JPH1010044A - Gas concentration measuring method by multiple wave length light - Google Patents

Gas concentration measuring method by multiple wave length light

Info

Publication number
JPH1010044A
JPH1010044A JP8178705A JP17870596A JPH1010044A JP H1010044 A JPH1010044 A JP H1010044A JP 8178705 A JP8178705 A JP 8178705A JP 17870596 A JP17870596 A JP 17870596A JP H1010044 A JPH1010044 A JP H1010044A
Authority
JP
Japan
Prior art keywords
wavelength
wavelengths
light
gas
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8178705A
Other languages
Japanese (ja)
Other versions
JP3636829B2 (en
Inventor
Naohiko Goto
直彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP17870596A priority Critical patent/JP3636829B2/en
Publication of JPH1010044A publication Critical patent/JPH1010044A/en
Application granted granted Critical
Publication of JP3636829B2 publication Critical patent/JP3636829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measuring accuracy, and shorten measuring time even when the absorption of light by gas being an error around measuring object gas is particularly large. SOLUTION: In a gas concentration measuring method using a difference absorption laser radar(DIAL) measuring method, four wave lengths which are two wave lengths of easily absorbable different wave lengths and two wave lengths of hardly absorbable different wave lengths, are respectively selected to measuring object gas so that the sum of an extinction coefficient to measuring error object gas having the easily absorbable two wave lengths and the sum of an extinction coefficient to measuring error object gas having the hardly absorbable two wave lengths become equal to each other. The light having the easily absorbable two wave lengths is used as a single set, and the light having the hardly absorbable two wave lengths is used as a single set, and they are respectively irradiated to the measuring object gas, and the reflected light of the irradiated two sets is respectively received, and the gas concentration is measured on the basis of the photon number of the reflected light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多波長光により大
気中のガス(原子、分子、エアロゾル等)濃度を計測す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of gas (atoms, molecules, aerosols, etc.) in the atmosphere using multi-wavelength light.

【0002】[0002]

【従来の技術】大気中のガス濃度を測定する方法とし
て、例えば図 に示すように、単体又は複数の多波長光
照射装置1から多波長の光2を順次に計測対象ガス3に
照射し、その多波長の光を受光装置4により受光し、デ
ータ解析装置5により計測対象ガス3の構成成分の濃度
計測を行う方法がある。この多波長光を用いる従来の計
測方法であるレーザレーダは、計測対象ガスにより吸収
され易い(吸収の大きい)波長と、吸収され難い(吸収
の小さい)波長の2波長を用いた差分吸収レーザレーダ
(DIAL)計測法が用いられている。また、さらに精
度を高めるために、3つ以上の多波長を用いる測定方法
がある。この従来の2波長を用いたDIAL計測法にお
ける受信光子数は、式1で現される。
2. Description of the Related Art As a method of measuring the concentration of gas in the atmosphere, for example, as shown in FIG. There is a method in which the multi-wavelength light is received by the light receiving device 4 and the concentration of the constituents of the measurement target gas 3 is measured by the data analysis device 5. A laser radar, which is a conventional measurement method using this multi-wavelength light, is a differential absorption laser radar using two wavelengths, a wavelength that is easily absorbed (large absorption) and a wavelength that is hardly absorbed (small absorption) by the gas to be measured. (DIAL) measurement method is used. Further, there is a measurement method using three or more multi-wavelengths to further improve the accuracy. The number of received photons in the conventional DIAL measurement method using two wavelengths is expressed by Equation 1.

