JPS5918904A - Optical fiber having metallic film - Google Patents

Optical fiber having metallic film

Info

Publication number
JPS5918904A
JPS5918904A JP57127512A JP12751282A JPS5918904A JP S5918904 A JPS5918904 A JP S5918904A JP 57127512 A JP57127512 A JP 57127512A JP 12751282 A JP12751282 A JP 12751282A JP S5918904 A JPS5918904 A JP S5918904A
Authority
JP
Japan
Prior art keywords
optical fiber
energy
hollow
light
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57127512A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Matsumura
宏善 松村
Toshio Katsuyama
俊夫 勝山
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57127512A priority Critical patent/JPS5918904A/en
Publication of JPS5918904A publication Critical patent/JPS5918904A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To obtain a flexible optical fiber suited for guiding of laser light having high energy by providing a specific metallic film on the inside wall of a glass tube, forming a hollow fiber and using the same for transmission of energy. CONSTITUTION:An optical fiber is hollow, and dry air or the like is fed into a hollow part 1. A metallic film 2 consisting of at least one kind of metals selected from Au, Ni, Ag, Cu is formed on the inside wall of the tube 3. Transmitting energy is transmitted in the part 1 and are propagated while reflecting on the film 2. The optical fiber having such structure has about 0.5-3mm. outside diameter and 0.2-1.5mm. inside diameter, and since the fiber is hollow, it is highly flexible. The reflection loss from both end faces of the optical fiber is too large to be negligible with a dielectric optical fiber (e.g.; KRS-5), and the reflected light thereof is fed back to the laser and can be a cause for disturbance of the oscillation. In the case of metal, however, the most of energy propagates in the hollow part; therefore, there is virtually no loss by feflection. Since the light energy passes the hollow part, it is possible to make high output laser light incident to such fiber.

Description

【発明の詳細な説明】 本発明は、無電解メッキ液を用いて、中空光ファイバの
内壁面に金属薄膜を形成した赤外透過光ファイバに係シ
、特にエネルギーの高いレーザ光を導波させるに好適な
可撓性のある光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared transmitting optical fiber in which a metal thin film is formed on the inner wall surface of a hollow optical fiber using an electroless plating solution, in particular for guiding high-energy laser light. This invention relates to a flexible optical fiber suitable for.

近年、石英ガラス系光フアイバ以外に、非石英系の光フ
ァイバが波長2〜3μIn用の超低損失光ファイバある
いは波長10.6μmのCO2レーザ用エネルギー導光
路として研究されている。これらの非石英系の材料とし
ては、■重金属酸化物ガラス、■ハロゲン化物の結晶あ
るいはガラス、■カルコゲナイドガラスなどが考えられ
ている。
In recent years, in addition to silica glass optical fibers, non-silica optical fibers have been studied as ultra-low loss optical fibers for wavelengths of 2 to 3 μm or as energy guide paths for CO2 lasers with wavelengths of 10.6 μm. As these non-quartz materials, 1) heavy metal oxide glass, 2) halide crystal or glass, and 2) chalcogenide glass are considered.

重金属酸化゛吻ガラスの具体例としては、GeO2ガラ
ス(015hansky 、 R,and 5cher
er、 o、 w、 。
Specific examples of heavy metal oxide glass include GeO2 glass (015hansky, R, and 5cher).
er, o, w, .

”High GeO20ptical Wavegui
des、” 5 thEurope4n Confer
ence on QpticaICorrmunica
tion 12.55ept、1979)、TeO2ガ
ラス(Boniort et al 、 ■nfr2r
ed QlassOptical Fibres fo
r 4 and 10 MicronBands”、5
 th European Conference o
nQpt 1cal Communicat ion、
 pp、 61−64.5ept。
”High GeO20ptical Wavegui
des,” 5 thEurope4n Conference
ence on QpticaICorrmunica
tion 12.55ept, 1979), TeO2 glass (Boniort et al., nfr2r
ed Qlass Optical Fibers fo
r 4 and 10 MicroBands”, 5
th European Conference o
nQpt 1cal Communication,
pp, 61-64.5ept.

