JPH03131550A - Production of optical fiber coated with conductive thin film and device therefor - Google Patents

Production of optical fiber coated with conductive thin film and device therefor

Info

Publication number
JPH03131550A
JPH03131550A JP2093429A JP9342990A JPH03131550A JP H03131550 A JPH03131550 A JP H03131550A JP 2093429 A JP2093429 A JP 2093429A JP 9342990 A JP9342990 A JP 9342990A JP H03131550 A JPH03131550 A JP H03131550A
Authority
JP
Japan
Prior art keywords
thin film
conductive thin
optical fiber
detection coil
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2093429A
Other languages
Japanese (ja)
Other versions
JP2803310B2 (en
Inventor
Ichiro Yoshimura
一朗 吉村
Katsuya Nagayama
勝也 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to AU58656/90A priority Critical patent/AU640149B2/en
Priority to DE69013079T priority patent/DE69013079T2/en
Priority to CA002020490A priority patent/CA2020490A1/en
Priority to EP90112856A priority patent/EP0406860B1/en
Priority to KR1019900010146A priority patent/KR930009888B1/en
Publication of JPH03131550A publication Critical patent/JPH03131550A/en
Application granted granted Critical
Publication of JP2803310B2 publication Critical patent/JP2803310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/12Measuring arrangements characterised by the use of electric or magnetic techniques for measuring diameters
    • G01B7/125Measuring arrangements characterised by the use of electric or magnetic techniques for measuring diameters of objects while moving
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To enable uniform thin film coating over total length of an optical fiber by passing an optical fiber coated with an electrically conductive thin film through a high-frequency magnetic field and continuously measuring overcurrent generated in the conductive thin film without contact. CONSTITUTION:In the production of an electrically conductive thin film-coated optical fiber 17 by coating an optical fiber 16 drawn from preform 15 with a conductive thin film 171, the optical fiber 17 applied by the conductive thin film (e.g. in heat CVD furnace 3) is passed through a high-frequency magnetic field (generated in a hollow detection coil 7) and overcurrent generated in the conductive thin film 171 is measured in non-contact state to determine thickness of conductive thin film 171. A film thickness measuring device is provided with the detection coil 7 connected to high-frequency electric power 8 and constituted so as to determine film thickness of the conductive thin film 171 based on the change of alternative current impedance produced when the optical fiber is passed through hollow part of the detection coil 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性薄膜コート光ファイバの製造方法と、
これを用いた製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for manufacturing an optical fiber coated with a conductive thin film;
This invention relates to a manufacturing device using this.

〔従来の技術〕[Conventional technology]

石英系光ファイバの裸線は水分やH2を吸着し易く、こ
れらは光ファイバの強度劣化や光伝送損失の増加の原因
となる。従来は、光ファイバの線引き直後にUV硬化型
アクリレート系樹脂等によるプリコートが施されていた
。しかしこれら有機高分子膜だけでは気密性が不足する
為、今日ではプリコートを2層以上に分け、まずアルミ
ニウム等の無機薄膜をコーティングし、さらにその上か
ら樹脂コートを施すことが行われている。この無機薄膜
としては各種のものが研究されているが、最近アモルフ
ァスカーボンがその優れた気密性の故に注目されている
(例えば“0pt1cal FibreCoavunl
cations Conference 1989” 
 r国際光ファイバ通信学会1989年年会」における
C、M、G、Jochemらの論文)。
Bare wires of silica-based optical fibers tend to adsorb moisture and H2, which cause deterioration in the strength of the optical fiber and increase in optical transmission loss. Conventionally, optical fibers have been precoated with UV-curable acrylate resin or the like immediately after being drawn. However, these organic polymer films alone lack airtightness, so today the precoat is divided into two or more layers, first coated with an inorganic thin film such as aluminum, and then coated with a resin. Various types of inorganic thin films have been studied, but recently amorphous carbon has attracted attention due to its excellent airtightness (for example, "0pt1cal FibreCoavunl").
cations Conference 1989”
Paper by C. M. G. Jochem et al. at the 1989 Annual Meeting of the International Society of Optical Fiber Communications).

光フアイバ表面の無機薄膜コーティングは、プリフォー
ム(母材)からファイバが線引きされた直後に、例えば
化学的気相成長法(いわゆるCVD法)で行われる場合
が多い。この方法で生成される膜は数百オングストロー
ム(A)と極めて薄く、この膜厚や膜質なとは、線速、
処理温度、反応ガスの濃度、圧力、流量等、多くの要因
の影響下で変動する。このため、例えば5〜10m/秒
とい・う速い紡糸スピードの下で、数十kMに及ぶファ
イバ全長にわたって膜切れがなく、均一な膜厚、膜質と
なった薄膜コーティングを保証することは容易ではない
An inorganic thin film coating on the surface of an optical fiber is often performed, for example, by chemical vapor deposition (so-called CVD) immediately after the fiber is drawn from a preform (base material). The film produced by this method is extremely thin, several hundred angstroms (A), and the film thickness and film quality are determined by the linear velocity,
It fluctuates under the influence of many factors, such as processing temperature, reaction gas concentration, pressure, and flow rate. For this reason, it is not easy to guarantee a thin film coating with uniform thickness and quality without film breakage over the entire length of the fiber, which is several tens of km, at a high spinning speed of 5 to 10 m/sec. do not have.

