JPS61151034A - Quartz laser glass for amplifying infrared light - Google Patents

Quartz laser glass for amplifying infrared light

Info

Publication number
JPS61151034A
JPS61151034A JP27314684A JP27314684A JPS61151034A JP S61151034 A JPS61151034 A JP S61151034A JP 27314684 A JP27314684 A JP 27314684A JP 27314684 A JP27314684 A JP 27314684A JP S61151034 A JPS61151034 A JP S61151034A
Authority
JP
Japan
Prior art keywords
laser glass
quartz
glass
quartz laser
nd2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27314684A
Other languages
Japanese (ja)
Other versions
JPH058129B2 (en
Inventor
Akira Hayashi
瑛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Original Assignee
NIPPON SEKIEI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP27314684A priority Critical patent/JPS61151034A/en
Publication of JPS61151034A publication Critical patent/JPS61151034A/en
Publication of JPH058129B2 publication Critical patent/JPH058129B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce the titled glass having stable heat-expansion coefficient and optical length and high heat conductivity, usable stably, and enabling the continuous oscillation and amplification of infrared radiation, by compounding Er2O3, Nd2O3, Yb2O3, Mo2O3, Al2O3, P2O5 and SiO2 at specific ratios. CONSTITUTION:The objective infrared amplifying quartz laser glass can be produced by compounding 0.1-15(wt)% Er2O3, 0.2-15% Nd2O3, 0.2-15% Yb2O3, 0.2-15% Mo2O3 (Nd2O3+Yb2O3+Mo2O3=0.2-15%), 1-20% Al2O3, 1-20% P2O5 (Al2O3+P2O5=1-20%), and the remaining part of SiO2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石英レーザーガラス、さらに詳しくは光通信の
増幅用又吸収損失の最も少ない1.5μ帯のレーザー光
の発振材として使用できるので光ファイバーの破断点検
出用さらにレンジファインダーなどの測定機への応用可
能な石英レーザーガラスに関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a quartz laser glass, and more specifically, it can be used as a material for amplifying optical communication or as an oscillating material for laser light in the 1.5μ band, which has the least absorption loss, so it can be used for optical fibers. The present invention relates to quartz laser glass that can be used for detecting break points and can be applied to measuring instruments such as range finders.

(従来の技術) 光通信における増幅用には一般に発光ダイオードが用い
られているが、当石英レーザーガラスのファイバーは光
ファイバーに直接接続して使用できる。
(Prior Art) Light emitting diodes are generally used for amplification in optical communications, but this quartz laser glass fiber can be used by directly connecting to an optical fiber.

又発振材としては従来0.8μ又は1.3μ帯の半導体
レーザーが主として用いられていたが、当石英レーザー
ガラスは最も吸収損失の少ない1゜5μ帯のレーザー光
を発振することができる6(発明が解決しようとする問
題点) 従来のケイ酸塩系及び燐酸塩系レーザーガラスよりも画
期的に非線形屈折率、熱膨張率、熱伝導率が小さく、紫
外線透過率が大きく、かつ、耐水性にすぐれたレーザー
ガラスを提供することを目的とするものである。
Furthermore, although semiconductor lasers in the 0.8μ or 1.3μ band have conventionally been mainly used as oscillation materials, our quartz laser glass can oscillate laser light in the 1°5μ band with the least absorption loss. Problems to be Solved by the Invention) The glass has significantly lower nonlinear refractive index, thermal expansion coefficient, and thermal conductivity than conventional silicate-based and phosphate-based laser glasses, and has high ultraviolet transmittance and water resistance. The purpose of this invention is to provide laser glass with excellent properties.

(問題点を解決するための手段) 本発明者は前記目的とするレーザーガラスを求めて種々
研究した結果、下記組成の石英レーザーガラスは下記の
特長を有することを見いだした。
(Means for Solving the Problems) The inventors of the present invention conducted various studies in search of the above-mentioned objective laser glass, and as a result, discovered that a quartz laser glass having the following composition has the following features.