【0003】[0003]

【数1】 ここで、Nr は受信光子数,Nt は照射光子数,ηは光
学系全効率,ΔRは距離分解能,βb は後方散乱係数,
Aは受信面積,Rは測定距離,βa は消散係数である。
このDIAL計測法では、式1を2波長について記述
し、その差を求めることにより表される。そこで、測定
したいガス濃度n(R)及び吸収断面積σにより、βa
=σn(R)と表され、2つの波長に対してσのみが異
なる場合、一般的なDIAL計測法の式として、次の式
2で表される。
(Equation 1) Here, Nr is the number of received photons, Nt is the number of irradiated photons, η is the overall efficiency of the optical system, ΔR is the distance resolution, βb is the backscattering coefficient,
A is the reception area, R is the measured distance, and βa is the extinction coefficient.
In the DIAL measurement method, Expression 1 is described for two wavelengths, and the difference is obtained. Therefore, βa is determined by the gas concentration n (R) to be measured and the absorption cross section σ.
= Σn (R), and when only σ is different for two wavelengths, it is expressed by the following expression 2 as a general expression of the DIAL measurement method.

【0004】[0004]

【数2】 σonとσoff は、それぞれ、吸収の大きい波長と吸収の
小さい波長に対する吸収断面積である。
(Equation 2) .sigma.on and .sigma.off are absorption cross-sections for wavelengths having large absorption and small absorption, respectively.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この式
2の場合は、前提条件として測定対象ガス以外のガスに
よる吸収や散乱の影響が、2つの波長に対して同じであ
ると見做せる場合に限られるものである。即ち、2波長
での消散係数βa が測定対象ガスのみで異なる場合に成
り立つものであり、他のガスの影響がある場合は成り立
たないのである。そして、測定対象ガス以外のガスに対
して、消散係数βa が同じ2波長を選ぶことは困難な場
合が多く、2波長を用いるDIAL計測法では、測定対
象となるガス以外の消散係数(吸収断面積)が等しくな
い場合は、誤差があるため測定精度が悪いという問題が
ある。また、3つ以上の多波長を用いる測定は、用いる
波長の数に応じた回数の測定を必要とし、計測に長時間
を必要とする問題があった。
However, in the case of Equation 2, as a precondition, the influence of absorption and scattering by gases other than the gas to be measured can be considered to be the same for two wavelengths. It is limited. In other words, this holds when the extinction coefficient βa at two wavelengths differs only for the gas to be measured, and does not hold when there is an effect of another gas. In addition, it is often difficult to select two wavelengths having the same extinction coefficient βa for gases other than the gas to be measured, and in the DIAL measurement method using two wavelengths, the extinction coefficient (absorption absorption) other than the gas to be measured is difficult. If the (areas) are not equal, there is a problem that the measurement accuracy is poor due to an error. In addition, the measurement using three or more multi-wavelengths requires the number of measurements according to the number of wavelengths to be used, and has a problem that the measurement requires a long time.

【0006】[0006]

【課題を解決するための手段】本発明による多波長光に
よるガス濃度計測方法は、大気中の各種測定対象ガス
に、吸収され易い波長の光と吸収され難い波長の光を照
射し、それぞれの照射光の大気からの後方散乱光(反射
光)を望遠鏡で受光して測定する差分吸収レーザーレー
ダー(DIAL)計測法を用いるガス濃度計測方法にお
いて、測定対象ガスに対して、吸収され易い異なる波長
の2波長と、吸収され難い異なる波長の2波長であっ
て、かつ前記吸収され易い2波長の測定誤差対象ガスに
対する消散係数の和と前記吸収され難い2波長の測定誤
差対象ガスに対する消散係数の和とが等しくなるように
4波長をそれぞれ選定し、前記吸収され易い2波長の光
を1組とし、前記吸収され難い2波長の光を1組として
それぞれ前記測定対象ガスに照射し、該照射された2組
の反射光をそれぞれ受光し、該反射光の光子数に基づい
てガス濃度を計測することを特徴とするものである。
A gas concentration measuring method using multi-wavelength light according to the present invention irradiates various kinds of gas to be measured in the atmosphere with light having a wavelength which is easily absorbed and light having a wavelength which is hardly absorbed. In a gas concentration measurement method using a differential absorption laser radar (DIAL) measurement method in which the backscattered light (reflected light) of irradiation light from the atmosphere is received by a telescope and measured, different wavelengths are easily absorbed by the gas to be measured. And the sum of the extinction coefficients for the measurement error target gases of the two wavelengths that are easily absorbed and the two wavelengths of different wavelengths that are hardly absorbed, and the extinction coefficient for the measurement error target gas of the two wavelengths that are hardly absorbed. The four wavelengths are respectively selected so that the sum is equal, the two-wavelength light that is easily absorbed is set as one set, and the two-wavelength light that is hardly absorbed is set as one set, and Irradiating the scan, the irradiated two sets of reflected light respectively received, is characterized in that to measure the gas concentration on the basis of the number of photons reflected light.