このような無機薄膜の性能のコントロールを行うには、
光ファイバの製造過程で膜厚を連続的に測定し、その結
果に基づいて上記の各要因を制御することができれば極
めて望ましい。
To control the performance of such inorganic thin films,
It would be extremely desirable to be able to continuously measure the film thickness during the manufacturing process of optical fibers and control each of the above factors based on the results.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、線引きおよび無機薄膜と樹脂のコーティ
ングを終了した光ファイバをドラムに巻き取った後、サ
ンプルを採取し、その樹脂コートを取り去って膜厚を測
定していた。このため、全長にわたって無機薄膜の性能
を保証することができないという解決すべき課題があっ
た。
However, after an optical fiber that has been drawn and coated with an inorganic thin film and a resin is wound onto a drum, a sample is taken, the resin coat is removed, and the film thickness is measured. Therefore, there was a problem to be solved in that the performance of the inorganic thin film could not be guaranteed over the entire length.

本発明は、上記の課題に鑑み、光ファイバにおける薄膜
の膜厚を非接触かつ連続的に測定することを可能にし、
これによって、光フアイバ全長にわたって均一な薄膜コ
ーティングを行うことのできる光ファイバの製造方法と
装置を提供することを目的とする。
In view of the above problems, the present invention enables non-contact and continuous measurement of the thickness of a thin film in an optical fiber.
Accordingly, it is an object of the present invention to provide an optical fiber manufacturing method and apparatus that can uniformly apply a thin film coating over the entire length of the optical fiber.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光ファイバの被覆に用いられる無機薄膜には
導電性を有するものがある点に着目し、その電気抵抗を
非接触で連続的に測定することを可能にした光ファイバ
の製造方法と装置を提供しようするものである。
The present invention focuses on the fact that some of the inorganic thin films used to coat optical fibers have conductivity, and provides an optical fiber manufacturing method that makes it possible to continuously measure the electrical resistance without contact. The purpose is to provide equipment.

すなわち、本発明は母材から線引きされた光ファイバに
導電性薄膜をコーティングする光ファイバの製造方法に
おいて、導電性薄膜をコーティングした後の光ファイバ
を高周波磁界中に通し、導電性薄膜に生じた過電流を非
接触で測定することにより導電性薄膜の厚さを測定する
ことを特徴とする。
That is, the present invention relates to an optical fiber manufacturing method in which an optical fiber drawn from a base material is coated with a conductive thin film. It is characterized by measuring the thickness of a conductive thin film by measuring overcurrent without contact.

また、本発明に係る導電性薄膜コート光ファイバの製造
装置は、先ファイバの母材を加熱、溶融して光ファイバ
を線引きする線引炉と、線引きされた光ファイバに導電
性薄膜をコーティングするコーティング装置とに加えて
、更に光ファイバの導電性薄膜の膜厚を測定する膜厚a
Pj定装置を備え、特にこの膜厚測定装置が、高周波電
源に接続された中空の検出コイルを有し、このコイルの
中空部を光ファイバが通るときに生じる交流インピーダ
ンスの変化に基づいて、光ファイバの導電性薄膜の膜厚
を測定するものであることを特徴とする。
Further, the apparatus for manufacturing a conductive thin film coated optical fiber according to the present invention includes a drawing furnace that heats and melts a base material of a target fiber to draw an optical fiber, and a drawing furnace that coats the drawn optical fiber with a conductive thin film. In addition to the coating device, there is also a film thickness a for measuring the film thickness of the conductive thin film of the optical fiber.
In particular, this film thickness measuring device has a hollow detection coil connected to a high-frequency power source, and detects light based on the change in AC impedance that occurs when an optical fiber passes through the hollow part of this coil. It is characterized in that it measures the thickness of a conductive thin film of a fiber.

この膜厚測定装置は、例えば、検出コイルのほかにこれ
と路間−の特性を有する(例えば同−構造で同形、同大
)参照用コイルを備え、この参照用コイルは空芯とした
まま両コイルを一つの高周波電源に接続し、交流ブリッ
ジ等の検出手段で両コイルのインピーダンスの差を検知
することにより、上記の交流インピーダンスの変化を検
出するものであってもよい。
For example, in addition to the detection coil, this film thickness measuring device is equipped with a reference coil that has similar characteristics (for example, the same structure, the same shape, and the same size) as the detection coil, and this reference coil is left as an air core. The alternating current impedance change may be detected by connecting both coils to one high-frequency power source and detecting the difference in impedance between the two coils using a detection means such as an alternating current bridge.

〔作用〕[Effect]

本発明の構成によれば、まず、線引炉の上部から挿入さ
れた光ファイバの母材が炉中で加熱、溶融されつつ線引
きされ、光ファイバの裸線が作られる。この光ファイバ
の裸線は直ちにコーティング装置に入り、その表面に導
電性薄膜が形成される。導電性薄膜をコーティングされ
た光ファイバは、必要に応じてレーザ線径測定器等の外
径測定器により外径を測定され、続いて膜厚測定装置に
よりその表面の導電性薄膜の膜厚を測定されるので、外
径及び膜厚を所定の値に維持するために必要な情報が得
られる。なお、この膜厚測定に先立ち、樹脂を被覆して
硬化させてもよく、これによっても導電性薄膜の厚さが
同様に測定される。
According to the configuration of the present invention, first, the base material of the optical fiber inserted from the upper part of the drawing furnace is heated and melted in the furnace and drawn, thereby producing a bare optical fiber. This bare optical fiber immediately enters a coating device, and a conductive thin film is formed on its surface. The outer diameter of the optical fiber coated with a conductive thin film is measured using an outer diameter measuring device such as a laser wire diameter measuring device as necessary, and then the thickness of the conductive thin film on the surface is measured using a film thickness measuring device. This provides the information necessary to maintain the outer diameter and film thickness at predetermined values. Note that prior to this film thickness measurement, a resin may be coated and cured, and the thickness of the conductive thin film can also be measured in the same manner.