本発明の石英レーザーガラスの組成 重量%でE r20. ; 0.1−15. Nd2O
3;0.2〜15.Yb20s ; 0 、2〜l 5
 、M o a O3;0.2〜15、Nd2O3+Y
b、○、+MoO,;0.2−15、Al2O3;1〜
20.P2O3;1−20.A1.O,+P、O,; 
1〜20.残)J S i○2からなる石英レーザーガ
ラス 本発明の石英レーザーガラスの特長 (1)熱膨張率が極めて小なので光路長変化が小さく安
定して使用できる (2)熱伝導率がよいので連続発振、増幅用の媒質とし
て使用できる (3)当石英レーザーガラスは紫外域での光学的吸収を
有効に使用でき、励起効率を高めることができる (4)当石英レーザーガラスは耐水性がよく焼けがおこ
りにくく光学的に安定である (5)当石英レーザーガラスは光学的に均質性がよくレ
ーザーによる損傷が極めて少ない(6)当石英レーザー
ガラスの発振波長は石英ガラス系光通信における伝送損
失が最低である1、55μである (7)当石英レーザーガラスの上記諸特性を数字で述べ
ると次の通りである 非線形屈折率   0.6XIO−”esu熱膨張率 
    5〜10 x 10−7/”C熱伝導率  0
.030〜0.035cal/cm sec”c耐水性
(wtloss%) (Hz O100″CC1h)0
.000以下紫外線透過率  50%以下(lo+++
/m200’m)均質性      4X10″″S以
下である。
The composition weight % of the quartz laser glass of the present invention is E r20. ; 0.1-15. Nd2O
3; 0.2-15. Yb20s; 0, 2~l 5
, M o a O3; 0.2-15, Nd2O3+Y
b, ○, +MoO,; 0.2-15, Al2O3; 1~
20. P2O3;1-20. A1. O,+P,O,;
1-20. Remaining) Quartz laser glass made of JSi○2 Features of the quartz laser glass of the present invention (1) The coefficient of thermal expansion is extremely small, so it can be used stably with little change in optical path length (2) It has good thermal conductivity, so it can be used continuously (3) Our quartz laser glass can be used as a medium for oscillation and amplification. (3) Our quartz laser glass can effectively use optical absorption in the ultraviolet region, increasing excitation efficiency. (4) Our quartz laser glass has good water resistance and is heat resistant. (5) Our quartz laser glass has good optical homogeneity and is extremely unlikely to be damaged by lasers. (6) The oscillation wavelength of our quartz laser glass is such that transmission loss in silica glass-based optical communications is low. The minimum value is 1.55μ. (7) The above-mentioned characteristics of this quartz laser glass are as follows: Nonlinear refractive index: 0.6XIO-"esu Coefficient of thermal expansion:
5~10 x 10-7/”C thermal conductivity 0
.. 030~0.035cal/cm sec"c Water resistance (wtloss%) (Hz O100"CC1h)0
.. 000 or less Ultraviolet transmittance 50% or less (lo+++
/m200'm) Homogeneity 4X10''S or less.

(作用) 当該石英レーザーガラスにおいてEr20aはE r”
イオンとしてレーザーの発光イオンとして働き好ましい
濃度範囲はEr2O,0.1〜15%である。15%以
上では濃度消光をおこし尖角的でない。
(Function) In the quartz laser glass, Er20a is Er”
The preferable concentration range of Er2O, which acts as an ion for emitting laser light, is 0.1 to 15%. If it exceeds 15%, concentration quenching occurs and the peak is not sharp.

Nd*Oa、YbtOz−Mozoaは各々N d”。Nd*Oa and YbtOz-Mozoa are each Nd''.

Yb”、Mo”Kオンとしてレーザーの増感イオンとし
て働き単独又は複合して添加される。
Yb" and Mo"K act as laser sensitizing ions and are added singly or in combination.

この好ましい濃度範囲は重量%でNd、O,;0.2〜
15.Yb、O,; 0.2〜15.Mo、On;0.
2〜15、Nd2O3+Y、b、O,+MozOi;0
.2〜15である。
This preferred concentration range is Nd, O,; 0.2 to 0.2% by weight.
15. Yb, O,; 0.2-15. Mo, On; 0.
2-15, Nd2O3+Y,b,O,+MozOi;0
.. 2 to 15.

A1□0.とP、○、は母体の石英ガラスの5i−0網
目構造中にN d ”のような発光イオン又は増感イオ
ンを導入し有効な蛍光特性を発揮することに働き単独又
は複合して1〜20wt%の範囲が好ましい。
A1□0. and P, ○, act to introduce luminescent ions or sensitizing ions such as N d '' into the 5i-0 network structure of the matrix quartz glass, and exhibit effective fluorescent properties. A range of 20 wt% is preferred.

以上の組成範囲の石英レーザーガラスは下記の特性を示
す。
The quartz laser glass having the above composition range exhibits the following characteristics.

0レーザー特性 Er20.(wt%)0.2〜5% 誘導放出断面積σρ(10″″″’cm”)2.2〜5
蛍光寿命(μ5ec)   250〜400発振波長(
μm)      1.550レーザー損傷閾値(ln
secパルス) (J/c♂)表面損傷       
 20〜25 内部損傷        30〜40 0光学的特性 非線形屈折率n、(X 10−13e s u)  0
.6屈折率(1,55μ)  1,440〜1,460
アツベ数(νd)     68 ブリュースター角   55”13’〜55°34′線
膨張係数(10−’/’C)  0.5〜0.9屈折率
の温度係数   1.OX 10−’/’C(0〜10
0℃) 光路長の温度変化     5.0〜5.40熱的特性 熱伝導率(25℃) (c a 1/cm  s e 
c’c)0.030−0.035 0その低特性 ヌープ硬さ く100 g)(1k g f /mm”)  590
〜620(製造方法) 本発明の石英レーザーガラスを製造するには基本的に火
焔酸化分解溶融(Flame oxidation h
ydrolysis Method)法かスート混入ガ
ラス化(Sooteimpregnation)法かゾ
ルゲル法を用いる。
0 Laser characteristics Er20. (wt%) 0.2 to 5% Stimulated emission cross section σρ (10″″″’cm”) 2.2 to 5
Fluorescence lifetime (μ5ec) 250-400 oscillation wavelength (
μm) 1.550 Laser damage threshold (ln
sec pulse) (J/c♂) Surface damage
20-25 Internal damage 30-40 0 Optical properties Nonlinear refractive index n, (X 10-13e su) 0
.. 6 Refractive index (1,55μ) 1,440-1,460
Atsbe number (νd) 68 Brewster angle 55"13'~55°34' Coefficient of linear expansion (10-'/'C) 0.5-0.9 Temperature coefficient of refractive index 1.OX 10-'/'C (0-10
0°C) Temperature change in optical path length 5.0 to 5.40 Thermal characteristics Thermal conductivity (25°C) (c a 1/cm s e
c'c) 0.030-0.035 0 Its low characteristic Knoop hardness 100 g) (1 kg g f /mm") 590
~620 (Production method) The quartz laser glass of the present invention is basically produced by flame oxidation decomposition and melting (Flame oxidation decomposition melting).
A hydrolysis method, a soot impregnation method, or a sol-gel method is used.

火焔酸化分解溶融は直接高温酸化中に石英レーザーガラ
スを構成する成分の・化合物を添加する方法−ベルタイ
法、高周波酸素プラズマ法など−である。
Flame oxidation decomposition melting is a method of adding compounds of components constituting quartz laser glass during direct high-temperature oxidation, such as the Bertai method and high-frequency oxygen plasma method.

例えば石英レーザーガラスを構成する各々の元素のハロ
ゲン化物の蒸気を酸素プラズマ炎中に導入する。低沸点
のハロゲン化化合物、例えばSiO,(シリカ)源とし
て四塩化ケイ素(SiC1,)p、o、源としてオキシ
塩化燐(POCl、)キャリヤーガスとしてのアルゴン
(Ar)と共に導入し高沸点のハロゲン化化合物AlC
l□。
For example, vapors of halides of each element constituting quartz laser glass are introduced into an oxygen plasma flame. A low boiling point halogenated compound, such as SiO, (silica), silicon tetrachloride (SiC1,) p, o as a source, phosphorous oxychloride (POCl,) as a source, and a high boiling point halogen introduced together with argon (Ar) as a carrier gas. Compound AlC
l□.

NdC1,、ErC1,、YbC1,、MOCl、は高
温にして高蒸気圧にして火焔中に単独又は混合して各々
所定量導入する。
NdC1, ErC1, YbC1, MOCl are heated to a high temperature and have a high vapor pressure, and are introduced into the flame in predetermined amounts individually or as a mixture.

以上の方法の別法として光ファイバーの製造にも用いら
れるCVD法(変法としてのVAD法)がある。低温で
酸水素炎中でケイ素のハロゲン化物の加水分解したスス
状酸化物を支持体に堆積させる。
As an alternative method to the above methods, there is a CVD method (VAD method as a modified method) which is also used for manufacturing optical fibers. Hydrolyzed soot-like oxides of silicon halides are deposited on a support in an oxyhydrogen flame at low temperatures.

このスート状のシリカ堆積物の空孔中に常温で添加元素
のハロゲン化物のアルコール溶液を含浸させ、乾燥アル
コールを除去後1400℃以上の高温でHe、Ca1.
雰囲気中で加熱し透明な石英ガラス体をうるものである
。又ゾルゲル法ではケイ素のアルコキシド溶液又はこの
加水分解物のシリカゲルや、ケイ素ハロゲン化物の火炎
分解酸化物(例フユームドシリカ)の分散コロイドゾル
に添加元素のアルコキシド溶液や無機、有機化合物を導
入したのち、祷られた混合ゲルを1000℃に注意深く
加熱、必要によってはHe−Cl□処理を行って石英ガ
ラス体をうるものであり1石英レーザーガラスの製造に
適用できる。
The pores of this soot-like silica deposit are impregnated with an alcohol solution of a halide of an added element at room temperature, and after removing the dry alcohol, He, Ca1.
It is heated in an atmosphere to obtain a transparent quartz glass body. In the sol-gel method, an alkoxide solution of an additive element or an inorganic or organic compound is introduced into a dispersion colloidal sol of silicon alkoxide solution or its hydrolyzed product, silica gel, or flame-decomposed oxide of silicon halide (e.g. fumed silica). The resulting mixed gel is carefully heated to 1000 DEG C. and, if necessary, treated with He-Cl□ to obtain a quartz glass body, which can be applied to the manufacture of 1-quartz laser glass.

以上の方法で作られた石英レーザーガラス体を高温にお
いて管、棒をへてファイバーに加工する。
The quartz laser glass body made by the above method is processed into fibers by cutting into tubes and rods at high temperatures.

(効果) 本発明石英レーザーガラスは熱膨張率が他のすべての材
料より極めて小さいので光路長変化が小さく安定して使
用出来る。かつ、熱伝導率がよいので連続発振増幅がで
きる。
(Effects) Since the quartz laser glass of the present invention has an extremely smaller coefficient of thermal expansion than all other materials, it can be stably used with little change in optical path length. Moreover, since it has good thermal conductivity, continuous wave amplification is possible.

又石英系光ファイバーで最も伝送損失の小さい1.55
μ帯の発振ができる。1.55μ帯の光透過率はほぼ1
00%である。さらに耐水性がよく焼けがおこりにくく
光学的に安定であり、かっまた光学的に均質性がよくレ
ーザーによる損傷は極めて小さい。
Also, 1.55 has the lowest transmission loss among silica-based optical fibers.
Capable of oscillating in the μ band. The light transmittance in the 1.55μ band is approximately 1
It is 00%. Furthermore, it has good water resistance, is resistant to burnout, is optically stable, has good optical homogeneity, and is extremely resistant to laser damage.

当該石英レーザーガラスは上記の特長を有することが見
いだされ前記目的を遂行できる。
The quartz laser glass has been found to have the above-mentioned features and can achieve the above-mentioned purpose.

Claims (1)

【特許請求の範囲】[Claims] 重量%でEr_2O_3;0.1〜15、Nd_2O_
3;0.2〜15、Yb_2O_3;0.2〜15、M
o_2O_3;0.2〜15、Nd_2O_3+Yb_
2O_3+Mo_2O_3;0.2〜10、Al_2O
_3;1〜20、P_2O_5;1〜20、Al_2O
_3+P_2O_5;1〜20、残りSiO_2からな
る石英レーザーガラス
Er_2O_3; 0.1-15, Nd_2O_ in weight%
3; 0.2-15, Yb_2O_3; 0.2-15, M
o_2O_3; 0.2-15, Nd_2O_3+Yb_
2O_3+Mo_2O_3; 0.2-10, Al_2O
_3; 1-20, P_2O_5; 1-20, Al_2O
_3+P_2O_5; 1 to 20, remaining SiO_2 quartz laser glass
JP27314684A 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light Granted JPS61151034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27314684A JPS61151034A (en) 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27314684A JPS61151034A (en) 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light