【0007】[0007]

【発明の実施の形態】本発明を、4波長を用いた例につ
いて説明する。この4波長のうち2波長は測定対象ガス
に吸収され易い波長で、他の2波長は測定対象ガスに吸
収され難い波長を選定する。また、式1において、消散
係数βa のみが4波長で異なるものとする。そして、測
定対象ガスに吸収され易い2波長での消散係数をそれぞ
れβon1 ,βon2 、また測定対象ガスに吸収され難い2
波長での消散係数をそれぞれβoff1,βoff2とする。そ
して、測定対象ガスをx,誤差となるガスを0とする
と、各4波長の消散係数は式3で表される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to an example using four wavelengths. Two of the four wavelengths are wavelengths that are easily absorbed by the gas to be measured, and the other two wavelengths are wavelengths that are hardly absorbed by the gas to be measured. In addition, in Equation 1, it is assumed that only the extinction coefficient βa differs at four wavelengths. The extinction coefficients at two wavelengths, which are easily absorbed by the gas to be measured, are βon1 and βon2, respectively.
Let the extinction coefficients at wavelengths be βoff1 and βoff2, respectively. If the gas to be measured is x and the gas that causes the error is 0, the extinction coefficient for each of the four wavelengths is expressed by Equation 3.

【0008】[0008]

【数3】 σi はそれぞれの波長に対する吸収断面積である。それ
ぞれの波長での式1を記述して、よく吸収する2波長
(on)での2式から、吸収しにくい2波長(off)の2
式を引くと、次の式4が導かれる。
(Equation 3) σi is the absorption cross section for each wavelength. Equation 1 is described at each wavelength, and two equations at two wavelengths (off) that are hardly absorbed are obtained from two equations at two wavelengths (on) that absorb well.
When the equation is subtracted, the following equation 4 is derived.

【0009】[0009]

【数4】 ここで、式5の(Equation 4) Where:

【数5】 であるような波長を選択すると、式4は次の式6(Equation 5) Equation 4 is given by the following equation 6:

【数6】 となり、誤差となる測定対象ガス以外のガスの影響が含
まれない式となる。
(Equation 6) And the equation does not include the influence of gases other than the measurement target gas that cause an error.

【0010】ここで、Here,

【数7】 とすると、式6の項(Equation 7) Then, the term of equation 6

【数8】 は、(Equation 8) Is

【0011】[0011]

【数9】 となる。(Equation 9) Becomes

【0012】同様に、式6の項のSimilarly, in the term of equation 6,

【数10】 は、次の式13に変換できる。(Equation 10) Can be converted into the following Expression 13.

【数11】 [Equation 11]

【0013】ただし、前述の式11及び式13は、次の
式14又は式15を条件とする。
However, the above equations 11 and 13 are subject to the following equations 14 or 15.

【数12】 よって、式6はさらに次の式16のように変形できる。(Equation 12) Therefore, Expression 6 can be further modified as Expression 16 below.

