JPH02166410A - Hermetically coated optical fiber - Google Patents

Hermetically coated optical fiber

Info

Publication number
JPH02166410A
JPH02166410A JP63320451A JP32045188A JPH02166410A JP H02166410 A JPH02166410 A JP H02166410A JP 63320451 A JP63320451 A JP 63320451A JP 32045188 A JP32045188 A JP 32045188A JP H02166410 A JPH02166410 A JP H02166410A
Authority
JP
Japan
Prior art keywords
fiber
carbon
optical fiber
coated
coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63320451A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Toru Arikawa
徹 有川
Shinji Araki
荒木 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63320451A priority Critical patent/JPH02166410A/en
Publication of JPH02166410A publication Critical patent/JPH02166410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain the optical fiber which decreases infiltration of H2 and moisture and allows easy soldering by providing a carbon coating layer right on a glass fiber and providing a metallic coating on the outer side thereof. CONSTITUTION:A carbon coat 30 and a metallic coat 32 are successively provided on the outer side of the glass fiber 14. The glass fiber is completely coated with the carbon film, by which the infiltration of the moisture and H2 particles into the fiber surface and the inside is prevented with nearly the perfect accuracy. In addition, the carbon is extremely thin and the metallic film to be formed thereon is suppressed to about several mum at the most. The hermetic coating which is not adversely affected by the H2, etc., and allows easy soldering by the metallic coating is obtd. in this way.

Description

【発明の詳細な説明】 〈産業トの利用分野〉 この発明は高強度、耐水性、耐水素性5.耐熱性等を特
徴とする特殊な環境下で使用するに好適なハーメチック
コ−ト光ファイバに関する。
[Detailed description of the invention] <Field of industrial application> This invention has high strength, water resistance, and hydrogen resistance5. The present invention relates to a hermetic coated optical fiber that is suitable for use under special environments and is characterized by heat resistance.

〈従来の技術〉〈発明が解決すべき課題〉光伝送用のガ
ラスファイバの被覆に、金属をコートし、これによりハ
ンダ付可能とした光ファイバが知られている。従来この
ような光ファイバの例をあげれば、4石英系光ファイバ
の直1.に金属を直接被覆したものであって、例えば石
英系光ファイバを熔融したアルミニウムを満だL7た槽
を通し、ダイス引Z7て表面にアルミニウムコートシた
光ファイバを製造していた。
<Prior Art><Problems to be Solved by the Invention> Optical fibers are known in which a glass fiber for light transmission is coated with a metal, thereby making it possible to be soldered. An example of such a conventional optical fiber is a straight 1.4 quartz optical fiber. For example, a quartz-based optical fiber is passed through a tank L7 filled with molten aluminum and drawn through a die Z7 to produce an optical fiber whose surface is coated with aluminum.

このようなアルミニウムコート光ファイバの問題点は(
11アルミニウムの融点が高温であるので、ガラスとア
ルミニウムとの境舅面で反応が起き、ファイバの機械的
強度が低下する。(2)アルミニウムをディッピングで
付着させる方法で製造したものは、アルミニウムの塗布
厚がどうしても厚くなり勝ちとなり、アルミニウムが溶
融状態から常温Cご向って冷却、固化するときに大きな
収縮歪を発生するので、ファイバは非常に大きな力で圧
縮される。
The problem with such aluminum-coated optical fibers is (
Since the melting point of No. 11 aluminum is high, a reaction occurs at the interface between glass and aluminum, reducing the mechanical strength of the fiber. (2) Products manufactured by applying aluminum by dipping tend to have a thick coating of aluminum, and large shrinkage strains occur when the aluminum cools and solidifies from a molten state to room temperature. , the fiber is compressed with very large forces.

従ってもし少しでも不均一な応力が生じると、ファイバ
の長さ方向にランダム曲りが生じ、これによって曲りに
よる光ファイバの伝送損失を増加することが避けられな
い。
Therefore, if even the slightest non-uniform stress occurs, random bending occurs in the longitudinal direction of the fiber, which inevitably increases the transmission loss of the optical fiber due to the bending.