1980)などが知られている。1980) are known.

ハロゲン化物としては、KR,S−5結晶(TIBr−
TII ) (8,Sakuragi etal、 ”
InfraredTransmission Capa
bilities of ’ph211iumHali
de and 5ilLler Hal ide Qp
ticalFibers”、American Cer
amic 5occity 82nd Annual 
Meeting (Checago)、Apr、 19
80あるいは、Y、 MimUra et al、 ”
Growth ofpiber Cuystals f
or Infrared QpticalWavegu
ide”、Japanese Journal of 
AppliedpHysics、vol、19.no、
5.pp、L269−L272゜MaY1980)、G
dF3−BaFz−ZrF4 ガラス(三田地ら、「フ
ッ化物光ファイバの作製」、「昭和55年度電子通信学
会光・電波部門全国大会講演論文集」番号360.p、
360.1980年9月)が研究されている。
As a halide, KR, S-5 crystal (TIBr-
TII) (8, Sakuragi etal, ”
Infrared Transmission Capa
bilities of 'ph211iumHali
de and 5ilLler Hal ide Qp
ticalFibers”, American Cer.
amic 5occity 82nd Annual
Meeting (Checago), April, 19
80 or Y, MimUra et al.”
Growth of piber Cuystals f
or Infrared QpticalWavegu
ide”, Japanese Journal of
Applied pHysics, vol, 19. no,
5. pp, L269-L272゜MaY1980), G
dF3-BaFz-ZrF4 glass (Mitachi et al., "Preparation of Fluoride Optical Fiber", "Proceedings of the 1985 National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers", No. 360.p.
360. September 1980) is being studied.

−また、カルコゲナイドガラスとしては、AS2S3ガ
ラス(N、 S、 Kapany et al、 ”R
ecentDevelopement  in Inf
rared l;”1ber Qptics、”:[n
frared Physics、 vol、 5. p
p、 69−80 。
- Also, as chalcogenide glass, AS2S3 glass (N, S, Kapany et al., "R
development in Inf
rared l;"1ber Qptics,":[n
Frared Physics, vol, 5. p
p, 69-80.

1965 ) 、G e  P  Sガラス(S、 5
hibata etaL ” G e −P−8Cha
 Icogenide Glasspibers、 ”
Japanese Journal of Appli
edpHysics、vol、19. no、 10.
 pp、 L603−■、605 、 Oct、198
0 )が知られている。
1965), G e P S Glass (S, 5
hibata etaL” G e -P-8Cha
Icogenide Glassspibers,”
Japanese Journal of Appli
edpHysics, vol, 19. no, 10.
pp, L603-■, 605, Oct, 198
0) is known.