【数13】 即ち、測定は、4波長すべてを計測する必要がなく、on
(on1 ,on2 )とoff(off1,off2)の2波長づつまと
めて計測することができるので、2波長を用いたDIA
L計測法と同じ時間で計測することが可能である。な
お、前述の式14と式15は、式16に示すガス濃度n
(R)の精度を高める条件を示すもので、式14と式1
5の左辺が小さくなるように、波長に対する照射光の強
度を調節することにより、測定精度を向上させることが
可能である。
(Equation 13) That is, the measurement does not need to measure all four wavelengths,
Since two wavelengths (on1, on2) and off (off1, off2) can be measured collectively, DIA using two wavelengths can be performed.
Measurement can be performed in the same time as the L measurement method. Equations (14) and (15) are used to calculate the gas concentration n shown in Equation (16).
This shows the condition for improving the accuracy of (R).
By adjusting the intensity of the irradiation light with respect to the wavelength so that the left side of 5 becomes smaller, it is possible to improve the measurement accuracy.

【0014】[0014]

【実施例】測定対象ガスをSO2 (二酸化硫黄)とし
て、前記計算式16に、図1に示す公知の特性データに
基づく表1に示した数値(各波長におけるSO2 の吸収
断面積)と、表1のデータにもとづいて算出された表2
に示した受信光子数を、式6および式16に当てはめて
計算した例を示す。なお、エアロゾルの消散係数を、30
0nm で 2×10-4-1とし、エアロゾルによる光の消散が
レイリー散乱によると仮定し、 1/λ4 に比例するとす
る。SO2 の密度は、図1に示した吸収断面積の特性、
及び温度 15℃, 1atm ,単位 1ppb では、n=2.55×
1016-3であることにより、吸収の大きい波長を300.0n
m (on1 )と298.6nm (on2 )、吸収の小さい波長を29
9.3nm (off1,off2)の3つの波長で計算を行う。ここ
で、
[Embodiment] Assuming that the gas to be measured is SO 2 (sulfur dioxide), the above equation (16) shows the numerical values (absorption cross section of SO 2 at each wavelength) shown in Table 1 based on the known characteristic data shown in FIG. , Table 2 calculated based on the data in Table 1
The following shows an example in which the number of received photons shown in FIG. The extinction coefficient of the aerosol is 30
At 0 nm, it is assumed to be 2 × 10 −4 m −1, and it is assumed that the extinction of light by the aerosol is due to Rayleigh scattering, which is proportional to 1 / λ 4 . The density of SO 2 depends on the characteristics of the absorption cross section shown in FIG.
And at temperature 15 ℃, 1atm, unit 1ppb, n = 2.55 ×
10 16 m -3 allows wavelengths with large absorption to be 300.0 n
m (on1) and 298.6 nm (on2), the wavelength of small absorption is 29
Calculation is performed at three wavelengths of 9.3 nm (off1, off2). here,

【数14】 と仮定する。(光出力10J 、受光望遠鏡の直径50cm、後
方散乱係数 1.0×10-5m-1光学系全効率0.01に相当) また、測定距離Rを 3km、距離分解能ΔRを100mとす
る。
[Equation 14] Assume that (The light output is 10J, the diameter of the light receiving telescope is 50 cm, and the back scattering coefficient is 1.0 × 10 −5 m −1 , corresponding to an overall efficiency of the optical system of 0.01.) The measurement distance R is 3 km, and the distance resolution ΔR is 100 m.

【0015】[0015]

【表1】 このときの受信される光子数を表2に示す。[Table 1] Table 2 shows the number of photons received at this time.

【0016】[0016]