上記の膜厚測定装置において、光ファイバが検出コイル
の中空部を通るときファイバ表面の導電性薄膜中に渦電
流が発生する。これは、検出コイル中で高周波電流が作
る磁界の中に導体であるファイバ表面が置かれるからで
ある。同時に、この渦電流も磁界を作り、この磁界が逆
に検出コイルに作用してその見掛けの交流インピーダン
スを変化させる。そして、この渦電流の強さ及びこれに
起因する交流インピーダンスの変化量は導電性薄膜の膜
厚に関する情報を含んでいるから、予め検量を行なって
検出コイルの交流インピーダンス変化量と膜厚との関係
を求めておき、この交流インピーダンスの変化量を実測
すれば、膜厚が測定できることになる。
In the film thickness measuring device described above, when the optical fiber passes through the hollow part of the detection coil, an eddy current is generated in the conductive thin film on the surface of the fiber. This is because the surface of the fiber, which is a conductor, is placed in the magnetic field created by the high-frequency current in the detection coil. At the same time, this eddy current also creates a magnetic field, which in turn acts on the detection coil and changes its apparent AC impedance. Since the strength of this eddy current and the amount of change in AC impedance caused by it include information regarding the thickness of the conductive thin film, it is necessary to perform calibration in advance to determine the relationship between the amount of change in AC impedance of the detection coil and the film thickness. By determining the relationship and actually measuring the amount of change in this AC impedance, the film thickness can be measured.

〔実施例〕〔Example〕

以下、添付図面の第1図から第5図を用いて本発明の詳
細な説明する。なお、図面の説明において同一要素には
同一符号を付し、重複する説明を省略する。
Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 5 of the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

第1図は本発明の第1実施例に係る導電性薄膜コート光
ファイバの製造装置の主要部の構成を示す図である。図
示の通り、線引炉1の炉心管2には光ファイバの母材1
5が挿入され、母材15の先端部は加熱装置により加熱
、溶融されつつ線引きされ、先ファイバの裸線]6が作
られる。本例ではこの裸線の外径は125μmである。
FIG. 1 is a diagram showing the configuration of the main parts of an apparatus for manufacturing an optical fiber coated with a conductive thin film according to a first embodiment of the present invention. As shown in the figure, the core tube 2 of the drawing furnace 1 has an optical fiber base material 1
5 is inserted, and the tip of the base material 15 is heated and melted by a heating device while being drawn, thereby producing a bare tip 6 of the fiber. In this example, the outer diameter of this bare wire is 125 μm.

裸線16は直ちにコーティング装置の一例である熱CV
D炉3の炉心管4に入り、炉心管4の上部にある反応ガ
ス導入口5からは反応ガスが供給されて加熱装置により
加熱されて熱分解され、裸線16の表面に導電性薄膜が
形成される。反応後のガスは排気口6から排出される。
The bare wire 16 is immediately transferred to a thermal CV, which is an example of a coating device.
The reactant gas enters the reactor core tube 4 of the D furnace 3, is supplied from the reactant gas inlet 5 at the upper part of the reactor core tube 4, is heated by a heating device, and is thermally decomposed, so that a conductive thin film is formed on the surface of the bare wire 16. It is formed. The gas after the reaction is exhausted from the exhaust port 6.

本例では反応ガスはメタン、生成する導電性物質はカー
ボンであるが、本発明の対象がこれに限られるものでは
ない。すなわち、上記の導電性薄膜の材質は、先ファイ
バの表面に堅固な導電性気密層を形成でき、かつ先ファ
イバに悪影響を与えないものであれば何でもよく、また
上記のコーティング装置もその材質に応じて適切な形式
のものを選択することができる。例えばカーボンの場合
は、メタンの他にアセチレン等の人手容易な材料を反応
ガスとして、熱CVD (熱分解を伴う化学的気相成長
法)炉のような構造簡単なコーティング装置により堅固
な導電性気密層を容易に形成し得るので好都合である。
In this example, the reactive gas is methane, and the generated conductive substance is carbon, but the object of the present invention is not limited to this. In other words, the conductive thin film may be made of any material as long as it can form a solid conductive airtight layer on the surface of the tip fiber and does not adversely affect the tip fiber, and the coating device can also be made of any material. You can select the appropriate format according to your needs. For example, in the case of carbon, a simple coating device such as a thermal CVD (Chemical Vapor Deposition with Pyrolysis) furnace is used to create a strong electrical conductivity using easily handled materials such as acetylene in addition to methane as a reaction gas. This is advantageous because an airtight layer can be easily formed.

なお、ここにいうカーボンにはアモルファス(非結晶)
カーボンや微細結晶質カーボンが含まれる。
Note that the carbon mentioned here is amorphous (non-crystalline).
Contains carbon and microcrystalline carbon.