さて、前述の非石英系材料は、波長2μm以上で透明で
あるため、一般に融点あるいは軟化点が低いという特徴
を有する。壕だ、これらの光ファイバは、伝送する光エ
イルギーを誘電体媒質中を伝搬させるものである。これ
らのために、例えばCO2レーザのような20W、10
0Wといった訓いエネルギーの光を伝送させるには、材
料中に含まれる不純物を除去する事が光吸収に基づく熱
破壊において必要である。壕だ光フアイバ中の光強度が
大きくなると、いわゆる破壊に至らなくても材料の非線
形光学効果に基つく光と音波との相互作用によって、光
の進行方向と逆の方向への誘導ラマン散乱、誘導ブリユ
アン散乱が生ずるため、送れる光の工坏ルギーがそれだ
け減少し、エネルギー伝送容量が低下する。低損失な石
英系光ファイバー”Cは、Nd−YAGレーザ光の波長
1.06.cmおよび連続発振の下で100W/mm2
程度の値が実証されているのみである。通常の光ファイ
バにおいて、可撓性をもだせるだめには、光ファイバの
直径は1■以下にすることが必要で、例えば直径が1胴
の場合においては約80Wの光エネルギーを送ることが
限界に近いという事になる。以上のように、従来開発さ
れている光ファイバでは光ファイバのエネルキー耐力、
パワ耐力、および光吸収に基つく熱破壊において伝送容
量に制限があるという欠点があった。
Now, since the above-mentioned non-quartz material is transparent at a wavelength of 2 μm or more, it generally has a characteristic of having a low melting point or softening point. These optical fibers propagate the transmitted light energy through a dielectric medium. For these, 20W, 10
In order to transmit light with a high energy such as 0W, it is necessary to remove impurities contained in the material through thermal destruction based on light absorption. When the light intensity in a trenched optical fiber increases, stimulated Raman scattering in the direction opposite to the direction of light propagation occurs due to the interaction between light and sound waves based on the nonlinear optical effect of the material, even if it does not lead to so-called destruction. Since stimulated Brillouin scattering occurs, the energy of the transmitted light is correspondingly reduced, and the energy transmission capacity is reduced. The low-loss silica-based optical fiber "C" has a power output of 100 W/mm2 under continuous oscillation and a wavelength of 1.06 cm of Nd-YAG laser light.
Only moderate values have been demonstrated. In order to achieve flexibility in normal optical fibers, the diameter of the optical fiber must be 1 inch or less, and for example, if the diameter is 1 cylinder, the limit for transmitting optical energy of approximately 80 W is This means that it is close to . As mentioned above, in conventionally developed optical fibers, the energy strength of the optical fiber,
There were drawbacks such as limited transmission capacity due to power tolerance and thermal breakdown based on light absorption.

−また例えばNd−YAGレーザのような1.06μn
〕やCO2レーザのような波長が1086μmの光は目
に見えないため、目的の場所にレーザ光を照射するため
には例えばHe−Neレーザのような可視光のレーザを
別途導波させることが必要である。
-Also 1.06 μn such as Nd-YAG laser
] and CO2 laser, which have a wavelength of 1086 μm, are invisible to the naked eye, so in order to irradiate the target area with laser light, it is necessary to separately guide a visible light laser such as a He-Ne laser. is necessary.

しかし従来の赤外透過光ファイバ、特に10.6μm用
の光ファイバでは0.633μmの光を透過出来ないと
いう欠点があった。
However, conventional infrared transmitting optical fibers, especially optical fibers for 10.6 μm, have a drawback in that they cannot transmit light of 0.633 μm.

本発明の目的は、上述の欠点すなわち伝送可能エネルギ
ーの制約、伝送させる光の波長の制約を防ぎ、安定に高
い光エネルギーを伝送できる光ファイバを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical fiber that can stably transmit high optical energy by avoiding the above-mentioned drawbacks, namely, the limitations on transmittable energy and the wavelength of light to be transmitted.

従来、高い光エネルギーを伝送させる導光路とし−C;
佳、光ファイバの他にレーザメスで用いられる鏡を用い
た導光路が−りる。こ扛は、光エネレギーを空間中伝送
させl−ため発熱寿どの問題がないが、光を曲けるため
に鏡を用いるため、可撓性がなく、導光路が大きいとい
う欠点があった。本発明は光ファイバの可撓性と上記導
光路の空間伝搬による光エネルギー伝送性とをミックス
したものである。本発明の光ファイバを図を用いて説明
する。第1図は、本発明の光ファイバの断面図である。
Conventionally, as a light guide path for transmitting high optical energy -C;
However, in addition to optical fibers, a light guide path using a mirror used in a laser scalpel is also available. This device transmits light energy through space, so there are no problems with heat generation or longevity, but since it uses a mirror to bend the light, it has the drawbacks of lack of flexibility and a large light guide path. The present invention combines the flexibility of an optical fiber and the ability to transmit optical energy through spatial propagation of the light guide. The optical fiber of the present invention will be explained using the drawings. FIG. 1 is a cross-sectional view of the optical fiber of the present invention.

光ファイバは中空であり、中空部1には乾燥空気等が送
られる。ガラス管3の内壁にはAU。
The optical fiber is hollow, and dry air or the like is sent to the hollow part 1. AU on the inner wall of the glass tube 3.

Ni、Ag、Cu等の金属膜2が形成されている。A metal film 2 of Ni, Ag, Cu, etc. is formed.

伝送エネルギーは中空部1を伝送し、金属膜2で反射し
ながら伝搬する。これらの構造の光ファイバは、外径0
.5〜3mJI+程度、内径0.2〜1.5喘程度であ
るが、中空であるため可撓性に富んでいる。
The transmitted energy is transmitted through the hollow part 1 and propagated while being reflected by the metal film 2. Optical fibers with these structures have an outer diameter of 0
.. Although it has an inner diameter of about 5 to 3 mJI+ and an inner diameter of about 0.2 to 1.5 mJI, it is highly flexible because it is hollow.

金属の屈折率は一部をのぞいて複素数で表わされ、誘ぼ
体に比べては吸収損失が大きい。金属導波路中を伝送す
るモードは各種存在するが、ここではTEモードを考え
るとその吸収係数αpqは近似的に次式で示される。こ
こでサフィックスp。
The refractive index of metals, except for some, is expressed by complex numbers, and absorption loss is greater than that of dielectric materials. There are various modes that transmit in a metal waveguide, but considering the TE mode here, its absorption coefficient αpq is approximately expressed by the following equation. Here the suffix p.

qは伝搬モードのモード次数を示す。q indicates the mode order of the propagation mode.

ただし a:導波路の半径 λ:光の波長 R:導波路の曲げ半径 シ:金属の複素屈折率 −n−jk  (r+;爽数部、k:虚数部)Llpq
 :各モードの伝搬定数に関する定数でベッセル関数の
苓根である。
However, a: Radius of the waveguide λ: Wavelength of light R: Bending radius of the waveguide S: Complex refractive index of metal - n-jk (r+: exorbitant part, k: imaginary part) Llpq
: A constant related to the propagation constant of each mode, which is the root of the Bessel function.

金属の複索屈折率は一般に10.6μmの光波長では第
1衣のようになる。
The double refractive index of metals generally becomes like a first order at a light wavelength of 10.6 μm.

第1表 金属の複素屈折率 式(1)における右辺第2項は導波路を半径Rで曲げた
時の曲げ損失の増加を示すものである。
Table 1 Complex refractive index of metal The second term on the right side of equation (1) indicates the increase in bending loss when the waveguide is bent by radius R.

ここでは−例として、銀Agの場合を例にとって説明す
る。複索屈折率を(2)式に代入し半径400μmの導
波路の場合にはTE olモードに対しαo1=1.4
 X 10−3(1+3.23/R2) (m−’) 
  (3)を得る。これより半径400μrnの金属導
波管では曲げ半径Rが10crnの場合においても1m
でα0−0.45となシ伝送撰失は約63%と従来の光
ファイバを用いたCO2レーザ光導光路に比べて非常に
小さい。また曲げ半径Rが1mの場合にはα0−5、9
 X 10−3となり伝送損失は無視出来る。筐た上聞
数値的考察は例えば波長0.63μmのHe −Neレ
ーザ光に対しても適応出来る。dAgの0.63μmに
おける複索屈折率はほぼn=0.19−j4.3で与え
られるため、前記と同様の400μm半径の導波路の場
合にはα11 =5.5 Xi O−’となシ伝送可能
である。以上のように金属膜をもつ導波路では可視光に
おいても伝送可能という大きな特徴をもつ。
Here, the case of silver Ag will be explained as an example. Substituting the double refractive index into equation (2), in the case of a waveguide with a radius of 400 μm, αo1 = 1.4 for the TE ol mode.
X 10-3 (1+3.23/R2) (m-')
(3) is obtained. From this, in a metal waveguide with a radius of 400 μrn, even if the bending radius R is 10 crn, it is still 1 m.
When α0-0.45, the transmission loss is about 63%, which is very small compared to a CO2 laser light guide path using a conventional optical fiber. In addition, if the bending radius R is 1 m, α0-5, 9
X 10-3, and the transmission loss can be ignored. The above numerical considerations can also be applied to, for example, He--Ne laser light with a wavelength of 0.63 μm. Since the double refractive index of dAg at 0.63 μm is approximately given by n = 0.19-j4.3, in the case of a waveguide with a radius of 400 μm similar to the above, α11 = 5.5 Xi O-'. transmission is possible. As mentioned above, a waveguide with a metal film has the great feature of being able to transmit even visible light.

KR8−5といった誘電体光ファイバでは、光ファイバ
の両端面からの反射損失は無視出来ないほどに大きい。
In a dielectric optical fiber such as KR8-5, the reflection loss from both end faces of the optical fiber is so large that it cannot be ignored.

例えばK RS−5では両端面からの反射は28%も存
在する。この反射光はレーザに帰還し発振を乱す原因に
もなる。しかし金属の場合にはエネルギーのほとんどが
中空部を伝搬するため反射による損失はほとんどないと
いってよい。
For example, in KRS-5, there is 28% reflection from both end faces. This reflected light returns to the laser and becomes a cause of disturbing oscillation. However, in the case of metal, most of the energy propagates through the hollow space, so it can be said that there is almost no loss due to reflection.

−また光エネルギーは中空部を通るため冒出力レーザ光
を入射することが出来る。
-Also, since the light energy passes through the hollow part, high power laser light can be incident.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

直径5m+n、内径4m+nの石英ガラス管を2ooo
cの高温で線引し、直径1.2mm、内径0.8調の中
空光ファイバを得た。この中空ガラス管内に、圧縮ポン
プを使用して主成分が塩化スズとパラジウムの混合液を
注入し表面をカツセイ処理した後、高純度化学研究新製
のNlの無電解メッキ液N1−801を再び圧縮ポンプ
を用いて圧入した。メッキ液は常に移動している。光フ
ァイバを温度75Cに保温し、2時間後にNi−801
メツキ液を除去した所、石英ガラス管の内面に厚み10
μmの高純度ニッケル膜が積層した。さらに同社製Ag
無電解メツギ液S−900を注入し、80Cで3時間保
持すると厚み10μmの銀膜が積層した。
2ooo quartz glass tubes with a diameter of 5m+n and an inner diameter of 4m+n
A hollow optical fiber with a diameter of 1.2 mm and an inner diameter of 0.8 mm was obtained by drawing at a high temperature of c. A mixture of tin chloride and palladium as the main components was injected into the hollow glass tube using a compression pump, and the surface was treated with a plating treatment. After that, the Nl electroless plating solution N1-801 manufactured by Koujun Kagaku Kenkyu Shin was applied again. It was press-fitted using a compression pump. The plating solution is constantly moving. The optical fiber was kept at a temperature of 75C, and after 2 hours Ni-801
After the plating liquid was removed, the inner surface of the quartz glass tube had a thickness of 10 mm.
A high-purity nickel film with a thickness of μm was laminated. In addition, the company's Ag
When electroless Metsugi solution S-900 was injected and held at 80C for 3 hours, a 10 μm thick silver film was deposited.

この金属膜を有する1m長さの石英光ファイバに出力1
00Wの10.6μmの光を入射しだ新約40%の光出
力が得られた。この伝送損失は金属表面よりの散乱が太
きくいため、この光ファイバを約1000Cの電気炉に
挿入して、ファイアポリッシュした所、透過率は60%
に増加し、充分レーザメス用光ファイバとして使用出来
ることがわかった。
Output 1 to a 1m long quartz optical fiber with this metal film
When 00 W of 10.6 μm light was incident, a light output of approximately 40% was obtained. This transmission loss is caused by heavy scattering from the metal surface, so when this optical fiber was inserted into an electric furnace at about 1000C and fire polished, the transmittance was 60%.
It was found that it can be used as an optical fiber for laser scalpel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中空光ファイバの断面図である。 FIG. 1 is a sectional view of a hollow optical fiber of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、 ガラス管の内壁にN i 、 A g 、 A 
u 、 Cuからなる群より選択された少なくとも1金
属からなる金属膜を有し、中空であり、且つエネルギー
伝送用に用いることを特徴とする金属膜を有する光ファ
イバ。
1. N i , A g , A on the inner wall of the glass tube
1. An optical fiber having a metal film, characterized in that it has a metal film made of at least one metal selected from the group consisting of Cu, Cu, is hollow, and is used for energy transmission.
JP57127512A 1982-07-23 1982-07-23 Optical fiber having metallic film Pending JPS5918904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127512A JPS5918904A (en) 1982-07-23 1982-07-23 Optical fiber having metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127512A JPS5918904A (en) 1982-07-23 1982-07-23 Optical fiber having metallic film