【表2】 以上により、式11の左辺と右辺はともに有効数字が3
桁以内で 1.237となり、また式13の左辺と右辺はとも
に有効数字が3桁以内で 0.808となり一致する。この条
件で、式6の従来の多波長によるDIAL計測法で全4
波長を計測し、密度を算出すると2.35×1016cm-3となる
が、本発明の方法で密度を算出した場合においても、そ
の計測値は2.34×1016cm-3となり、2桁の精度で正し
く、誤差は無視できる程度のものである。なお、この実
施例では便宜上吸収され難い波長は1波長として示した
が、前記の式5の条件等を満たす波長の異なる2波長を
用いて、全4波長で計測できることは当然である。ま
た、吸収され難い波長を2波長とし、吸収され易い波長
を1波長として3波長を用いて計測してもよい。また、
式8に表2の計算データを入れてΔNonを求めると、Δ
on=Non1 −Non/2 =67.5となるが、298.6 nmの照
射強度を300.0 nmのそれより、9843/9708=1.0139倍に
することにより、Non1 とNon2 がほとんど等しくな
り、ΔNonはほとんど0となり、計算されるガス濃度n
(R)は、近似式を用いるために生じる誤差はなくな
る。
[Table 2] From the above, both the left side and the right side of Equation 11 have significant figures of 3
It is 1.237 within the digits, and both the left and right sides of Equation 13 are 0.808 when the significant digits are within 3 digits, and match. Under these conditions, a total of 4 in the conventional multi-wavelength DIAL measurement method of Equation 6
When the wavelength is measured and the density is calculated, it is 2.35 × 10 16 cm -3 , but even when the density is calculated by the method of the present invention, the measured value is 2.34 × 10 16 cm -3 , which is an accuracy of two digits. And the error is negligible. In this embodiment, the wavelength that is hardly absorbed is shown as one wavelength for convenience, but it is natural that the measurement can be performed at all four wavelengths using two different wavelengths that satisfy the condition of the above-described Expression 5. Alternatively, measurement may be performed using three wavelengths, with two wavelengths that are hardly absorbed and one wavelength that is easily absorbed. Also,
When the calculation data of Table 2 is put into Expression 8, ΔN on is obtained.
Although the N on = N on1 -N on / 2 = 67.5, than the irradiation intensity of the 298.6 nm of 300.0 nm, 9843/9708 = by the 1.0139-fold, N on1 and N on2 becomes almost equal, .DELTA.N on is almost 0, and the calculated gas concentration n
(R) eliminates the error caused by using the approximate expression.

【0017】[0017]

【発明の効果】以上詳細に説明したように、本発明は所
要の条件に適合する異なる波長の3波長又は4波長を、
測定対象ガスに吸収され易い波長と吸収され難い波長の
2組に分けて順次に測定対象ガスに照射して,その複数
又は単数の波長の反射信号をそれぞれ受信してそのデー
タに基づき演算処理するものであるため、特に測定対象
ガス周辺の誤差となるガスによる光の吸収が大きい場合
には、従来の2波長によるDIAL計測法に比較して、
測定精度の向上を図ることができる。また、従来の精度
向上を図るための3波長以上の多波長によるDIAL計
測法に比較して、測定時間を短縮することができ、過渡
現象の測定も可能となるなどの効果を奏するものであ
る。
As described in detail above, the present invention provides three or four different wavelengths that meet the required conditions.
The target gas is divided into two groups, a wavelength that is easily absorbed by the measurement target gas and a wavelength that is hardly absorbed by the measurement target gas, and is sequentially irradiated on the measurement target gas. In particular, when the absorption of light by the gas which becomes an error around the gas to be measured is large, compared to the conventional two-wavelength DIAL measurement method,
Measurement accuracy can be improved. Further, as compared with the conventional DIAL measurement method using multiple wavelengths of three or more wavelengths for improving accuracy, the measurement time can be shortened, and the effect of measuring a transient phenomenon can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の測定対象ガスSO2 の波長
/吸収断面積の特性図である。
FIG. 1 is a characteristic diagram of a wavelength / absorption cross-section of a measurement target gas SO 2 according to an embodiment of the present invention.

【図2】本発明の対象とするDIAL計測方法の測定構
成概略図である。
FIG. 2 is a schematic diagram of a measurement configuration of a DIAL measurement method according to the present invention.

