steel products
JPH0783762A (en) Method and device for measuring temperature of continuous heat-treating furnace