JPS63266404A - Hollow light guide and its production - Google Patents

Hollow light guide and its production

Info

Publication number
JPS63266404A
JPS63266404A JP62100141A JP10014187A JPS63266404A JP S63266404 A JPS63266404 A JP S63266404A JP 62100141 A JP62100141 A JP 62100141A JP 10014187 A JP10014187 A JP 10014187A JP S63266404 A JPS63266404 A JP S63266404A
Authority
JP
Japan
Prior art keywords
layer
metal layer
waveguide
optical waveguide
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62100141A
Other languages
Japanese (ja)
Other versions
JP2599715B2 (en
Inventor
Akishi Hongo
晃史 本郷
Tsuneo Shioda
塩田 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62100141A priority Critical patent/JP2599715B2/en
Publication of JPS63266404A publication Critical patent/JPS63266404A/en
Application granted granted Critical
Publication of JP2599715B2 publication Critical patent/JP2599715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To decrease the transmission loss of a waveguide and to lessen an increase in loss by bending by providing a thin film layer consisting of a specific metal between an internally provided dielectric layer and a thick film metallic layer provided on the outside. CONSTITUTION:The thick film metallic layer 23 consisting of Ni, etc., is formed via the thin film metallic layer 22 consisting of Au, Ag or Cu on the dielectric layer 21 consisting of a material having small absorption in an IR wavelength range (e.g.: ZnSe) and having a circular section. The film thickness of the layer 22 is preferably <=0.5mum. A layer consisting of other metals may be interposed between the layer 22 and the layer 23. This waveguide is produced by successively forming the layer 21 and the layer 22 on a base material pipe which can be etched and forming the layer 23 by electroplating using the layer 22 as an electrode on said layer, then removing the base material pipe by etching.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘電体を内装した中空光導波路及びその製造
方法に係り、特に医療及び工業加工に使用される炭酸ガ
スレーザ光の伝送に好適な低損失で可撓性のある中空光
導波路及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hollow optical waveguide with a dielectric inside and a method for manufacturing the same, and is particularly suitable for transmitting carbon dioxide laser light used in medical and industrial processing. The present invention relates to a low-loss, flexible hollow optical waveguide and a method for manufacturing the same.

[従来の技術] 炭酸ガスレーザは、発振効率が高く大出力を得ることが
できるため、@療用のレーザメスや工業加工用の溶接、
切断等に広く用いられるようになってきている。しかし
、その発振波長が10.6μ晴という赤外w4域にある
ため、従来の石英系光ファイバでは損失が大きく、炭酸
ガスレーザ光用導波路として用いることはできな、い。
[Conventional technology] Carbon dioxide lasers have high oscillation efficiency and can obtain large output, so they are used for laser scalpels for medical purposes, welding for industrial processing,
It has come to be widely used for cutting, etc. However, since its oscillation wavelength is in the infrared W4 region of 10.6μ clear, conventional silica-based optical fibers have large losses and cannot be used as waveguides for carbon dioxide laser light.

従って、現在炭酸ガスレーザ光を導く手段としては、数
枚のミラーを用いた空中伝送が主であり、操作性におい
て極めて不利である。
Therefore, currently, the main means for guiding carbon dioxide laser light is aerial transmission using several mirrors, which is extremely disadvantageous in terms of operability.

そこで、炭酸ガスレーザ光用導波路として赤外ファイバ
の開発が進められて来た結果、より大きな電力伝送を目
的として誘電体を内装した金属中空光導波路が提案され
、第3図に示すようなゲルマニウム内装ニッケル中空光
導波路が試作されるに至った(M、 Miyaol 、
 A、 f−1ongo、 Y。
Therefore, as a result of the development of infrared fibers as waveguides for carbon dioxide laser light, hollow metal optical waveguides with a dielectric inside were proposed for the purpose of even greater power transmission. A prototype hollow optical waveguide with nickel interior has been produced (M, Miyaol,
A, f-1ongo, Y.

A izawa 、 and S、 Kawakami
 、 Appl 、 phys 。
Aizawa, and S. Kawakami
, Appl, phys.

1−ett 、 、 43. 430(191113)
 ) 、この製造法はまず、アルミニウムパイプを母材
として、その外面にゲルマニウム層11をスパッタリン
グにより形成し、さらにその外側にニッケルIt!12
を電気めっきにより形成した後、母材となったアルミニ
ウムパイプをエツチングによって除去して中空領域10
を形成し、もってゲルマニウム内装ニッケル中空光導波
路を1@るものである。
1-ett, , 43. 430 (191113)
), this manufacturing method first uses an aluminum pipe as a base material, forms a germanium layer 11 on its outer surface by sputtering, and then coats the outer surface with nickel It! 12
is formed by electroplating, and then the aluminum pipe serving as the base material is removed by etching to form the hollow region 10.
, thereby forming a germanium-incorporated nickel hollow optical waveguide.

これまで長さ1mの中空光導波路で伝送損失が0.35
 d Bのものが得られているが、これは理論値よりも
約1桁悪く、また曲げによる伝送損失の増加がまだ大き
い。このゲルマニウム内装ニッケル中空光導波路ではゲ
ルマニウム薄膜11上に直接ニッケルを電気めっきして
いるが、ニッケル層12は機械的強度を保つばかりでな
く、光学的に伝送損失に関与している。
Until now, the transmission loss in a 1m-long hollow optical waveguide was 0.35.
dB has been obtained, but this is about an order of magnitude worse than the theoretical value, and the increase in transmission loss due to bending is still large. In this germanium-incorporated nickel hollow optical waveguide, nickel is electroplated directly on the germanium thin film 11, but the nickel layer 12 not only maintains mechanical strength but also contributes to optical transmission loss.

誘電体に接する金属は、厚膜を用いた方が機械的強度が
大きくなる上、その複素屈折率の絶対値が充分大きいか
、あるいは複素屈折率の虚数部が実数部に比較し充分大
きい材料を用いた方が伝送損失は小さくなる。この点で
ニッケルは電気めっきにより容易に厚膜の金属層が得ら
れ、導波路の機械的強度を保つには適しているが、導波
路壁を構成する材料としては最良のものとは言い難い。
For the metal in contact with the dielectric, the mechanical strength will be greater if a thick film is used, and the absolute value of the complex refractive index is sufficiently large, or the imaginary part of the complex refractive index is sufficiently large compared to the real part. The transmission loss will be smaller if . In this respect, nickel can be easily formed into a thick metal layer by electroplating and is suitable for maintaining the mechanical strength of the waveguide, but it cannot be said to be the best material for forming the waveguide wall. .

また前記した従来のゲルマニウム内装ニッケル中空光導
波路ではゲルマニウムの¥lff1性を利用してニッケ
ルを電気めっきしているが、ゲルマニウムは導電率が大
きくないため、ニッケル層12に膜厚の不均一分布が生
じたり、ピンホールやフクレなどの不良が生じたりしや
すい。特に、母材パイプとしてアルミニウム以外の絶縁
性のパイプを用いた場合には、めっきによる金属層の膜
厚の不均一は顕著となる。
In addition, in the conventional germanium-incorporated nickel hollow optical waveguide described above, nickel is electroplated using germanium's ¥lff1 property, but since germanium does not have high conductivity, the nickel layer 12 has an uneven distribution of film thickness. defects such as pinholes and blisters. In particular, when an insulating pipe other than aluminum is used as the base material pipe, the non-uniformity of the thickness of the metal layer due to plating becomes significant.

[発明が解決しようとする問題点] このように従来の誘電体内装金属中空光導波路では、伝
送損失が実用に供せられる程充分小さくはなく、また製
造工程において不良が生じやすく、再現性のある安定し
た導波路が得にくいという欠点があった。
[Problems to be solved by the invention] As described above, in the conventional dielectric-incorporated metal hollow optical waveguide, the transmission loss is not small enough for practical use, and defects are likely to occur during the manufacturing process, resulting in poor reproducibility. The drawback is that it is difficult to obtain a certain stable waveguide.

本発明の目的は、前記した従来技術の欠点を解消□し、
低損失伝送が可能であり、曲げに強く、しかも@l造工
程において不良の少ない中空光導波路及びその製造方法
を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above,
An object of the present invention is to provide a hollow optical waveguide that is capable of low-loss transmission, is resistant to bending, and has fewer defects in the manufacturing process, and a method for manufacturing the same.

[問題点を解決するための手段] 本発明の中空光導波路は、断面が円形で赤外波長域にお
Cノる吸収の小さい誘電体層と、これの外部に導波路の
機械的強度を保つために設けた厚膜金属層とを備えた中
空光導波路において、上記誘電体層上にこれに接する薄
膜金属層を設け、この薄膜金a層に複素屈折率の絶対1
直が大きく、かつ導電率が大きい金属、すなわち金、銀
、銅のいずれかを用いたちのであり、そのWI脱金属層
は導波r8Il!の役目ばかりでなく、さらにその外側
に電気めっきによって形成される厚膜金属層のための電
極の役目も兼ねている。
[Means for Solving the Problems] The hollow optical waveguide of the present invention has a dielectric layer with a circular cross section and low absorption in the infrared wavelength range, and an external layer that increases the mechanical strength of the waveguide. In the hollow optical waveguide, a thin metal layer is provided on and in contact with the dielectric layer, and this thin gold a layer has a complex refractive index of absolute 1.
A metal with high directivity and high conductivity, ie, gold, silver, or copper, is used, and the WI demetallized layer is a waveguide r8Il! It also serves as an electrode for the thick metal layer formed on the outside by electroplating.

また、本発明による中空導波路の製造方法は次のとおり
である。まず、導電性であるか否かを問わないが、エツ
チングは可能である母材パイプ上に、伝送する光波長帯
において吸収の小さい誘電体層をスパッタリング、ある
いは真空蒸着等で形成する。例えば波長10.6μmに
おいて好適な誘電体材料として、Ge 、Zn Se 
、Zn S、KCJ2゜NaCβ、カルコゲナイドガラ
ス、フッ化化合物などがあげられる。赤外波帯では、7
im波の重要な伝送媒体となりうろこのような物質は全
て誘電体としてふるまう。
Further, a method for manufacturing a hollow waveguide according to the present invention is as follows. First, a dielectric layer having low absorption in the light wavelength band to be transmitted is formed by sputtering or vacuum evaporation on a base material pipe that can be etched, regardless of whether it is conductive or not. For example, suitable dielectric materials at a wavelength of 10.6 μm include Ge, ZnSe,
, ZnS, KCJ2°NaCβ, chalcogenide glass, and fluoride compounds. In the infrared band, 7
All substances such as scales, which are important transmission media for IM waves, behave as dielectrics.

さらに、これらの誘電体層の外側に、複素屈折率の大き
さが充分大きく、かつ導電率の大きな金。
Further, on the outside of these dielectric layers, gold is coated with a sufficiently large complex refractive index and high electrical conductivity.

銀、銅のいずれかのnR金!i!!層をスパッタリング
、真空蒸着、イオンブレーティングあるいは無電解めっ
き等で形成する。このとき薄膜金属層の膜厚は0.5μ
m以下にすることが重要である。すなわち、この薄膜台
yt層が導波路壁の役目を果すためには、l!厚が表皮
厚さくスキンデプス)より充分厚ければよい。しかし、
上記方法にて形成した薄膜金属層は0.5μmを越える
と急激に曲げ等の外的要因により、膜の剥離、ひび割れ
が生じやすくなる。
Either silver or copper nR gold! i! ! The layer is formed by sputtering, vacuum evaporation, ion blasting, electroless plating, or the like. At this time, the thickness of the thin metal layer is 0.5μ
It is important to keep it below m. That is, in order for this thin film base yt layer to play the role of a waveguide wall, l! The thickness should be sufficiently thicker than the epidermal thickness (skin depth). but,
If the thickness of the thin metal layer formed by the above method exceeds 0.5 μm, the film will easily peel off or crack due to external factors such as sudden bending.

このL膜金属層の導電性を使用して、このwi金金層層
上直接電気めっきにより厚膜の別の金属層を形成するか
、あるいは無電解めっきにより他の金属層、例えば1.
Cu * A(+ + Au及びNi 、Pをベースに
した合金層を介して電気めっきにより厚膜の別の金属層
を形成する。一般に無電解めっきは曲げに対して脆性を
示し、厚膜形成は困難で、導波路の機械的強度を保つた
めの厚膜の金属層は電気めっきにより形成さ゛れなけれ
ばならない。 rlk後に化学エツチングにより母材パ
イプを除去し中空光導波路を1qる。
The conductivity of this L-film metal layer can be used to form another thick metal layer by electroplating directly on this gold layer, or to form another metal layer by electroless plating, e.g.
Another thick metal layer is formed by electroplating through an alloy layer based on Cu*A(++ Au and Ni, P. Generally, electroless plating shows brittleness to bending and thick film formation This is difficult, and a thick metal layer to maintain the mechanical strength of the waveguide must be formed by electroplating. After RLK, the base material pipe is removed by chemical etching to form a hollow optical waveguide.

[作 用] このように本発明の中空光導波路では、最も内側のiF
t電休層体、電気めっきによって形成される最も外側の
厚膜金属層との間に、少なくとも一層の金属層が形成さ
れ、そのうち誘電体層に接する薄膜金属層は膜厚が0.
5μ−以下の金、銀、銅のいずれかよりなっている。
[Function] As described above, in the hollow optical waveguide of the present invention, the innermost iF
At least one metal layer is formed between the electrically conductive layer and the outermost thick metal layer formed by electroplating, of which the thin metal layer in contact with the dielectric layer has a thickness of 0.5 mm.
It is made of gold, silver, or copper with a diameter of 5μ or less.

このため、薄膜金属層は導波路壁を構成する材料として
は最良のものとなるので、伝送損失の低い中空光導波路
が得られ、また曲げにより伝送損失の増加も許容できる
ほどに小さくなる。また、金、銀、銅からなる薄膜金属
層は導電率がきわめて大きく、これを電気めっきの電極
として使うので、電気メッキにより形成される厚膜金属
層に膜厚の不均一分布が生じたり、ビンホールヤフクレ
などのj!質不良が生じたりすることもない。従って内
装されるm電体もGeのように比較的導電性のあるもの
を用いる必要はなく、はとんどJ[性をもたない材料で
も安定した導波路を得ることができる。またエツチング
可能な母材バイブはアルミニウムのように導電性のバイ
ブを用いる必要もない。
Therefore, the thin metal layer is the best material for forming the waveguide wall, so a hollow optical waveguide with low transmission loss can be obtained, and the increase in transmission loss due to bending is tolerably small. In addition, thin metal layers made of gold, silver, and copper have extremely high conductivity, and because they are used as electrodes for electroplating, uneven distribution of film thickness may occur in the thick metal layer formed by electroplating. J! such as Binhole Yafukure! There is no possibility of quality defects. Therefore, there is no need to use a relatively conductive material such as Ge for the internal electric body, and a stable waveguide can be obtained even with a material that has almost no J[ property. Furthermore, the base material vibrator that can be etched does not require the use of a conductive vibrator such as aluminum.

[実施例] 以下本発明の実施例を第1図、第2図を用いて説明する
[Example] Examples of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、前述の製造方法により試作した7−nSe 
 (セレン化亜鉛)内装銀中空光導波路の断面図である
。ここで、Zn5e1i!!21とAg!!122は光
学的に導波路壁を構成しており、スパッタリングあるい
は真空蒸着により形成されている。さらにその外側の電
気めっきにより形成したニッケル層23は機械的強度を
保つためのみの働きをしている。20は中空領域である
。各層の膜厚はZn5e層21が0,7μra 、A!
J !IJ 22が0.2μm 。
Figure 1 shows a sample of 7-nSe manufactured by the above-mentioned manufacturing method.
FIG. 2 is a cross-sectional view of a (zinc selenide) interior silver hollow optical waveguide. Here, Zn5e1i! ! 21 and Ag! ! Reference numeral 122 optically constitutes a waveguide wall, which is formed by sputtering or vacuum deposition. Furthermore, the nickel layer 23 formed by electroplating on the outside serves only to maintain mechanical strength. 20 is a hollow area. The thickness of each layer is 0.7 μra for the Zn5e layer 21, A!
J! IJ22 is 0.2 μm.

Ni Fm23が200μ1llt’ある。Zn5ef
f121の!1!厚は伝送損失に大きく影響し、伝送損
失は1nSeの1!厚の変化に従って周期的に変化する
There are 200μ1llt' of Ni Fm23. Zn5ef
f121's! 1! Thickness greatly affects transmission loss, and transmission loss is 1! of 1nSe! It changes periodically as the thickness changes.

Δg1m22の膜厚は狭義的には伝送損失に大きな影響
を及ぼさないが、0.5μm以上になると、膜の剥離や
光沢性を失い、Niめりきll!23にフクレ、ピンホ
ール等の不良を生じるようになる。
A film thickness of Δg1m22 does not have a large effect on transmission loss in a narrow sense, but when it exceeds 0.5 μm, the film peels and loses its gloss, causing Ni-plated! 23, defects such as blisters and pinholes will occur.

スパッタリングや真空蒸着により、Zn Se上に銀層
を形成するかわりに、無電解めっきによっても金属層を
形成することができる。無電解めっきは曲げに対して脆
いため、この場合もm厚は0.5μ−以下にしなければ
ならない。
Instead of forming a silver layer on ZnSe by sputtering or vacuum deposition, the metal layer can also be formed by electroless plating. Since electroless plating is brittle against bending, the thickness in m must be 0.5 .mu.m or less in this case as well.

第2図は、スパッタリングあるいは真空蒸着によって形
成された銀層32と電気めっきにより形成されたNi!
!!134との間に、無電解めプきによりNi合金層3
3を介在した実施例である。3゜は中空領域、31はセ
レン化亜鉛層である。この無電解めっきによるN1合金
1133もあまり厚い′と曲げに対してヒビ等が生じる
ため、0.5μm程度が最良である。このようにして構
成された導波路は特に細径で長尺な導波路に適している
FIG. 2 shows a silver layer 32 formed by sputtering or vacuum evaporation and a Ni layer 32 formed by electroplating.
! ! 134, a Ni alloy layer 3 is formed by electroless plating.
This is an example in which 3 is interposed. 3° is a hollow region, and 31 is a zinc selenide layer. If the N1 alloy 1133 formed by electroless plating is too thick, cracks will occur when bent, so the best thickness is about 0.5 μm. The waveguide constructed in this manner is particularly suitable for a long waveguide with a small diameter.

なお、誘電体に接する金属が銅の場合には、銅薄膜と電
気めっきにより形成される厚膜金属層の中間に介在する
金属層は、NiほかALI 、 AC+なども無電解め
っきにより形成可能である。5[発明の効果] 以上型するに本発明によれば次のような優れた効果を発
する。
Note that when the metal in contact with the dielectric is copper, the metal layer interposed between the thin copper film and the thick metal layer formed by electroplating can be formed of Ni, ALI, AC+, etc. by electroless plating. be. 5 [Effects of the Invention] To summarize, the present invention provides the following excellent effects.

(1)  本導波路によれば、誘電体層上に導波路壁ど
しての金または銀、銅のいずれかによる薄膜金Rmを介
設したので、伝送損失が小さく、曲げによる損失の増加
も小さくなり、低損失伝送を可能にし、曲げにも強い可
撓性導波路を得ることかできる。
(1) According to this waveguide, a thin film of gold, silver, or copper is interposed on the dielectric layer as a waveguide wall, so the transmission loss is small and the loss due to bending is increased. It is also possible to obtain a flexible waveguide that is smaller in size, enables low-loss transmission, and is resistant to bending.

(2)  本製造方法によれば、RWA金属層を電極と
する電気めっきにより厚膜金属層を形成するようにした
ので、JW1m金Ji[のw:4厚の不均一、膜質の不
良が除去され、製造工程において安定した中空光導波路
が得られる。
(2) According to this manufacturing method, the thick metal layer is formed by electroplating using the RWA metal layer as an electrode, so the uneven thickness and poor film quality of JW1m gold Ji [W:4] are eliminated. As a result, a stable hollow optical waveguide can be obtained during the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すzn se mと電気
めっきにより形成されたNi1lとの間にAC117を
介在したセレン化亜鉛内装銀中空光導波路の横断面図、
第2図は本発明の他の実施例を示す、Zn5eと層と電
気めっきにより形成されたNilとの間にA+IIMと
無電解めっきにより形成されたNi合金層を介在したセ
レン化亜鉛内装銀中空光導波路の断面図、第3図は従来
のゲルマニウム内装ニッケル中空光導波路の横断面図で
ある。 図中、20.30は中空領域、23.34は電気めっき
によるニッケル層、21.31はセレン化亜鉛層、22
.32は銀層、33は無電解めっきによるニッケル合金
層である。 特許出願人    日立電線株式会社 代理人弁理士   絹 谷 信 雄 第1図 第2図 第3図 20.30 :中空領域 22.32:りI(噂靴礪■
FIG. 1 is a cross-sectional view of a silver hollow optical waveguide containing zinc selenide in which AC117 is interposed between Zn se m and Ni1l formed by electroplating, showing one embodiment of the present invention.
FIG. 2 shows another embodiment of the present invention, in which a zinc selenide-incorporated silver hollow is interposed between a Zn5e layer and a Ni alloy layer formed by electroplating with A+IIM and a Ni alloy layer formed by electroless plating. FIG. 3 is a cross-sectional view of a conventional germanium-incorporated nickel hollow optical waveguide. In the figure, 20.30 is a hollow region, 23.34 is an electroplated nickel layer, 21.31 is a zinc selenide layer, 22
.. 32 is a silver layer, and 33 is a nickel alloy layer formed by electroless plating. Patent Applicant Hitachi Cable Co., Ltd. Patent Attorney Nobuo Kinutani Figure 1 Figure 2 Figure 3 20.30: Hollow region 22.32: Ri I (rumored shoes)

Claims (4)

【特許請求の範囲】[Claims] (1)断面が円形で赤外波長域における吸収の小さい誘
電体層の上に導波路壁として金または銀、銅のいずれか
1つよりなる薄膜金属層を設け、外部に導波路の機械的
強度を保つ厚膜金属層を有することを特徴とする中空光
導波路。
(1) A thin metal layer made of gold, silver, or copper is provided as a waveguide wall on a dielectric layer with a circular cross section and low absorption in the infrared wavelength range, and the mechanical structure of the waveguide is A hollow optical waveguide characterized by having a thick metal layer that maintains strength.
(2)上記薄膜金属層と厚膜金属層との間に更にこれら
と異なる金属層を介在させたことを特徴とする特許請求
の範囲第1項記載の導波路。
(2) The waveguide according to claim 1, further comprising a metal layer different from the thin film metal layer and the thick film metal layer interposed between the thin film metal layer and the thick film metal layer.
(3)上記薄膜金属層の膜厚が0.5μm以下で表皮厚
さ以上あることを特徴とする特許請求の範囲第1項又は
第2項記載の導波路。
(3) The waveguide according to claim 1 or 2, wherein the thickness of the thin metal layer is 0.5 μm or less and greater than the skin thickness.
(4)エッチング可能な母材パイプ上に誘電体層を形成
し、その上に金または銀、銅のいずれか1つよりなる薄
膜金属層を設け、この薄膜金属層を電極とする電気メッ
キにより外部に厚膜金属層を形成した後、上記母材パイ
プをエッチングにより除去して中空光導波路を製造する
ことを特徴とする中空光導波路の製造方法。
(4) Forming a dielectric layer on an etched base material pipe, providing a thin metal layer made of gold, silver, or copper on top of the dielectric layer, and electroplating using this thin metal layer as an electrode. A method for manufacturing a hollow optical waveguide, comprising forming a thick metal layer on the outside and then removing the base material pipe by etching to manufacture the hollow optical waveguide.
JP62100141A 1987-04-24 1987-04-24 Hollow optical waveguide and method of manufacturing the same Expired - Lifetime JP2599715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100141A JP2599715B2 (en) 1987-04-24 1987-04-24 Hollow optical waveguide and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100141A JP2599715B2 (en) 1987-04-24 1987-04-24 Hollow optical waveguide and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63266404A true JPS63266404A (en) 1988-11-02
JP2599715B2 JP2599715B2 (en) 1997-04-16

Family

ID=14266038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100141A Expired - Lifetime JP2599715B2 (en) 1987-04-24 1987-04-24 Hollow optical waveguide and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2599715B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918904A (en) * 1982-07-23 1984-01-31 Hitachi Ltd Optical fiber having metallic film
JPS61206903U (en) * 1985-06-17 1986-12-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918904A (en) * 1982-07-23 1984-01-31 Hitachi Ltd Optical fiber having metallic film
JPS61206903U (en) * 1985-06-17 1986-12-27

Also Published As

Publication number Publication date
JP2599715B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP0419882B1 (en) Optical fiber cable coated with conductive metal coating and process therefor
US20050271796A1 (en) Thin-film electrochemical devices on fibrous or ribbon-like substrates and method for their manufacture and design
JPH10504656A (en) Coherent and flexible hollow fiber waveguide coated with inner hole and method of manufacturing the same
US6731849B1 (en) Coating for optical fibers
US4932749A (en) Optical waveguides formed from multiple layers
US5774615A (en) Optical fiber with a metal layer to maintain the desired shape of the optical fiber
JPS63266404A (en) Hollow light guide and its production
US4840442A (en) Multidielectric mirror for carbon dioxide laser providing the mid infrared, in high reflectance with good protection against mechanical attack
JP2633866B2 (en) Hollow optical waveguide
KR100960005B1 (en) Plating Method of RF Devices and RF Devices Produced by the Method
JPH07105740A (en) Transparent conductive film
US3825998A (en) Method for producing dielectrically coated waveguides for the h{11 {11 {11 wave
EP0129453B1 (en) Method to manufacture a high thermal resistance coaxial line
JPS61188506A (en) Preparation of hollow optical waveguide
GB1473957A (en) Waveguides
Miyagi et al. Fabrication of dielectric-coated metallic, hollow waveguides for infra-red radiation by the electro-deposition of germanium
US11761093B2 (en) Method for preparing sodium interface and method for preparing sodium-based optical structure device
JP4006541B2 (en) Optical fiber for optical module and manufacturing method thereof
SU1424081A1 (en) Method of manufacturing waveguides
JPH0251446A (en) Preparation of optical wave guide
SU945922A1 (en) Photoelectronic device with outer photoemissive effect
JPH05249353A (en) Metal coated optical fiber and its production
JPH03274805A (en) Superconducting high frequency cavity
JPH0255303A (en) Hollow optical waveguide and its production
JPH0222482A (en) Production of hollow waveguide

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11