Publications (2)

Publication Number Publication Date
JPS61151034A true JPS61151034A (en) 1986-07-09
JPH058129B2 JPH058129B2 (en) 1993-02-01

Family

ID=17523754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27314684A Granted JPS61151034A (en) 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light

Country Status (1)

Country Link
JP (1) JPS61151034A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184386A (en) * 1986-09-18 1988-07-29 Furukawa Electric Co Ltd:The Optical fiber and optical fiber type light emitting material
JPS6437425A (en) * 1987-07-31 1989-02-08 Seiko Epson Corp Production of doped quartz glass
JPH04106418U (en) * 1991-02-27 1992-09-14 三菱重工業株式会社 air conditioner
JPH05283789A (en) * 1987-10-22 1993-10-29 British Telecommun Plc <Bt> Optical fiber and manufacture thereof
EP0985644A1 (en) * 1998-09-08 2000-03-15 Kabushiki Kaisha Ohara Thermal shock resistant luminescent glass
JP2010533634A (en) * 2007-07-16 2010-10-28 コラクティヴ ハイ−テック インコーポレイティド Light emitting device with phosphosilicate glass
RU2482079C2 (en) * 2011-08-31 2013-05-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Luminescent quartz glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184386A (en) * 1986-09-18 1988-07-29 Furukawa Electric Co Ltd:The Optical fiber and optical fiber type light emitting material
JPS6437425A (en) * 1987-07-31 1989-02-08 Seiko Epson Corp Production of doped quartz glass
JPH05283789A (en) * 1987-10-22 1993-10-29 British Telecommun Plc <Bt> Optical fiber and manufacture thereof
USRE35946E (en) * 1987-10-22 1998-11-03 British Telecommunications Plc Optical fibre amplifier with fluorescent additive and method of amplifying signals using same
JPH04106418U (en) * 1991-02-27 1992-09-14 三菱重工業株式会社 air conditioner
EP0985644A1 (en) * 1998-09-08 2000-03-15 Kabushiki Kaisha Ohara Thermal shock resistant luminescent glass
US6300264B1 (en) 1998-09-08 2001-10-09 Kabushiki Kaisha Ohara Luminous glass
JP2010533634A (en) * 2007-07-16 2010-10-28 コラクティヴ ハイ−テック インコーポレイティド Light emitting device with phosphosilicate glass
RU2482079C2 (en) * 2011-08-31 2013-05-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Luminescent quartz glass

Also Published As

Publication number Publication date
JPH058129B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
Wang et al. Tellurite glass: a new candidate for fiber devices
US4339173A (en) Optical waveguide containing P2 O5 and GeO2
CA2348615C (en) Optical amplifying glass, optical amplifying medium and resin-coated optical amplifying medium
TW506951B (en) Fluorinated rare earth doped glass and glass-ceramic articles
JP3386460B2 (en) Waveguide structure with laser characteristics
CA2289768A1 (en) Composition for optical waveguide article and method for making continuous clad filament
KR20130119048A (en) Optical glass for gain medium with high fluorescence efficiency and optical fiber using the optical glass
JPS60215550A (en) Quartz based glass fiber for optical transmission containing fluorine and p2o5
JPS61151034A (en) Quartz laser glass for amplifying infrared light
Martucci et al. Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides
JPH057332B2 (en)
US4778249A (en) Middle infra-red hollow optical fibres and a method for forming them
US8635886B2 (en) Copper-containing silica glass, method for producing the same, and xenon flash lamp using the same
JPH012005A (en) optical waveguide
CA2275706A1 (en) Glass composition and optical device made therefrom
JPH058130B2 (en)
JP2004277252A (en) Optical amplification glass and optical waveguide
KR20010032599A (en) Rare Earth Element-Halide Environments in Oxihalide Glasses
EP0186679B1 (en) Middle infra-red hollow optical fibres
Ballato Optical fibers
JPH0830769B2 (en) Transmission line for optical radiation and its application
JPH03265537A (en) Rare-earth element-doped glass and its production
CN113105119B (en) Lanthanum antimonate glass optical fiber and preparation method and application thereof
JPS60112635A (en) Manufacture of glass optical fiber preform
JPS61132531A (en) Production of optical fiber