【符号の説明】[Explanation of symbols]

1 多波長光照射装置 2 多波長の光 3 計測対象ガス 4 受光装置 5 データ解析装置 1 Multi-wavelength light irradiation device 2 Multi-wavelength light 3 Gas to be measured 4 Light-receiving device 5 Data analysis device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 大気中の各種測定対象ガスに、吸収され
易い波長の光と吸収され難い波長の光を照射し、それぞ
れの照射光の大気からの後方散乱光(反射光)を望遠鏡
で受光して測定する差分吸収レーザーレーダー(DIA
L)計測法を用いるガス濃度計測方法において、 測定対象ガスに対して、吸収され易い異なる波長の2波
長と、吸収され難い異なる波長の2波長であって、かつ
前記吸収され易い2波長の測定誤差対象ガスに対する消
散係数の和と前記吸収され難い2波長の測定誤差対象ガ
スに対する消散係数の和とが等しくなるように4波長を
それぞれ選定し、 前記吸収され易い2波長の光を1組とし、前記吸収され
難い2波長の光を1組としてそれぞれ前記測定対象ガス
に照射し、 該照射された2組の反射光をそれぞれ受光し、該反射光
の光子数に基づいてガス濃度を計測することを特徴とす
る多波長光によるガス濃度計測方法。
1. A variety of gases to be measured in the atmosphere are irradiated with light having a wavelength that is easily absorbed and light having a wavelength that is hardly absorbed, and the backscattered light (reflected light) of each irradiation light from the atmosphere is received by a telescope. Differential absorption laser radar (DIA)
L) In a gas concentration measurement method using a measurement method, two wavelengths of different wavelengths that are easily absorbed and two wavelengths of different wavelengths that are hardly absorbed, and the two wavelengths that are easily absorbed are measured for a gas to be measured. Four wavelengths are respectively selected so that the sum of the extinction coefficient for the error target gas and the sum of the extinction coefficients for the two error wavelength measurement hardly absorbed gases are equal to each other. Irradiating the target gas with the two wavelengths of light that are difficult to be absorbed as one set, receiving the two sets of reflected light, and measuring the gas concentration based on the number of photons of the reflected light. A gas concentration measurement method using multi-wavelength light.
【請求項2】 前記吸収され易い異なる波長の2波長又
は吸収され難い異なる波長の2波長のうちのいずれか一
方の波長を1波長として、当該波長のデータの演算時に
2倍にして2波長分データとして処理するようにした請
求項1記載の多波長光によるガス濃度計測方法。
2. One of the two wavelengths of the different wavelengths that are easily absorbed or the two wavelengths of the different wavelengths that are hardly absorbed is taken as one wavelength, and is doubled at the time of calculating data of the wavelength. 2. The method according to claim 1, wherein the gas concentration is measured as data.
【請求項3】 前記吸収され易い波長及び吸収され難い
波長をそれぞれ異なる波長の3波長以上をとしてデータ
解析処理するようにした請求項1記載の多波長光による
ガス濃度計測方法。
3. The gas concentration measurement method using multi-wavelength light according to claim 1, wherein the wavelength that is easily absorbed and the wavelength that is hardly absorbed are analyzed using three or more different wavelengths.
【請求項4】 前記吸収され易い多波長又は吸収され難
い多波長の各波長の照射強度を、前記各波長の受信され
る光子数の比率にもとづいて調整するようにした請求項
1乃至3記載の多波長光によるガス濃度計測方法。
4. The method according to claim 1, wherein the irradiation intensity of each wavelength of the multi-wavelength that is easily absorbed or the multi-wavelength that is hardly absorbed is adjusted based on a ratio of the number of photons received at each wavelength. Gas concentration measurement method using multi-wavelength light.
JP17870596A 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light Expired - Fee Related JP3636829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17870596A JP3636829B2 (en) 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17870596A JP3636829B2 (en) 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light

Publications (2)

Publication Number Publication Date
JPH1010044A true JPH1010044A (en) 1998-01-16
JP3636829B2 JP3636829B2 (en) 2005-04-06

Family

ID=16053127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17870596A Expired - Fee Related JP3636829B2 (en) 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light

Country Status (1)

Country Link
JP (1) JP3636829B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349094B2 (en) 2002-12-11 2008-03-25 Qinetiq Limited Laser radar apparatus having multiple output wavelengths
CN104007088A (en) * 2014-06-16 2014-08-27 中国人民解放军陆军军官学院 Method for measuring geometrical factors of backscattering laser radar
KR102139815B1 (en) * 2020-04-27 2020-07-30 한밭대학교 산학협력단 Aerosol fine and coarse particle information extraction methods and system using more than two wavelength extinction
CN112268871A (en) * 2020-11-24 2021-01-26 西南技术物理研究所 Method for simultaneously measuring concentration of various polluted gases in atmosphere
KR20240018749A (en) * 2022-08-03 2024-02-14 국립한밭대학교 산학협력단 aerosol PM2.5 retrieval method and system from aerosol extinction coefficient Using wavelength dependent aerosol extinction coefficients power exponent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349094B2 (en) 2002-12-11 2008-03-25 Qinetiq Limited Laser radar apparatus having multiple output wavelengths
CN104007088A (en) * 2014-06-16 2014-08-27 中国人民解放军陆军军官学院 Method for measuring geometrical factors of backscattering laser radar
KR102139815B1 (en) * 2020-04-27 2020-07-30 한밭대학교 산학협력단 Aerosol fine and coarse particle information extraction methods and system using more than two wavelength extinction
CN112268871A (en) * 2020-11-24 2021-01-26 西南技术物理研究所 Method for simultaneously measuring concentration of various polluted gases in atmosphere
CN112268871B (en) * 2020-11-24 2024-01-26 西南技术物理研究所 Method for simultaneously measuring concentration of various polluted gases in atmosphere
KR20240018749A (en) * 2022-08-03 2024-02-14 국립한밭대학교 산학협력단 aerosol PM2.5 retrieval method and system from aerosol extinction coefficient Using wavelength dependent aerosol extinction coefficients power exponent

Also Published As

Publication number Publication date
JP3636829B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
RU2400715C2 (en) Spectrometre calibration method
EP2467700B1 (en) Detecting species in a dilute medium
JP7135608B2 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JP4312294B2 (en) Isotopomer absorption spectroscopy analyzer and method
JP4079404B2 (en) Multi-component gas analysis method by FTIR method
CN111912803A (en) Ultraviolet spectrum detection method and device for monitoring trace nitrogen oxides in blast furnace flue gas
Arteaga et al. Line broadening and shift coefficients of acetylene at 1550 nm
Fjodorow et al. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy
Fally et al. Fourier transform spectroscopy of the O2 Herzberg bands. III. Absorption cross sections of the collision-induced bands and of the Herzberg continuum
JP2000346801A5 (en)
CN114993944A (en) Method, device and equipment for co-detecting methane and carbon monoxide
JPH1010044A (en) Gas concentration measuring method by multiple wave length light
Bernini et al. All frequency domain distributed fiber-optic Brillouin sensing
JP3817517B2 (en) Non-dispersive infrared gas measurement method using optical filter
CN114609083B (en) Gas concentration field reconstruction system and method under two-dimensional geometric path
Cardoso et al. Enhancing methane sensors by sensing without detection
GB2070765A (en) Spectrophotometry
JP7461948B2 (en) Sample gas analyzer, sample gas analysis method, and sample gas analysis program
De Tommasi et al. An efficient approximation for a wavelength-modulated 2nd harmonic lineshape from a Voigt absorption profile
Lees et al. External cavity tunable diode laser spectrum of the ν1+ ν3 N–H stretching combination band of 15NH3
JPH0414298B2 (en)
US20170052069A1 (en) Method for determining the temperature of an infrared-active gas by means of infrared spectroscopy
CN111912804A (en) Ultraviolet spectrum detection method and device for monitoring trace sulfur dioxide in blast furnace flue gas
RU51742U1 (en) GAS ANALYZER
JP7473546B2 (en) Analysis equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees