JP2644323B2 - Hermetically coated optical fiber and method of manufacturing the same - Google Patents

Hermetically coated optical fiber and method of manufacturing the same

Info

Publication number
JP2644323B2
JP2644323B2 JP1098785A JP9878589A JP2644323B2 JP 2644323 B2 JP2644323 B2 JP 2644323B2 JP 1098785 A JP1098785 A JP 1098785A JP 9878589 A JP9878589 A JP 9878589A JP 2644323 B2 JP2644323 B2 JP 2644323B2
Authority
JP
Japan
Prior art keywords
optical fiber
amorphous carbon
metal component
coated optical
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1098785A
Other languages
Japanese (ja)
Other versions
JPH02278214A (en
Inventor
幸夫 香村
禎則 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP1098785A priority Critical patent/JP2644323B2/en
Publication of JPH02278214A publication Critical patent/JPH02278214A/en
Application granted granted Critical
Publication of JP2644323B2 publication Critical patent/JP2644323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバの外周にアモルファスカーボン
を主成分とした気密被覆層が設けられている気密被覆光
ファイバ及びその製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an airtight coated optical fiber in which an airtight coating layer containing amorphous carbon as a main component is provided on the outer periphery of an optical fiber, and a method for manufacturing the same. .

[従来技術] 光ファイバは、水素や水分を吸収すると、伝送損失が
増加する。光ファイバにはプラスチックが被覆されてい
るが、プラスチック被覆は水素や水分を通す多孔質なも
のであるので、空気中の水素や水分を通す。従って、前
述した水素や水分の透過による伝送損失増加の問題が起
っている。
[Prior Art] When an optical fiber absorbs hydrogen or moisture, transmission loss increases. The optical fiber is coated with plastic, but since the plastic coating is porous and allows hydrogen and moisture to pass therethrough, it allows hydrogen and moisture in the air to pass therethrough. Therefore, the problem of the increase in transmission loss due to the permeation of hydrogen and moisture occurs.

この問題を避けるために、光ファイバの外周にアモル
ファスカーボンよりなる気密被覆層を設けることが提案
されている。アモルファスカーボンは、緻密であり、こ
れを被覆した光ファイバは水素や水分を通しにくく、伝
送損失が長期間に亘って増加しない。
In order to avoid this problem, it has been proposed to provide an airtight coating layer made of amorphous carbon on the outer periphery of the optical fiber. Amorphous carbon is dense, and the optical fiber coated with it is difficult to pass hydrogen and moisture, and transmission loss does not increase over a long period of time.

光ファイバに対するアモルファスカーボンの被覆は、
熱CVD法,プラズマCVD法等で行われている。この場合、
アモルファスカーボンの被覆は、数十Kmに亘って安定し
て行う必要があるが、非常に難しい。
The coating of amorphous carbon on the optical fiber
It is performed by a thermal CVD method, a plasma CVD method, or the like. in this case,
Amorphous carbon coating must be performed stably over several tens of kilometers, but is very difficult.

従来は、アモルファスカーボンの被覆後、光ファイバ
を高温の水素雰囲気中に長期間晒して伝送損失の増加を
調べていた。
Conventionally, after coating with amorphous carbon, the optical fiber was exposed to a high-temperature hydrogen atmosphere for a long period of time to investigate an increase in transmission loss.

[発明が解決しようとする課題] しかしながら、このような検査の仕方では、検査に非
常に時間が掛かり、且つ全数このような検査を行うので
は費用が掛かる問題点があった。光ファイバ上にアモル
ファスカーボン層を安定して被覆できたかどうかを連続
して測定することができれば良いが、アモルファスカー
ボン層の成膜状態を測定することは難しい。
[Problems to be Solved by the Invention] However, such an inspection method has a problem that it takes a very long time to perform the inspection, and it is costly to perform all such inspections. It suffices if it is possible to continuously measure whether the amorphous carbon layer has been stably coated on the optical fiber, but it is difficult to measure the film formation state of the amorphous carbon layer.

本発明の目的は、アモルファスカーボン層の成膜状態
を容易に測定できる構造の気密被覆光ファイバ及びその
製造方法を提供することにある。
An object of the present invention is to provide a hermetically coated optical fiber having a structure capable of easily measuring the film formation state of an amorphous carbon layer, and a method for manufacturing the same.

[課題を解決するための手段] 上記の目的を解決するための本発明の手段を説明する
と、次の通りである。
[Means for Solving the Problems] Means of the present invention for solving the above objects will be described as follows.

請求項(1)に記載の気密被覆光ファイバは、光ファ
イバの外周にアモルファスカーボンを主成分としその中
に金属成分が混在された気密被覆層が設けられているこ
とを特徴とする。
The hermetic coated optical fiber according to claim (1) is characterized in that an hermetic coating layer containing amorphous carbon as a main component and a metal component mixed therein is provided on the outer periphery of the optical fiber.

請求項(2)に記載の気密被覆光ファイバの製造方法
は、リアクタの中に炭素化合物のガスと金属化合物のガ
スとを供給し、プラズマCVD法で光ファイバの外周にア
モルファスカーボンを主成分としその中に金属成分が混
在された気密被覆層を設け、前記気密被覆層の金属成分
を利用して該気密被覆層のアモルファスカーボンの成膜
状態を測定することを特徴とする。
A method for producing an airtight coated optical fiber according to claim (2), wherein a gas of a carbon compound and a gas of a metal compound are supplied into a reactor, and amorphous carbon is used as a main component around the optical fiber by a plasma CVD method. An airtight coating layer in which a metal component is mixed is provided therein, and a film formation state of amorphous carbon in the airtight coating layer is measured using the metal component of the airtight coating layer.

[作用] 請求項(1)に記載の気密被覆光ファイバによれば、
気密被覆がアモルファスカーボンを主成分としその中に
金属成分が混在された構成なので、該金属成分を利用し
て測定を行うことにより、アモルファスカーボン層の成
膜状態の均一性を容易に測定できる。
[Operation] According to the hermetically coated optical fiber according to claim (1),
Since the airtight coating has a structure in which amorphous carbon is a main component and a metal component is mixed therein, the uniformity of the film formation state of the amorphous carbon layer can be easily measured by performing measurement using the metal component.

請求項(2)に記載の気密被覆光ファイバの製造方法
では、金属化合物を用いているので、容易にガス化で
き、該金属化合物のガスと炭素化合物のガスとを用いる
ことにより、プラズマCVD法で容易にアモルファスカー
ボンを主成分としその中に金属成分が混在された気密被
覆層を光ファイバの外周に設けることができる。
In the method for manufacturing the hermetically coated optical fiber according to claim (2), since the metal compound is used, the gas can be easily gasified, and by using the gas of the metal compound and the gas of the carbon compound, the plasma CVD method is used. Thus, an airtight coating layer containing amorphous carbon as a main component and a metal component mixed therein can be easily provided on the outer periphery of the optical fiber.

この気密被覆層中のアモルファスカーボンの成膜状態
を、該気密被覆層中の金属成分を利用して測定するの
で、アモルファスカーボン層の成膜状態を監視しながら
気密被覆光ファイバの製造を行うことができる。
Since the film formation state of the amorphous carbon in the hermetic coating layer is measured using the metal component in the hermetic coating layer, the hermetic coating optical fiber can be manufactured while monitoring the film formation state of the amorphous carbon layer. Can be.

[実施例] 以下、本発明の実施例を図面を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る気密被覆光ファイバ1の構造
の一実施例を示したものである。本実施例の気密被覆光
ファイバ1は、光ファイバ2の外周にアモルファスカー
ボンを主成分としその中に金属成分が混在された気密被
覆層3が設けられて構造になっている。
FIG. 1 shows an embodiment of the structure of the hermetically coated optical fiber 1 according to the present invention. The hermetically coated optical fiber 1 of this embodiment has a structure in which an airtight coating layer 3 containing amorphous carbon as a main component and a metal component mixed therein is provided on the outer periphery of the optical fiber 2.

このように気密被覆層のアモルファスカーボンの中に
金属成分を混在させておくと、該金属成分を利用して渦
流探傷法,磁場変位測定法等により、アモルファスカー
ボン層の成膜状態を容易に測定できる。即ち、渦粒探傷
法は、周知のように、金属に高周波磁界を印加すると、
該金属に渦電流が流れる性質があるので、この渦電流の
存在を周知の渦電流探傷器等で検出することにより金属
の存在、換言すればアモルファスカーボン層中の金属成
分の存在を検出できるので、金属成分の存在が連続的に
ほぼ一定レベルで検出できればアモルファスカーボン層
が連続して一様に存在することを測定できる。一方、磁
場変位測定法は、周知のように、金属に磁場をかけると
残留磁場が残る性質性質があるので、この残留磁場の存
在を微弱磁場を測定する例えばスクイド(SQUID)と呼
ばれる周知の超伝導量子干渉計からなる磁場探傷器等で
検出することにより金属の存在、換言すればアモルファ
スカーボン層中の金属成分の存在を検出できるので、金
属成分の存在が連送的にほぼ一定レベルで検出できれば
アモルファスカーボン層が連続して一様に存在すること
を測定できる。
If a metal component is mixed in the amorphous carbon of the hermetic coating layer in this manner, the film formation state of the amorphous carbon layer can be easily measured by the eddy current flaw detection method, the magnetic field displacement measurement method, or the like using the metal component. it can. That is, as is well known, when a high frequency magnetic field is applied to a metal,
Since the eddy current flows through the metal, the presence of the metal, that is, the presence of the metal component in the amorphous carbon layer can be detected by detecting the presence of the eddy current with a well-known eddy current flaw detector or the like. If the presence of the metal component can be continuously detected at a substantially constant level, it can be measured that the amorphous carbon layer is continuously and uniformly present. On the other hand, the magnetic field displacement measurement method has a property that a residual magnetic field remains when a magnetic field is applied to a metal, as is well known. Therefore, the existence of this residual magnetic field is measured by using a well-known ultra-sound called SQUID (SQUID). The presence of a metal, in other words, the presence of a metal component in the amorphous carbon layer can be detected by detecting with a magnetic field flaw detector or the like comprising a conduction quantum interferometer, so that the presence of the metal component is detected at a substantially constant level continuously. If possible, it can be measured that the amorphous carbon layer exists continuously and uniformly.

金属成分の原料としては、例えばFe系(Fe−B,Fe−S
i,Fe−P,Fe(0),FeNi系,FeCo系等アモルファス合金に
なり易い金属化合物、或いはSiC,TiC等の金属化合物を
用いることができる。このような金属化合物は、例えば
{(CH33Si}2O等の有機金属の形,或いはTiCl4等の
形で容易にガス化できる。
As a raw material of the metal component, for example, Fe-based (Fe-B, Fe-S
A metal compound that easily becomes an amorphous alloy, such as i, Fe-P, Fe (0), FeNi, or FeCo, or a metal compound such as SiC or TiC can be used. Such a metal compound can be easily gasified, for example, in the form of an organic metal such as {(CH 3 ) 3 Si} 2 O or in the form of TiCl 4 .

アモルファスカーボンの原料ガスとしては、例えば、
CH4,C3H8,C2H2,C2H4,C6H5CH3,C6H5等をガス化して用い
る。
As a raw material gas for amorphous carbon, for example,
CH 4 , C 3 H 8 , C 2 H 2 , C 2 H 4 , C 6 H 5 CH 3 , C 6 H 5, etc. are gasified and used.

第2図は、本発明に係る気密被覆光ファイバの製造方
法の一実施例を示したものである。まず、光ファイバ母
材4を加熱炉5で加熱溶融させて線引きし、光ファイバ
2を得、該光ファイバ2をリアクタ5に通す。該リアク
タ6のガス供給口7から該リアクタ6内に原料ガスを供
給する。原料ガスとしては、例えばC2H2ガス(炭素化合
物のガス),Heガス(C2H2ガスの希釈ガス),加熱した
容器内のFe(CO5)をArによってバブリングして気相状
にしたガスを供給する。該原料ガスをリアクタ6内でプ
ラズマ化し、プラズマCVD法で光ファイバ2の外周にア
モルファスカーボンを主成分としその中に金属成分が混
在された気密被覆層3を設ける。なお、このとき光ファ
イバ2は、高温状態であり、プラズマCVD反応は光ファ
イバ2の外周で集中的に行われえる。リアクタ6に設け
られている排気口8,9,10のうち、排気口8,10は大気がリ
アクタ6内に混入されるのを防ぐためのものであり、排
気口9は光ファイバ2に付着しなかった反応生成物及び
未反応ガスをリアクタ6の外に排気させるためのもので
ある。
FIG. 2 shows an embodiment of a method for producing an airtight coated optical fiber according to the present invention. First, the optical fiber preform 4 is heated and melted in a heating furnace 5 and drawn to obtain an optical fiber 2. The optical fiber 2 is passed through a reactor 5. A raw material gas is supplied into the reactor 6 from a gas supply port 7 of the reactor 6. As a raw material gas, for example, C 2 H 2 gas (gas of carbon compound), He gas (diluent gas of C 2 H 2 gas), and Fe (CO 5 ) in a heated vessel are bubbled with Ar to form a gaseous phase. Supply the gas. The raw material gas is converted into plasma in the reactor 6, and an airtight coating layer 3 containing amorphous carbon as a main component and a metal component mixed therein is provided on the outer periphery of the optical fiber 2 by a plasma CVD method. At this time, the optical fiber 2 is in a high temperature state, and the plasma CVD reaction can be intensively performed on the outer periphery of the optical fiber 2. Of the exhaust ports 8, 9 and 10 provided in the reactor 6, the exhaust ports 8 and 10 are for preventing air from being mixed into the reactor 6, and the exhaust port 9 is attached to the optical fiber 2. The purpose is to exhaust reaction products and unreacted gas that have not been exhausted to the outside of the reactor 6.

リアクタ6から出てきた気密被覆光ファイバ1は、探
傷器11に通し、渦電流探傷法,磁場変位測定法等の手段
を用いて非接触で気密被覆層3のアモルファスカーボン
の成膜状態の均一性を測定する。
The hermetically coated optical fiber 1 coming out of the reactor 6 is passed through a flaw detector 11, and the uniformity of the amorphous carbon film formation state of the hermetic coating layer 3 is measured in a non-contact manner by using an eddy current flaw detection method, a magnetic field displacement measurement method or the like. Measure gender.

このようにして測定を行うと、アモルファスカーボン
の被覆状態を、金属成分の測定を利用して測定すること
ができる。
When the measurement is performed in this manner, the coating state of the amorphous carbon can be measured by using the measurement of the metal component.

測定が終了した気密被覆光ファイバ1は、被覆ダイス
12に通し、気密被覆層3の外周に紫外線硬化樹脂層を被
覆し、しかる後、紫外線硬化炉13に通し、紫外線硬化樹
脂層の硬化を行わせる。
The airtight coated optical fiber 1 whose measurement has been completed is
12, the outer periphery of the hermetic coating layer 3 is coated with an ultraviolet curable resin layer, and thereafter, is passed through an ultraviolet curing furnace 13 to cure the ultraviolet curable resin layer.

[発明の効果] 以上説明したように、本発明によれば、下記のような
効果を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the following effects can be obtained.

請求項(1)に記載の気密被覆光ファイバによれば、
気密被覆がアモルファスカーボンを主成分としその中に
金属成分が混在された構成なので、該金属成分を利用し
て測定することにより、アモルファスカーボン層の成膜
状態の均一性を容易に測定できる。
According to the hermetically coated optical fiber according to claim (1),
Since the hermetic coating is composed of amorphous carbon as a main component and a metal component mixed therein, the uniformity of the film formation state of the amorphous carbon layer can be easily measured by using the metal component for measurement.

請求項(2)に記載の気密被覆光ファイバの製造方法
では、金属化合物を用いているので、容易にガス化で
き、該金属化合物のガスと炭素化合物のガスとを用いる
ことにより、プラズマCVD法で容易にアモルファスカー
ボンを主成分としその中に金属成分が混在された気密被
覆層を光ファイバの外周に設けることができる。
In the method for manufacturing the hermetically coated optical fiber according to claim (2), since the metal compound is used, the gas can be easily gasified, and by using the gas of the metal compound and the gas of the carbon compound, the plasma CVD method is used. Thus, an airtight coating layer containing amorphous carbon as a main component and a metal component mixed therein can be easily provided on the outer periphery of the optical fiber.

この気密被覆層中のアモルファスカーボンの成膜状態
を、該気密被覆層中の金属成分を利用して測定するの
で、アモルファスカーボン層の成膜状態を監視しながら
気密被覆光ファイバの製造を行うことができる。
Since the film formation state of the amorphous carbon in the hermetic coating layer is measured using the metal component in the hermetic coating layer, the hermetic coating optical fiber can be manufactured while monitoring the film formation state of the amorphous carbon layer. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る気密被覆光ファイバの一実施例の
横断面図、第2図は本発明に係る気密被覆光ファイバの
製造方法を実施する装置の一実施例を示す縦断面図であ
る。 1……気密被覆光ファイバ、2……光ファイバ、3……
気密被覆、4……光ファイバ母材、5……加熱炉、6…
…リアクタ、11……探傷器、12……被覆ダイス、13……
紫外線硬化炉。
FIG. 1 is a cross-sectional view of one embodiment of the hermetically coated optical fiber according to the present invention, and FIG. 2 is a longitudinal cross-sectional view showing one embodiment of an apparatus for performing the method of manufacturing the hermetically coated optical fiber according to the present invention. is there. 1 ... airtight coated optical fiber, 2 ... optical fiber, 3 ...
Hermetic coating, 4 ... optical fiber preform, 5 ... heating furnace, 6 ...
... Reactor, 11 ... Flaw detector, 12 ... Coating dies, 13 ...
UV curing furnace.

フロントページの続き (56)参考文献 特開 昭63−132138(JP,A) 特開 昭64−15710(JP,A) 特開 昭56−12602(JP,A) 特開 昭62−272131(JP,A) 特開 平2−166410(JP,A) 特開 平2−263742(JP,A)Continuation of front page (56) References JP-A-63-132138 (JP, A) JP-A-64-15710 (JP, A) JP-A-56-12602 (JP, A) JP-A-62-272131 (JP) JP-A-2-166410 (JP, A) JP-A-2-263742 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ファイバの外周にアモルファスカーボン
を主成分としその中に金属成分が混在された気密被覆層
が設けられていることを特徴とする気密被覆光ファイ
バ。
1. An airtightly coated optical fiber characterized in that an airtight coating layer comprising amorphous carbon as a main component and a metal component mixed therein is provided on the outer periphery of the optical fiber.
【請求項2】リアクタの中に炭素化合物のガスと金属化
合物のガスとを供給して、プラズマCVD法で光ファイバ
の外周にアモルファスカーボンを主成分としその中に金
属成分が混在された気密被覆層を設け、前記気密被覆層
中の金属成分を利用して該気密被覆層のアモルファスカ
ーボンの成膜状態を測定することを特徴とする気密被覆
光ファイバの製造方法。
2. A gas-tight coating in which a carbon compound gas and a metal compound gas are supplied into a reactor and the outer periphery of an optical fiber is made of amorphous carbon as a main component and a metal component is mixed therein by plasma CVD. A method for producing a hermetically coated optical fiber, comprising: providing a layer; and measuring a film formation state of amorphous carbon in the hermetic coating layer using a metal component in the hermetic coating layer.
JP1098785A 1989-04-20 1989-04-20 Hermetically coated optical fiber and method of manufacturing the same Expired - Lifetime JP2644323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098785A JP2644323B2 (en) 1989-04-20 1989-04-20 Hermetically coated optical fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098785A JP2644323B2 (en) 1989-04-20 1989-04-20 Hermetically coated optical fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02278214A JPH02278214A (en) 1990-11-14
JP2644323B2 true JP2644323B2 (en) 1997-08-25

Family

ID=14229026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098785A Expired - Lifetime JP2644323B2 (en) 1989-04-20 1989-04-20 Hermetically coated optical fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2644323B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612602A (en) * 1979-07-12 1981-02-07 Asahi Optical Co Ltd Fiber for energy transmission
JPS62272131A (en) * 1986-05-20 1987-11-26 Fujikura Ltd Optical fiber temperature sensor
JPS63132138A (en) * 1986-11-22 1988-06-04 Fujikura Ltd Distribution type humidity sensor
JPS6415710A (en) * 1987-07-09 1989-01-19 Ricoh Kk Optical fiber
JPH02166410A (en) * 1988-12-21 1990-06-27 Fujikura Ltd Hermetically coated optical fiber
JPH02263742A (en) * 1989-04-04 1990-10-26 Furukawa Electric Co Ltd:The Production of metal-coated optical fiber

Also Published As

Publication number Publication date
JPH02278214A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
JP3895326B2 (en) Control of thermal oxidation process by controlling partial pressure of oxidant
US7572052B2 (en) Method for monitoring and calibrating temperature in semiconductor processing chambers
Hay et al. CVD diamond deposition processes investigation: CARS diagnostics/modeling
JP2644323B2 (en) Hermetically coated optical fiber and method of manufacturing the same
Kuramoto et al. Reproducibility of the realization of the kilogram based on the Planck constant by the XRCD method at NMIJ
Khakoo et al. Differential electron scattering from acetylene-elastic scattering and vibrational excitation
Kwok et al. Open-air carbon coatings on fused quartz by laser-induced chemical vapor deposition
US5105151A (en) Method and apparatus for magnetically detecting a carburized portion of an article while discriminating a non-carburized deteriorated layer of the article
Mhatre et al. Dynamics of transient hole doping in epitaxial graphene
Díaz‐Fernández et al. Study of the early stages of growth of Co oxides on oxide substrates
US5101764A (en) Method and apparatus for integrating optical sensor into processor
JP2754823B2 (en) Film thickness measurement method
Perujo et al. Low pressure tritium interaction with Inconel 625 and AISI 316 L stainless steel surfaces: an evaluation of the recombination and adsorption constants
JPH02308208A (en) Hermetically coated optical fiber and production thereof
JP3147186B2 (en) Thermal degradation detection method for insulating materials
JPH03131550A (en) Production of optical fiber coated with conductive thin film and device therefor
Hopfe et al. In-situ FTIR emission spectroscopy on chemical vapour deposition processes
Liu et al. Formation of amino‐terminated self‐assembled monolayers from long‐chain aminomethoxylsilanes
JPH06123744A (en) High-temperature and high-humidity interatomic-force microscope and observation and quantifying method of chemical reaction
Brisebourg et al. A new experimental apparatus for in-situ characterization of silica growth during passive corrosion of SiC at very high temperatures
JPH01147363A (en) Thermally decomposed gas measuring instrument
JPH02289447A (en) Glass product
Kuchnir et al. Coating power RF components with TiN
Roman et al. CARS Diagnostics and Analysis of Species in Diamond Deposition Process
JP2685889B2 (en) Method for producing hermetic coated optical fiber