ファイバ表面に金属をスパッタリングもしくは蒸着でl
I!、覆する場合は、金属の被覆厚は薄くできるが、製
造上減圧下で行なうために装置が大損りとなる、即ちフ
ァイバ線引炉は常圧下、ファイバ巻き取りも常圧下で行
ない、スパッタ部や蒸着部のみを減圧にするためには核
部の両側に差動排気部が必要となり、大損りな装置とな
るのである。
Metal is sputtered or vapor deposited on the fiber surface.
I! In the case of overturning, the thickness of the metal coating can be made thinner, but the manufacturing process is carried out under reduced pressure, which causes major damage to the equipment. In order to reduce the pressure only in the evaporation area and the evaporation area, differential pumping units are required on both sides of the core area, resulting in a large loss of equipment.

又、金属ではないが、カーボンブランクをファイバの直
上に被覆する技術があり、その一般的な方法としては熱
分解グラファイトをファイバ表面に緻密に形成するもの
であって、旨く緻密な層が形成されれば、ファイバ表面
や内部への水分およびH,分子の侵入が数10年のオー
ダーで全くなくなるので非常に安定なファイバが得られ
る。しかしながらカーボンブラックは硬度が低く、引掻
き傷に弱いのでスクラッチの発生が避けられず、又、h
や水分の侵入の少ないファイバとしては前記した金属コ
ートファイバも同様であるが、このカーボンコートファ
イバは半田付けができず、光フアイバ通信システムの端
末部処理には不向である。
Although it is not a metal, there is a technology to coat a carbon blank directly on the fiber, and the common method is to densely form pyrolytic graphite on the fiber surface, forming a nice and dense layer. If this is done, the intrusion of moisture, H, and molecules into the fiber surface and interior will be completely eliminated for several decades, so a very stable fiber can be obtained. However, carbon black has low hardness and is susceptible to scratches, so scratches are inevitable, and
The metal-coated fiber described above is also used as a fiber with little water penetration, but this carbon-coated fiber cannot be soldered and is not suitable for processing the terminal portion of an optical fiber communication system.

く課題を解決するための手段〉 本発明は上記の課題を解決するためになされたもので、
その概要は以下のとおりである。
Means for Solving the Problems> The present invention has been made to solve the above problems, and
The outline is as follows.

光伝送用のガラスファイバの直上にはカーボン被覆層(
膜)を設け、その外側に金属被覆層を設けたものである
A carbon coating layer (
A metal coating layer is provided on the outside of the film.

上記構造の光ファイバの製造は、例えば先にガラスファ
イバの直上に緻密なカーボン膜を形成し、このカーボン
膜の導電性を利用してその上に金属膜を電解メッキもし
くは無電解メッキにより形成することにより行なわれる
To manufacture an optical fiber with the above structure, for example, a dense carbon film is first formed directly on the glass fiber, and a metal film is formed on it by electroplating or electroless plating, utilizing the conductivity of this carbon film. This is done by

〈作 用〉 本発明の光ファイバは上記の如き構造を有するので、ガ
ラスファイバがカーボン膜で完全に被覆されることによ
って、ファイバ表面や内部への水分および6分子の侵入
は完璧に近い精度で防止することができ、かつカーボン
膜は1000人程度色種めて薄く、その上に施される金
属膜もせいぜい数μm留りに抑えることができ(但しフ
ァイバの用途によってはより厚く被覆してもよい)、従
来のディッピング法のように不必要に厚い膜厚にはなら
ず、余分な損失増が避けられる。又更に金属として半田
付けのし易いものを選べば光源との結合部、受光器との
結合部など光ファイバと各種光フアイバ通信用コンポネ
ントデバイス類と完全に気密性の保たれた結合が可能と
なる。
<Function> Since the optical fiber of the present invention has the above-described structure, the glass fiber is completely coated with the carbon film, so that moisture and six molecules can penetrate into the fiber surface and inside with near-perfect precision. In addition, the carbon film is extremely thin, and the metal film applied on top of it can be kept to a few micrometers at most (however, depending on the use of the fiber, it may be coated thicker). Unlike the conventional dipping method, the film does not become unnecessarily thick, and unnecessary increase in loss can be avoided. Furthermore, if you choose a metal that is easy to solder, it is possible to connect the optical fiber and various optical fiber communication component devices, such as the connection part with the light source and the connection part with the light receiver, with complete airtightness. Become.

〈実施例〉 第1図、第2図は、この発明に用いられる装置の概容図
であり、先ずその構成について説明する。
<Embodiment> FIGS. 1 and 2 are schematic diagrams of an apparatus used in the present invention, and the configuration thereof will first be explained.

第1図はガラスファイバの製造とカーボン被覆を連続し
て行なう装置で、ファイバプリフォーム(母材)10を
加熱炉12を通して紡糸し裸のファイバ14とし、これ
をガス分解炉16に導き表面にカーボンをコードしたカ
ーボンコートファイバ1Bを製造する。20はガス分解
炉の炭素含有ガス供給口、22はガス分解炉の排気口で
あり、24はカーボン被覆・トファイバ18の巻取装置
である。
FIG. 1 shows an apparatus that continuously manufactures glass fiber and coats it with carbon. A fiber preform (base material) 10 is spun through a heating furnace 12 to form a bare fiber 14, which is then led to a gas decomposition furnace 16 and coated on the surface. A carbon coated fiber 1B encoded with carbon is manufactured. 20 is a carbon-containing gas supply port of the gas cracking furnace, 22 is an exhaust port of the gas cracking furnace, and 24 is a winding device for the carbon-coated fiber 18.

第2図はカーボンコート光ファイバの上に金属被覆(銅
メッキ)を施す手段の一例を示し、カーボンコート光フ
ァイバ18を中心電極とし、パケット状銅製容器をCu
電極26とし、この中にメッキ電解液28を入れて電気
メッキを施す。
FIG. 2 shows an example of means for applying metal coating (copper plating) on a carbon-coated optical fiber.
An electrode 26 is used, and a plating electrolyte 28 is put into the electrode 26 to perform electroplating.

第3図はこれにより得られた本発明の光ファイバの構造
を示す断面図であり、ガラスファイバ14の外側にカー
ボンコート30.金属コート32が順次設けられた構造
を有している。
FIG. 3 is a cross-sectional view showing the structure of the optical fiber of the present invention obtained in this way, in which a carbon coat 30 is coated on the outside of the glass fiber 14. It has a structure in which metal coats 32 are sequentially provided.

本発明のハーメチックコート光ファイバの製造例を述べ
れば、第1図のようにしてカーボンコート光ファイバを
製造する場合下記の条件で行なった。
To describe an example of manufacturing a hermetic coated optical fiber of the present invention, a carbon coated optical fiber was manufactured as shown in FIG. 1 under the following conditions.

ファイバ母材径     25鶴φ ファイバ線引速度    20m1分 ファイバ外径     125μm カーボン発生原料    C,F。Fiber base material diameter 25 φ Fiber drawing speed 20m 1 minute Fiber outer diameter 125μm Carbon generating raw materials C, F.

熱源          電気炉 カーボン被覆厚    900人 次に得られたカーボン被覆ファイバを第2図の装置によ
りメッキした。
Heat Source: Electric Furnace Carbon Coating Thickness: 900 people The obtained carbon coated fiber was plated using the apparatus shown in FIG.

その条件は下記のとおりである。The conditions are as follows.

電解液    シアン浴、ピロリン酸浴等、電流密度 
  10A/da+” 電解液の浴槽の形状は例えば円筒状でファイバを走行さ
せながらメッキすることもできるし、浴槽を浅いバス状
にしてファイバを緩やかにカーブさせてメッキすること
もできる。
Electrolyte cyan bath, pyrophosphate bath, etc., current density
The shape of the electrolyte bath can be, for example, cylindrical so that the fiber can be plated while running, or the bath can be shaped like a shallow bath and the fiber can be gently curved for plating.

メッキはカーボンコートの表面素地の影響が現われるこ
とがあるが、メッキ層を厚くすることにより、その影響
を避けることができる。
Plating may be affected by the surface material of the carbon coat, but this effect can be avoided by increasing the thickness of the plating layer.

又、カーボンコートファイバの一端から電圧を供給する
ため、電流密度の影響がでるので、例えば第2図のよう
に陽極の形状をテーパーにして、ファイバの長さ方向に
対する電流密度の影響を均一化することができる。
Also, since the voltage is supplied from one end of the carbon-coated fiber, it is affected by the current density, so for example, as shown in Figure 2, the shape of the anode is made tapered to equalize the effect of the current density in the length direction of the fiber. can do.

なお本発明に於てメッキするに好適な金属をあげれば、
Cd、 Cr、  An!l Agt Ni、 Ifi
l Zlll ALII Sn。
In addition, metals suitable for plating in the present invention include:
Cd, Cr, An! l Agt Ni, Ifi
l Zllll ALII Sn.

Re、 Mo、 Sb、 Bi等で・ある。Re, Mo, Sb, Bi, etc.

本発明により得られたファイバは第3図に示すように発
光、受光素子のパッケージをハーメチック化してファイ
バを通じて光を取り出したりするときに、ごく容易に半
田付けが可能となる。
As shown in FIG. 3, the fiber obtained according to the present invention can be soldered very easily when the package of the light emitting and light receiving element is made hermetic and light is extracted through the fiber.

図に於て、34は金属コート光ファイバで光半導体パッ
ケージ36内にある光半導体素子38にハーメチック化
されている。
In the figure, 34 is a metal-coated optical fiber that is hermetically connected to an optical semiconductor element 38 in an optical semiconductor package 36.

40は光半導体素子38のリード線でパッケージの挿入
口はシール材42でシールされている。
40 is a lead wire of the optical semiconductor element 38, and the insertion opening of the package is sealed with a sealing material 42.

金属コート光ファイバ34のパッケージの 挿入口は半
田付44で溶接されている。
The insertion opening of the package for the metal-coated optical fiber 34 is welded with solder 44.

又、金属の電着応力による光ファイバの歪がいわゆる「
マイクロベンド損」を引き起して、ファイバの中を伝わ
る光の散乱損失を起すことが考えられるが、このような
用途では長さも短かく、損失としてはO,ldB/si
  以下のオーダに収めることができる。
In addition, the distortion of the optical fiber due to the stress of metal electrodeposition causes so-called "
It is conceivable that this may cause "microbend loss" and scattering loss of light traveling through the fiber, but in such applications, the length is short and the loss is O, ldB/si.
It can be placed in the following order.

〈発明の効果〉 本発明によればカーボンコートにより金属コートのみで
は得られない完全な水分、■8等の悪影響を受けること
なく、しかも金属コードによる半田付けも容易なハーメ
チックコートを提供することができる。
<Effects of the Invention> According to the present invention, it is possible to provide a hermetic coat using a carbon coat that has complete moisture that cannot be obtained with a metal coat alone, without being affected by adverse effects such as can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーボンコート工程の説明図、第2図は金属コ
ート工程の説明図、第3図は本発明によ1 ;30 るハーメチックコート光ファイバの一例を示す断面図、
第4図はハーメチックコートの実用例の概容説明図であ
る。 14ニガラスフアイバ 30:カーボンコート 32:金属コート 纂1図 13[
FIG. 1 is an explanatory diagram of a carbon coating process, FIG. 2 is an explanatory diagram of a metal coating process, and FIG. 3 is a sectional view showing an example of a hermetic coated optical fiber according to the present invention.
FIG. 4 is a schematic explanatory diagram of a practical example of a hermetic coat. 14 Ni glass fiber 30: Carbon coat 32: Metal coat 1 Figure 13 [

Claims (1)

【特許請求の範囲】 1)光伝送用のガラスファイバの直上にカーボン被覆層
と金属被覆層とが順次設けられていることを特徴とする
ハーメチックコート光ファイバ 2)金属被覆層がメッキ層である請求項1記載のハーメ
チックコート光ファイバ
[Claims] 1) A hermetic coated optical fiber characterized in that a carbon coating layer and a metal coating layer are sequentially provided directly above a glass fiber for optical transmission. 2) The metal coating layer is a plating layer. The hermetic coated optical fiber according to claim 1
JP63320451A 1988-12-21 1988-12-21 Hermetically coated optical fiber Pending JPH02166410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320451A JPH02166410A (en) 1988-12-21 1988-12-21 Hermetically coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320451A JPH02166410A (en) 1988-12-21 1988-12-21 Hermetically coated optical fiber

Publications (1)

Publication Number Publication Date
JPH02166410A true JPH02166410A (en) 1990-06-27

Family

ID=18121597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320451A Pending JPH02166410A (en) 1988-12-21 1988-12-21 Hermetically coated optical fiber

Country Status (1)

Country Link
JP (1) JPH02166410A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278214A (en) * 1989-04-20 1990-11-14 Furukawa Electric Co Ltd:The Hermetically coated optical fiber and production thereof
JPH03107907A (en) * 1989-09-22 1991-05-08 Hitachi Cable Ltd Optical fiber
US5093880A (en) * 1989-08-30 1992-03-03 Furukawa Electric Co., Ltd. Optical fiber cable coated with conductive metal coating and process therefor
JPH04124212U (en) * 1991-04-26 1992-11-12 古河電気工業株式会社 metal coated fiber optic cable
JP2004029691A (en) * 2002-05-07 2004-01-29 Furukawa Electric Co Ltd:The Fiber grating type optical parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614455A (en) * 1979-07-10 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber
JPS63189814A (en) * 1987-02-02 1988-08-05 Nippon Steel Weld Prod & Eng Co Ltd Heat resisting optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614455A (en) * 1979-07-10 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber
JPS63189814A (en) * 1987-02-02 1988-08-05 Nippon Steel Weld Prod & Eng Co Ltd Heat resisting optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278214A (en) * 1989-04-20 1990-11-14 Furukawa Electric Co Ltd:The Hermetically coated optical fiber and production thereof
US5093880A (en) * 1989-08-30 1992-03-03 Furukawa Electric Co., Ltd. Optical fiber cable coated with conductive metal coating and process therefor
JPH03107907A (en) * 1989-09-22 1991-05-08 Hitachi Cable Ltd Optical fiber
JPH04124212U (en) * 1991-04-26 1992-11-12 古河電気工業株式会社 metal coated fiber optic cable
JP2004029691A (en) * 2002-05-07 2004-01-29 Furukawa Electric Co Ltd:The Fiber grating type optical parts

Similar Documents

Publication Publication Date Title
JP3899017B2 (en) Method for hermetically sealing a fiber optic light guide in a metal feedthrough sleeve with glass solder and hermetic feedthrough apparatus manufactured thereby
JPH0388747A (en) Production of optical fiber coated with metal
JPH02166410A (en) Hermetically coated optical fiber
US3825998A (en) Method for producing dielectrically coated waveguides for the h{11 {11 {11 wave
US4052784A (en) Method for the manufacture of a tubular conductor suitable for superconducting cables
US9741461B2 (en) Contact pins for glass seals and methods for their production
JPS61136941A (en) Manufacture of metal-coated optical fiber
JP4006541B2 (en) Optical fiber for optical module and manufacturing method thereof
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
US879083A (en) Electric-incandescent-lamp luminant and the process of manufacturing it.
JPS61188506A (en) Preparation of hollow optical waveguide
JP2000028869A (en) Ferrule for optical module
JPH03274805A (en) Superconducting high frequency cavity
US310995A (en) Moses g-
JPS63266404A (en) Hollow light guide and its production
SU945922A1 (en) Photoelectronic device with outer photoemissive effect
JP3073573B2 (en) Connection method of carbon coated optical fiber
JPS586279B2 (en) Manufacturing method for airtight terminals
JPS6247964A (en) Manufacture of porous substrate for alkaline storage battery
JPH0715058A (en) Optical fiber and manufacture thereof
JPH04108638A (en) Production of optical fiber material
JP2000026988A (en) Au-Sn WELDING MEMBER AND ITS PRODUCTION
JPS5957924A (en) Manufacture of metal coated glass fiber
JPH0640749A (en) Production of metal coated optical fiber
JPS5950613B2 (en) Method for manufacturing metal coated optical fiber