Publications (1)

Publication Number Publication Date
JPS5918904A true JPS5918904A (en) 1984-01-31

Family

ID=14961830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127512A Pending JPS5918904A (en) 1982-07-23 1982-07-23 Optical fiber having metallic film

Country Status (1)

Country Link
JP (1) JPS5918904A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197179A (en) * 1984-12-07 1986-09-01 ヴアルテル・シユテイヒト Operating device for assembly part or work
JPS63266404A (en) * 1987-04-24 1988-11-02 Hitachi Cable Ltd Hollow light guide and its production
KR20010037798A (en) * 1999-10-20 2001-05-15 이명일 Light ray transmission tube using specular reflection
JP2007210816A (en) * 2006-02-08 2007-08-23 Jsr Corp Method for forming aluminum film on inside surface of tube
JP2007286315A (en) * 2006-04-17 2007-11-01 Totoku Electric Co Ltd Heat-resistant infrared hollow fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197179A (en) * 1984-12-07 1986-09-01 ヴアルテル・シユテイヒト Operating device for assembly part or work
JPS63266404A (en) * 1987-04-24 1988-11-02 Hitachi Cable Ltd Hollow light guide and its production
KR20010037798A (en) * 1999-10-20 2001-05-15 이명일 Light ray transmission tube using specular reflection
JP2007210816A (en) * 2006-02-08 2007-08-23 Jsr Corp Method for forming aluminum film on inside surface of tube
JP2007286315A (en) * 2006-04-17 2007-11-01 Totoku Electric Co Ltd Heat-resistant infrared hollow fiber

Similar Documents

Publication Publication Date Title
Nubling et al. Launch conditions and mode coupling in hollow-glass waveguides
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
US3981707A (en) Method of making fluorine out-diffused optical device
JPS6163544A (en) Fluoride glass optical fiber
JPS5918904A (en) Optical fiber having metallic film
JP2979329B2 (en) Optical amplification fiber
US4778249A (en) Middle infra-red hollow optical fibres and a method for forming them
EP0186679B1 (en) Middle infra-red hollow optical fibres
JPS61219009A (en) Single mode light waveguide comprising quartz glass and manufacture thereof
Bhardwaj et al. Performance of a dielectric-coated monolithic hollow metallic waveguide
JP4114410B2 (en) Optical amplification glass fiber
Hongo et al. Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm
US5026142A (en) Hollow glass waveguide
JPS61151034A (en) Quartz laser glass for amplifying infrared light
Worrell Infra-Red Optical Properties Of Glasses And Ceramics For Hollow Waveguides Operating At 10.6 µm Wavelength
Maurer Doped-deposited-silica fibres for communications
Hand Fibre optic beam delivery
JPS60247983A (en) Erbium laser oscillator
Kobayashi et al. Microstructured tube-leaky glass waveguide for delivery of high-powered Er: YAG laser
JPH08234026A (en) Hollow waveguide and its production and laser transmission device
Bouillie et al. Transmission by fiber optics at CNET. I
Shi et al. New cyclic olefin polymer-coated silver hollow glass waveguides for the near-infrared to mid-infrared
Yan et al. Optical frequency-selective filters in ion-exchanged waveguides
JPS6033513A (en) Single linear polarization optical fiber
Hou et al. Transmitting high-power double-layer dielectric hollow optical fiber