表面に導電性薄膜がコーティングされた光ファイバ17
は、熱CVD炉3を出た後、検出コイル7の中を通過す
る。検出コイル7は中空コイルであり、本例ではコイル
内径500μmであって、その中を通る光ファイバが接
触しないように、コイル中心と光フアイバ中心とは高精
度に芯出しされている。第2図は検出コイルと先ファイ
バの寸法関係を示している。図示の通り、光ファイバ1
7は裸線16に導電性薄膜]71をコーティングするこ
とで形成され、これが検出コイル7の中空部に通されて
いる。ここで、図中のdrは光ファイバー7の外径、d
−は検出コイル7の内径である。
Optical fiber 17 whose surface is coated with a conductive thin film
After exiting the thermal CVD furnace 3, it passes through the detection coil 7. The detection coil 7 is a hollow coil, with an inner diameter of 500 μm in this example, and the center of the coil and the center of the optical fiber are aligned with high precision so that the optical fiber passing through the coil does not come into contact with each other. FIG. 2 shows the dimensional relationship between the detection coil and the tip fiber. As shown, optical fiber 1
7 is formed by coating the bare wire 16 with a conductive thin film 71, which is passed through the hollow part of the detection coil 7. Here, dr in the figure is the outer diameter of the optical fiber 7, d
- is the inner diameter of the detection coil 7.

参照用コイル71は検出コイル7と同形、同大の空芯コ
イルであり、少なくとも交流インピーダンスについて同
一の特性を有している。検出コイル7及び参照用コイル
71は、本例では周波数200MHzの高周波電源8か
ら高周波電流を供給されると共に、交流ブリッジ9に接
続されており、交流ブリッジ9の出力は信号処理装置1
0に接続されている。上記の検出コイル7から信号処理
装置10までの要素は、全体として本発明の構成におけ
る膜厚aPI定装置に該当する。
The reference coil 71 is an air-core coil having the same shape and size as the detection coil 7, and has the same characteristics at least in terms of AC impedance. The detection coil 7 and the reference coil 71 are supplied with a high frequency current from a high frequency power supply 8 with a frequency of 200 MHz in this example, and are connected to an AC bridge 9, and the output of the AC bridge 9 is supplied to the signal processing device 1.
Connected to 0. The elements from the detection coil 7 to the signal processing device 10 described above correspond as a whole to the film thickness aPI determining device in the configuration of the present invention.

検出コイル7を通過した光ファイバ17は、続いて外径
測定器11において外径を測定され、ダイス12におい
て樹脂等をコーティングされ、硬化炉13においてUV
照射又は加熱による硬化処理を受ける。こうして完成さ
れた光ファイバ18は、キャプスタン14を介して図示
しないドラムに巻き取られる。
After passing through the detection coil 7, the optical fiber 17 has its outer diameter measured by an outer diameter measuring device 11, is coated with resin etc. in a die 12, and is exposed to UV light in a curing furnace 13.
Subjected to curing treatment by irradiation or heating. The optical fiber 18 thus completed is wound onto a drum (not shown) via the capstan 14.

次に、上記第1実施例の装置の作用と共に、実施例に係
る製造方法を説明する。
Next, the operation of the apparatus of the first embodiment and the manufacturing method according to the embodiment will be explained.

第1図において、線引炉1において線引きされた光ファ
イバの裸線16は、熱CVD炉3の炉心管4内において
加熱装置により加熱され、その表面に反応ガスが触れて
熱分解され、裸線16の表面に例えばカーボン等の導電
性物質が析出し薄膜が形成される。
In FIG. 1, a bare optical fiber 16 drawn in a drawing furnace 1 is heated by a heating device in a core tube 4 of a thermal CVD furnace 3, and a reactive gas comes into contact with its surface and is thermally decomposed, resulting in a bare optical fiber. A conductive substance such as carbon is deposited on the surface of the wire 16 to form a thin film.

こうして表面に導電性薄膜171をコーティングされた
光ファイバ17が検出コイル7の中空部を通る際、その
導電性薄膜171中に渦電流が発生する。これは、検出
コイル7中で高周波電流が作る磁界の中に導体であるフ
ァイバ表面が置かれるからである。同時に、この渦電流
も磁界を作り、この磁界が逆に検出コイル7に作用して
、その見掛けの交流インピーダンスを変化させる。他方
、参照用コイル71の交流インピーダンスは空芯である
ため変化しないから、両コイル7及び71の交流インピ
ーダンスの差を交流ブリッジ9で観測しつつ、その差を
ゼロにするように交流ブリッジ9を操作することにより
、検出コイル7に生じた交流インピーダンスの変化量を
交流ブリッジ9の操作量として検出することができる。
When the optical fiber 17 whose surface is coated with the conductive thin film 171 passes through the hollow part of the detection coil 7, an eddy current is generated in the conductive thin film 171. This is because the surface of the fiber, which is a conductor, is placed in the magnetic field created by the high-frequency current in the detection coil 7. At the same time, this eddy current also creates a magnetic field, which in turn acts on the detection coil 7 and changes its apparent AC impedance. On the other hand, the AC impedance of the reference coil 71 does not change because it is an air core, so while observing the difference in AC impedance between the coils 7 and 71 with the AC bridge 9, the AC bridge 9 is adjusted to make the difference zero. By operating it, the amount of change in AC impedance that occurs in the detection coil 7 can be detected as the amount of operation of the AC bridge 9.

上記の渦電流の強さとこれに起因する交流インピーダン
スの変化量は、導電性薄膜の膜厚に関する情報を含んで
おり、この交流インピーダンスの変化量と膜厚との関係
を予め検量しておけば、上記のように検出コイル7に生
じる交流インピータンスの変化量を実測し、この情報を
信号処理装置10で処理することにより膜厚を測定する
ことができる。この装置によれば、両コイル7及び7]
に共通に加わっている外部撹乱要因が相殺されるので高
い4p1定精度が得られる。なお、膜厚4Ilj定に利
用した導電性薄膜の電気抵抗は、膜厚以外に膜質等に関
する情報をも含んでいるため、膜の性能評価を行う上で
重要な手掛かりを与える。
The strength of the eddy current described above and the amount of change in AC impedance caused by this include information regarding the film thickness of the conductive thin film, and if the relationship between the amount of change in AC impedance and the film thickness is calibrated in advance. As described above, the film thickness can be measured by actually measuring the amount of change in AC impedance occurring in the detection coil 7 and processing this information in the signal processing device 10. According to this device, both coils 7 and 7]
High 4p1 constant accuracy can be obtained because the external disturbance factors commonly added to the 4p1 are canceled out. Note that the electrical resistance of the conductive thin film used to determine the film thickness 4Ilj provides important clues in evaluating the performance of the film, since it includes information regarding the film quality and the like in addition to the film thickness.

第3図は、本発明の第2実施例の装置の全体構成を示し
ている。
FIG. 3 shows the overall configuration of an apparatus according to a second embodiment of the present invention.

本実施例では、外径測定器11と検出コイル7の上下の
位置が逆転していること、及びファイバ周囲に磁界を発
生させるコイル80と検出コイル7とを分けたことが、
第1図の実施例と相違する点である。
In this embodiment, the vertical positions of the outer diameter measuring device 11 and the detection coil 7 are reversed, and the coil 80 that generates a magnetic field around the fiber and the detection coil 7 are separated.
This is different from the embodiment shown in FIG.

検出コイル7の挿入位置は、コイルとファイバが接触し
ないよう、ファイバの振れが小さい場所がよい。その意
味で、樹脂コーティング用ダイス12の前後は望ましい
位置である。本例ではこのような観点から、外径A11
i定器11と検出コイル7の位置を逆転させ、検出コイ
ル7をダイス12に近づけている。これをさらに進めて
、検出コイル7とダイス12を一体化させてもよく、こ
の場合コイルの近くに導電性物質があると大きな影響を
受けるので、ダイス12とその付属品をすべて絶縁物で
作るとよい。
The insertion position of the detection coil 7 is preferably a place where the deflection of the fiber is small so that the coil and the fiber do not come into contact with each other. In that sense, the positions before and after the resin coating die 12 are desirable. In this example, from this point of view, the outer diameter A11
The positions of the i-determiner 11 and the detection coil 7 are reversed to bring the detection coil 7 closer to the die 12. Taking this further, the detection coil 7 and the die 12 may be integrated; in this case, the presence of a conductive substance near the coil will have a significant effect, so the die 12 and its accessories are all made of insulating material. Good.

また本例で、光ファイバの周囲に磁界を発生させるコイ
ル80と検出コイル7とを分けた理由は、励磁エネルギ
の供給を検出コイル7とは別のコイル80に行わせるこ
とで検出コイル7に流す電流を小さくすることができ、
そのため検出コイル7の温度上昇や振動等の防止が容易
になって測定精度が向上するからである。
In addition, in this example, the reason why the coil 80 that generates a magnetic field around the optical fiber and the detection coil 7 are separated is that the excitation energy is supplied to the coil 80, which is different from the detection coil 7. The current flowing can be reduced,
This is because it becomes easier to prevent temperature rise, vibration, etc. of the detection coil 7, and the measurement accuracy improves.

上記第1図又は第3図の実施例における膜厚alll定
において、一定の高周波電流の下で充分に強ヵな渦電流
を発生させるには、検出コイルのコイル充填率νをなる
べく大きく (1に近く)する必要がある。コイル充填
率νはコイルの中空部断面積に対するファイバ断面積の
比であって、次式(1)で定義される。
In order to generate a sufficiently strong eddy current under a constant high-frequency current at all film thicknesses in the embodiments shown in FIG. 1 or 3 above, the coil filling factor ν of the detection coil should be made as large as possible (1 close to). The coil filling factor ν is the ratio of the fiber cross-sectional area to the hollow cross-sectional area of the coil, and is defined by the following equation (1).

2         ・・・(1) シー(dr/dc) ここでdrは光ファイバの外径、dcは検出コイルの内
径である。このνの値が小さいと、交流ブリッジ等に高
感度のものが必要になったり、また増幅器のゲインを大
きくしなければならず、特に後述するような高い周波数
を取り扱う際に困難が増大する。ちなみにファイバの外
径が125μmの場合、検出コイルの内径は500μm
(0,5mm)以下が好ましく、従って、外径250μ
m程度までの光ファイバを作る製造装置にあっては、検
出コイル内径の実用範囲は1. mm以下であるといっ
てよい。
2...(1) Sea (dr/dc) Here, dr is the outer diameter of the optical fiber, and dc is the inner diameter of the detection coil. If the value of ν is small, a highly sensitive AC bridge or the like is required, and the gain of the amplifier must be increased, which increases the difficulty especially when handling high frequencies as described below. By the way, if the outer diameter of the fiber is 125 μm, the inner diameter of the detection coil is 500 μm.
(0.5mm) or less, therefore, the outer diameter is 250μ
For manufacturing equipment that makes optical fibers up to about 1.5 m long, the practical range of the inner diameter of the detection coil is 1.0 m. It can be said that it is less than mm.

一方、膜厚測定に用いる高周波電源8の周波数fは、導
電性薄膜の導電率σ、透磁率μにより、薄膜中の渦電流
の浸透深さδが適当な値になるように定められる。ここ
に渦電流の浸透深さδは、次式(2)で当られる。
On the other hand, the frequency f of the high frequency power source 8 used for film thickness measurement is determined by the conductivity σ and magnetic permeability μ of the conductive thin film so that the penetration depth δ of the eddy current in the thin film becomes an appropriate value. Here, the penetration depth δ of the eddy current is given by the following equation (2).

δ−1/  yr  au         ・・・(
2)上記のδは光ファイバの導電性薄膜の膜厚に比べて
十分大きく、かつファイバ外径より小さいことが望まし
い。(2)式にカーボン膜の定数を入れ、ファイバ外径
を100μmとして計算すると、fは250MHz以上
となるが、これを同じ太さの銅線の場合の440KHz
と比較するとその違いは明瞭である。ちなみに、カーボ
ン膜の場合には80μmのファイバ外径では390MH
z以上、200μmの外径では60MH7以上である。
δ-1/yr au...(
2) It is desirable that the above δ is sufficiently larger than the thickness of the conductive thin film of the optical fiber and smaller than the outer diameter of the fiber. When calculating by inserting the constant of the carbon film into equation (2) and assuming the fiber outer diameter as 100 μm, f becomes 250 MHz or more, which is compared to 440 KHz for a copper wire of the same thickness.
The difference is clear when compared with By the way, in the case of a carbon film, a fiber outer diameter of 80 μm has a power of 390 MH.
z or more and an outer diameter of 200 μm is 60MH7 or more.

ここから、カーボン膜の場合、この周波数の実用的範囲
は10MHz以上であるということができる。
From this, it can be said that in the case of carbon films, the practical range of this frequency is 10 MHz or more.

なお、以上述べてきた膜厚1111J定の結果には、光
ファイバの外径が大きく影響する。従って、ファイバ外
径が所定の寸法差以内にコントロールされていることが
精度よく膜厚を測定できるための一つの前提条件である
Note that the outer diameter of the optical fiber has a large influence on the results of the film thickness 1111J described above. Therefore, one prerequisite for accurately measuring the film thickness is that the fiber outer diameter is controlled within a predetermined dimensional difference.

第4図および第5図は第3実施例に係る製造装置を示し
ている。
4 and 5 show a manufacturing apparatus according to a third embodiment.

第4図に示す通り、検出コイル7等からなる膜厚測定装
置はキャプスタン14の下流側、すなわち樹脂コーティ
ング用ダイス12および硬化炉13からなる樹脂コーテ
ィング装置の下流側に設けられている。これにより、光
ファイバが測定用のコイル等に接触して、引張強度が低
下してしまうような不都合が防止される。また本実施例
においては、第5図のように、導電性膜厚171の上に
樹脂被覆181を施された光ファイバ18は、テフロン
などからなる円筒状のガイドバイブ20に通され、この
ガイドバイブ20の外側には検出コイル7が巻かれてい
る。なお、ガイドバイブ20の内面は滑らかに仕上げら
れており、しかも光ファイバ18の入口部はバイブの内
径が広くなるように成形されている。このため、線ぶれ
によって光ファイバ18がガイドバイブ20の内面に接
触しても、光ファイバの裸線16や導電性薄膜171に
大きな損傷を与えないようにしである。
As shown in FIG. 4, the film thickness measuring device including the detection coil 7 and the like is provided downstream of the capstan 14, that is, downstream of the resin coating device including the resin coating die 12 and the curing furnace 13. This prevents inconveniences such as the optical fiber coming into contact with a measurement coil or the like and resulting in a decrease in tensile strength. Further, in this embodiment, as shown in FIG. 5, the optical fiber 18 having a resin coating 181 on the conductive film thickness 171 is passed through a cylindrical guide vibe 20 made of Teflon or the like. A detection coil 7 is wound around the outside of the vibrator 20. The inner surface of the guide vibrator 20 is finished smoothly, and the entrance portion of the optical fiber 18 is shaped so that the inner diameter of the guide vibrator 20 is wide. Therefore, even if the optical fiber 18 comes into contact with the inner surface of the guide vibe 20 due to wire wobbling, the bare optical fiber 16 and the conductive thin film 171 are prevented from being seriously damaged.

上記のようにして得られた膜厚に関する情報は、下記の
ように製造条件調整のためにフィードバックされる。
The information regarding the film thickness obtained as described above is fed back to adjust manufacturing conditions as described below.

まず、炉心管4に流す反応ガスの流量の1′J3整がさ
れる。導電性薄膜の膜厚が小さすぎるときは、反応ガス
の流量を多くすることで膜厚を大きくでき、逆に膜厚が
大きすぎるときは、反応ガスの流量を少なくすることで
膜厚を小さくできる。反応ガスの濃度についても同様で
あり、高濃度にすると導電性薄膜を厚く、低4度にする
と薄くできる。
First, the flow rate of the reaction gas flowing into the furnace core tube 4 is adjusted to 1'J3. If the thickness of the conductive thin film is too small, the thickness can be increased by increasing the flow rate of the reaction gas, and conversely, if the film thickness is too large, the thickness can be made smaller by decreasing the flow rate of the reaction gas. can. The same applies to the concentration of the reaction gas; a high concentration allows the conductive thin film to be made thick, and a low 4° makes the conductive thin film thin.

一方、炉心管4における裸線16の温度によっても導電
性薄膜の厚さを調整でき、一般には、温度が高いほど導
電性薄膜は厚くなる。このような裸線16の温度調整は
、炉心管4を母材15に近づけたり、あるいは遠ざけた
りすることで容易に実現できる。
On the other hand, the thickness of the conductive thin film can also be adjusted by the temperature of the bare wire 16 in the furnace tube 4, and generally, the higher the temperature, the thicker the conductive thin film. Such temperature adjustment of the bare wire 16 can be easily achieved by moving the furnace tube 4 closer to or farther from the base material 15.

〔発明の効果〕〔Effect of the invention〕

本発明の構成によれば、カーボンのような導電性物質の
薄膜でコーティングされた光ファイバの膜厚の変化を電
気抵抗の変化として連続的に測定することができ、しか
もこの膜厚測定は完全に非接触の状態で行われるから、
光ファイバの表面を傷つけることがない。このようにし
て光ファイバの製造中に膜厚を連続監視できるので、導
電性薄膜の製造条件を迅速に決定することができ、必要
に応じて薄膜コーティング装置をリアルタイムに制御す
ることも可能であって、製造される光ファイバの全長に
わたって良好な膜性能を保証することができる。またそ
の結果、膜性能の検査工程を省くことができる。
According to the configuration of the present invention, changes in the film thickness of an optical fiber coated with a thin film of a conductive substance such as carbon can be continuously measured as changes in electrical resistance, and this film thickness measurement can be performed completely. Because it is done in a non-contact manner,
Will not damage the surface of the optical fiber. In this way, film thickness can be continuously monitored during the production of optical fibers, making it possible to quickly determine the production conditions for the conductive thin film and, if necessary, controlling the thin film coating equipment in real time. Thus, good film performance can be guaranteed over the entire length of the manufactured optical fiber. Moreover, as a result, the step of inspecting membrane performance can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る導電性薄膜コート光
ファイバの製造装置を示す説明図、第2図は第1図の部
分拡大図、第3図は第2実施例に係る導電性薄膜コート
光ファイバの製造装置を示す説明図、第4図は第3実施
例に係る導電性薄膜コート光ファイバの製造装置の説明
図、第5図は第4図の要部を示す図である。 1・・・線引炉、3・・・熱CVD炉、7・・・検出コ
イル、8・・・高周波電源、9・・・交流ブリッジ、1
0・・・信号処理装置、1コ−・・・ファイバ外径測定
器、12・・・樹脂コーティング用ダイス、16・・・
光ファイバの裸線、17・・・導電性薄膜をコーティン
グされた光ファイバ、171・・・導電性薄膜、dr・
・・光ファイバの外径、do・・・検出コイルの内径、
18・・・樹脂コーティングされた先ファイバ。
FIG. 1 is an explanatory diagram showing a manufacturing apparatus for a conductive thin film coated optical fiber according to the first embodiment of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 3 is a conductive thin film-coated optical fiber manufacturing apparatus according to the second embodiment FIG. 4 is an explanatory diagram showing an apparatus for manufacturing a conductive thin film coated optical fiber according to the third embodiment, and FIG. 5 is a diagram showing the main parts of FIG. 4. be. DESCRIPTION OF SYMBOLS 1... Wire drawing furnace, 3... Thermal CVD furnace, 7... Detection coil, 8... High frequency power supply, 9... AC bridge, 1
0... Signal processing device, 1 Co... Fiber outer diameter measuring device, 12... Resin coating die, 16...
Bare optical fiber, 17... Optical fiber coated with a conductive thin film, 171... Conductive thin film, dr.
...outer diameter of optical fiber, do...inner diameter of detection coil,
18...Resin-coated tip fiber.

Claims (1)

【特許請求の範囲】 1、母材から線引きされた光ファイバに導電性薄膜をコ
ーティングする導電性薄膜コート光ファイバの製造方法
において、 前記導電性薄膜をコーティングした後の光ファイバを高
周波磁界中に通し、当該導電性薄膜に生じた渦電流を非
接触で測定することにより当該導電性薄膜の厚さを測定
することを特徴とする導電性薄膜コート光ファイバの製
造方法。 2、前記導電性薄膜のコーティング後に、更に樹脂をコ
ーティングして硬化させた後に、前記高周波磁界中に通
して前記導電性薄膜の厚さを測定することを特徴とする
請求項1記載の導電性薄膜コート光ファイバの製造方法
。 3、母材を加熱、溶融して光ファイバを線引きする線引
炉と、線引きされた光ファイバに導電性薄膜をコーティ
ングするコーティング装置と、コーティングされた導電
性薄膜の膜厚を測定する膜厚測定装置とを備え、 前記膜厚測定装置が、高周波電源に接続された中空の検
出コイルを有し、前記光ファイバが該検出コイルの中空
部を通るときに生じる該検出コイルの交流インピーダン
スの変化に基づいて前記導電性薄膜の膜厚を測定するも
のであることを特徴とする導電性薄膜コート光ファイバ
の製造装置。 4、前記膜厚測定装置が、前記検出コイルと略同一の特
性を有し空芯のまま前記高周波電源に接続された参照用
コイルと、前記検出コイルと参照用コイルの交流インピ
ーダンスの差を検知することにより該検出コイルにおけ
る前記交流インピーダンスの変化を検出する検出手段と
を備えることを特徴とする請求項3記載の導電性薄膜コ
ート光ファイバの製造装置。 5、前記膜厚測定装置が、前記導電性薄膜の上に樹脂を
コーティングする樹脂コーティング装置の下流側に配置
されていることを特徴とする請求項3記載の導電性薄膜
コート光ファイバの製造装置。
[Claims] 1. A method for manufacturing an optical fiber coated with a conductive thin film, in which an optical fiber drawn from a base material is coated with a conductive thin film, the optical fiber coated with the conductive thin film being exposed to a high frequency magnetic field. 1. A method of manufacturing a conductive thin film-coated optical fiber, the method comprising measuring the thickness of the conductive thin film by passing the conductive thin film through the conductive film and measuring the eddy current generated in the conductive thin film in a non-contact manner. 2. The conductivity according to claim 1, wherein after coating the conductive thin film, the conductive thin film is further coated with a resin and cured, and then passed through the high frequency magnetic field to measure the thickness of the conductive thin film. A method for manufacturing thin-film coated optical fiber. 3. A drawing furnace that heats and melts the base material to draw an optical fiber, a coating device that coats the drawn optical fiber with a conductive thin film, and a film thickness that measures the thickness of the coated conductive thin film. a measuring device, the film thickness measuring device having a hollow detection coil connected to a high frequency power source, and a change in AC impedance of the detection coil that occurs when the optical fiber passes through the hollow part of the detection coil. An apparatus for manufacturing an optical fiber coated with a conductive thin film, characterized in that the thickness of the conductive thin film is measured based on the following. 4. The film thickness measuring device detects a reference coil that has substantially the same characteristics as the detection coil and is connected to the high frequency power source with an air core, and a difference in AC impedance between the detection coil and the reference coil. 4. The apparatus for manufacturing a conductive thin film-coated optical fiber according to claim 3, further comprising a detection means for detecting a change in the AC impedance in the detection coil by detecting a change in the AC impedance in the detection coil. 5. The apparatus for manufacturing a conductive thin film coated optical fiber according to claim 3, wherein the film thickness measuring device is disposed downstream of a resin coating device that coats a resin on the conductive thin film. .
JP2093429A 1989-07-06 1990-04-09 Method and apparatus for manufacturing conductive thin film coated optical fiber Expired - Fee Related JP2803310B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU58656/90A AU640149B2 (en) 1989-07-06 1990-07-03 Method and device for producing an optical fiber
DE69013079T DE69013079T2 (en) 1989-07-06 1990-07-05 Method and device for producing an optical fiber with a thin conductive coating.
CA002020490A CA2020490A1 (en) 1989-07-06 1990-07-05 Method and device for producing conductive thin film-coated optical fiber
EP90112856A EP0406860B1 (en) 1989-07-06 1990-07-05 Method and device for producing conductive thin film-coated optical fiber
KR1019900010146A KR930009888B1 (en) 1989-07-06 1990-07-05 Method and device for producing conductive thin film-coated optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17497889 1989-07-06
JP1-174978 1989-07-06

Publications (2)

Publication Number Publication Date
JPH03131550A true JPH03131550A (en) 1991-06-05
JP2803310B2 JP2803310B2 (en) 1998-09-24

Family

ID=15988078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093429A Expired - Fee Related JP2803310B2 (en) 1989-07-06 1990-04-09 Method and apparatus for manufacturing conductive thin film coated optical fiber

Country Status (2)

Country Link
JP (1) JP2803310B2 (en)
KR (1) KR930009888B1 (en)

Also Published As

Publication number Publication date
KR910003409A (en) 1991-02-27
JP2803310B2 (en) 1998-09-24
KR930009888B1 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
US5548213A (en) Method and system for forming and inspecting an electroconductive film on optical fibers and substrates using eddy current to measure electrical resistance
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JP2803310B2 (en) Method and apparatus for manufacturing conductive thin film coated optical fiber
AU640149B2 (en) Method and device for producing an optical fiber
KR910002727A (en) Method and apparatus for measuring and controlling coating thickness on elongated articles
JPH05149927A (en) Method and apparatus for inspecting conductor film
JP2010145288A (en) Method and device for measuring diameter of void in optical fiber having void, and method and apparatus for manufacturing optical fiber having void
JP2635844B2 (en) Method and apparatus for inspecting conductive film
WO2018168452A1 (en) Insulated electric wire production method
JPH0432761A (en) Method for inspecting conductive thin film
JPH04317442A (en) Method and device for producing hermetically coated optical fiber
JPH06298544A (en) Production of hermetically coated optical fiber
KR950006458B1 (en) Method and system for production of optical fiber
JPH06206734A (en) Production of optical fiber and apparatus for producing optical fiber
JPH10182181A (en) Production of optical fiber
JP3291062B2 (en) Method for producing hermetic coated optical fiber
JPH0480632A (en) Method and device for inspecting carbon-coated optical fiber
JP2719050B2 (en) Method for monitoring carbon coating of optical fiber
JPH02297038A (en) Method and apparatus for monitoring covering property of optical fiber
JPH0797232A (en) Filament drawing of optical fiber
JPH02308208A (en) Hermetically coated optical fiber and production thereof
JPH02293354A (en) Production of hermetically coated optical fiber
JP2920010B2 (en) Manufacturing method of carbon coated core wire
JPH06183789A (en) Production of coated optical fiber
JPH07244001A (en) Monitor and monitoring method for carbon-coated optical fiber, and manufacturing method for the same fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees