JPH058129B2 - - Google Patents

Info

Publication number
JPH058129B2
JPH058129B2 JP27314684A JP27314684A JPH058129B2 JP H058129 B2 JPH058129 B2 JP H058129B2 JP 27314684 A JP27314684 A JP 27314684A JP 27314684 A JP27314684 A JP 27314684A JP H058129 B2 JPH058129 B2 JP H058129B2
Authority
JP
Japan
Prior art keywords
quartz
laser glass
glass
laser
quartz laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27314684A
Other languages
Japanese (ja)
Other versions
JPS61151034A (en
Inventor
Akira Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Original Assignee
NIPPON SEKIEI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP27314684A priority Critical patent/JPS61151034A/en
Publication of JPS61151034A publication Critical patent/JPS61151034A/en
Publication of JPH058129B2 publication Critical patent/JPH058129B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石英レーザーガラス、さらに詳しくは
光通信の増幅用又吸収損失の最も少ない1.5μ帯の
レーザー光の発振材として使用できるので光フア
イバーの破断点検出用さらにレンジフアインダー
などの測定値への応用可能な石英レーザーガラス
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to quartz laser glass, and more specifically, to optical fibers because it can be used for amplification in optical communication and as an oscillating material for laser light in the 1.5μ band, which has the least absorption loss. The present invention relates to a quartz laser glass that can be used to detect fracture points in equipment, as well as to measure values in range finders, etc.

(従来の技術) 光通信における増幅用には一般に発光ダイオー
ドが用いられているが、当石英レーザーガラスの
フアイバーは光フアイバーに直接接続して使用で
きる。
(Prior Art) Light emitting diodes are generally used for amplification in optical communications, but this quartz laser glass fiber can be used by directly connecting to an optical fiber.

又発振材としては従来0.8μ又は1.3μ帯の半導体
レーザーが主として用いられていたが、当石英レ
ーザーガラスは最も吸収損失の少ない1.5μ帯のレ
ーザー光を発振することができる。
Furthermore, although semiconductor lasers in the 0.8μ or 1.3μ band have conventionally been mainly used as oscillation materials, our quartz laser glass can oscillate laser light in the 1.5μ band, which has the least absorption loss.

(発明が解決しようとする問題点) 従来のケイ酸塩系及び燐酸塩系レーザーガラス
よりも画期的に非線形屈折率、熱膨張率か小さ
く、熱伝導率、紫外線透過率が大きく、かつ、耐
水性にすぐれたレーザーガラスを提供することを
目的とするものである。
(Problems to be Solved by the Invention) The nonlinear refractive index and thermal expansion coefficient are significantly lower than those of conventional silicate-based and phosphate-based laser glasses, and the thermal conductivity and ultraviolet transmittance are large, and The purpose is to provide laser glass with excellent water resistance.

(問題点を解決するための手段) 本発明者は前記目的とするレーザーガラスを求
めて種々研究した結果、下記組成の石英レーザー
ガラスは下記の特長を有することを見いだした。
(Means for Solving the Problems) The inventors of the present invention conducted various studies in search of the above-mentioned objective laser glass, and as a result, discovered that a quartz laser glass having the following composition has the following features.

本発明の石英レーザーガラスの組成 重量%で、Er2O3:0.1〜15、Nd2O3:0.2〜15、
Yb2O3:0.2〜15、Mo2O3:0.2〜15、Al2O3:1
〜20、P2O5:1〜20、残りSiO2からなる石英レ
ーザーガラス。
Composition of the quartz laser glass of the present invention: In weight percent, Er2O3 : 0.1-15 , Nd2O3 : 0.2-15 ,
Yb2O3 : 0.2 ~ 15, Mo2O3 : 0.2 ~ 15, Al2O3 : 1
~20, P2O5 : 1~ 20 , remaining SiO2 quartz laser glass.

また、Nd2O3、Yb2O3、Mo2O3の添加量は、複
合して用いるとき、Nd2O3+Yb2O3+Mo2O3
0.2〜15、また、Al2O3、P2O5を複合して用いる
ときAl2O3+P2O5:1〜20となる石英レーザーガ
ラスである。
Furthermore, when using Nd 2 O 3 , Yb 2 O 3 , and Mo 2 O 3 in combination, the amounts added are as follows: Nd 2 O 3 + Yb 2 O 3 + Mo 2 O 3 :
0.2 to 15, and when Al 2 O 3 and P 2 O 5 are used in combination, the ratio of Al 2 O 3 +P 2 O 5 is 1 to 20.

本発明の石英レーザーガラスの特長 (1) 熱膨張率が極めて小なので光路長変化が小さ
く安定して使用できる (2) 熱伝導率がよいので連続発振、増幅用の媒質
として使用できる (3) 当石英レーザーガラスは紫外域での光学的吸
収を有効に使用でき、励起効率を高めることが
できる (4) 当石英レーザーガラスは耐久性がよく焼けが
おこりにくく光学的に安定である (5) 当石英レーザーガラスは光学的に均質性がよ
くレーザーによる損傷が極めて少ない (6) 当石英レーザーガラスの発振波長は石英ガラ
ス系光通信における伝送損失が最低である
1.55μである (7) 当石英レーザーガラスの上記諸特性を数字で
述べると次の通りである 非線形屈折率 0.6×10-13esu 熱膨張率 5〜10×10-7/℃ 熱伝導率 0.030〜0.035cal/cmsec℃ 耐水性(wtloss%)(H2O100℃Clh)0.000以下 均質性 4×10-6以下 である。
Features of the quartz laser glass of the present invention (1) It has an extremely low coefficient of thermal expansion, so it can be used stably with little change in optical path length (2) It has good thermal conductivity, so it can be used as a medium for continuous oscillation and amplification (3) Our quartz laser glass can effectively use optical absorption in the ultraviolet region, increasing excitation efficiency (4) Our quartz laser glass is durable, resistant to burnout, and optically stable (5) Our quartz laser glass has good optical homogeneity and is extremely less damaged by lasers (6) The oscillation wavelength of our quartz laser glass has the lowest transmission loss in silica glass-based optical communications.
1.55μ (7) The above-mentioned properties of this quartz laser glass can be expressed numerically as follows: Nonlinear refractive index: 0.6×10 -13 esu Coefficient of thermal expansion: 5 to 10×10 -7 /℃ Thermal conductivity: 0.030 ~0.035 cal/cmsec°C Water resistance (wtloss%) (H 2 O 100°C Clh) 0.000 or less Homogeneity 4×10 -6 or less.

(作用) 当該石英レーザーガラスにおいてEr2O3はEr3+
イオンとしてレーザーの発光イオンとして働き好
ましい濃度範囲はEr2O30.1〜15wt%である。
15wt%を超えると濃度消光をおこし実用的でな
い。
(Function) In the quartz laser glass, Er 2 O 3 is Er 3+
The preferable concentration range of Er 2 O 3 is 0.1 to 15 wt% since it works as an ion for emitting laser light.
If it exceeds 15wt%, concentration quenching occurs and is not practical.

Nd2O3、Yb2O3、Mo2O3は各々Nd3+、Yb3+
Mo3+イオンとしてレーザーの増感イオンとして
働き単独又は複合して添加される。
Nd 2 O 3 , Yb 2 O 3 and Mo 2 O 3 are respectively Nd 3+ , Yb 3+ ,
Mo 3+ ions serve as laser sensitizing ions and are added singly or in combination.

この好ましい濃度範囲は単独のとき重量%で
Nd2O3;0.2〜15、Yb2O3;0.2〜15、Mo2O3;0.2
〜15、複合したときNd2O3+Yb2O3+Mo2O3
0.2〜15である。
This preferred concentration range is expressed in weight percent when taken alone.
Nd 2 O 3 ; 0.2 to 15, Yb 2 O 3 ; 0.2 to 15, Mo 2 O 3 ; 0.2
~15, when combined, Nd 2 O 3 + Yb 2 O 3 + Mo 2 O 3 ;
It is between 0.2 and 15.

Al2O3とP2O5は母体の石英ガラスのSi−O網目
構造中にNd+3のような発光イオン又は増感イオ
ンを導入し有効な蛍光特性を発揮することに働き
単独又は複合して1〜20wt%の範囲が好ましい。
Al 2 O 3 and P 2 O 5 work alone or in combination to introduce luminescent ions or sensitizing ions such as Nd +3 into the Si-O network structure of the matrix quartz glass and exhibit effective fluorescent properties. The preferred range is 1 to 20 wt%.

以上の組成範囲の石英レーザーガラスは下記の
特性を示す。
The quartz laser glass having the above composition range exhibits the following characteristics.

Γ レーザー特性 Er2O3(wt%) 0.2〜5% 誘導放出断面積σρ(10- 20cm2) 2.2〜5 蛍光寿命(μsec) 250〜400 発振波長(μm) 1.55 Γ レーザー損傷闘値(1nsecパルス)(J/cm2) 表面損傷 20〜25 内部損傷 30〜40 Γ 光学的特性 非線形屈折率n2(×10- 13esu) 0.6 屈折率(1.55μ) 1440〜1460 アツベ数(νd) 68 ブリユースター角 55゜13′〜55゜34′ 線膨張係数(10- 6/℃) 0.5〜0.9 屈折率の温度係数(0〜100℃) 1.0×10- 5/℃ 光路長の温度変化 5.0〜5.4 Γ熱的特性 熱伝導率(25℃)(cal/cm sec℃)
0.030〜0.035 Ο その他特性 ヌープ硬さ(100g)(1Kgf/mm2) 590〜620 (製造方法) 本発明の石英レーザーガラスを製造するには基
本的に火焔酸化分解溶融(Flame oxidation
hydrolysis Method)法かスート混入ガラス化
(Soote impregnation)法かゾルゲル法を用い
る。
Γ Laser characteristics Er 2 O 3 (wt%) 0.2 to 5% Stimulated emission cross section σρ (10 - 20 cm 2 ) 2.2 to 5 Fluorescence lifetime (μsec) 250 to 400 Laser wavelength (μm) 1.55 Γ Laser damage threshold ( 1nsec pulse) (J/cm 2 ) Surface damage 20-25 Internal damage 30-40 Γ Optical characteristics Nonlinear refractive index n 2 (×10 - 13 esu) 0.6 Refractive index (1.55μ) 1440-1460 Atsube number (νd) 68 Brewster angle 55°13' to 55°34' Coefficient of linear expansion (10 - 6 /℃) 0.5 to 0.9 Temperature coefficient of refractive index (0 to 100℃) 1.0×10 - 5 /℃ Temperature change in optical path length 5.0~5.4 Γ Thermal properties Thermal conductivity (25℃) (cal/cm sec℃)
0.030~0.035 ΟOther characteristics Knoop hardness (100g) (1Kgf/ mm2 ) 590~620 (Production method) The quartz laser glass of the present invention is basically produced by flame oxidation and melting.
hydrolysis method, soote impregnation method, or sol-gel method.

火焔酸化分解溶融は直接高温酸化中に石英レー
ザーガラスを構成する成分の化合物を添加する方
法−ベルヌイ法、高周波酸素プラズマ法など−で
ある。
Flame oxidation decomposition melting is a method of adding a compound of components constituting quartz laser glass during direct high-temperature oxidation, such as the Bernoulli method and high-frequency oxygen plasma method.

例えば石英レーザーガラスを構成する各々の元
素のハロゲン化物の蒸気を酸素プラズマ炎仲に導
入する。低沸点のハロゲン化化合物、例えば
SiO2(シリカ)源として四塩化ケイ素(SiCl4
P2O5源としてオキシ塩化燐(POCl3)キヤリヤ
ーガスとしてのアルゴン(Ar)と共に導入し高
沸点のハロゲン化化合物AlCl3、NdCl3、ErCl3
YbCl3、MOCl3は高温にして高蒸気圧にして火焔
中に単独又は混合して各々所定量導入する。
For example, vapors of halides of each element constituting quartz laser glass are introduced into an oxygen plasma flame. Low-boiling halogenated compounds, e.g.
Silicon tetrachloride (SiCl 4 ) as a SiO 2 (silica) source
Phosphorus oxychloride (POCl 3 ) as a P 2 O 5 source, high boiling point halogenated compounds AlCl 3 , NdCl 3 , ErCl 3 , introduced together with argon (Ar) as a carrier gas;
YbCl 3 and MOCl 3 are heated to a high temperature and have a high vapor pressure, and are introduced into the flame in predetermined amounts individually or in combination.

以上の方法の別法として光フアイバーの製造に
も用いられるCVD法(変法としてのVAD法)が
ある。低温で酸水素炎中でケイ素のハロゲン化物
の加水分解したスス状酸化物を支持体に堆積させ
る。
An alternative method to the above methods is the CVD method (VAD method as a modified method), which is also used for manufacturing optical fibers. Hydrolyzed soot-like oxides of silicon halides are deposited on a support in an oxyhydrogen flame at low temperatures.

このスート状のシリカ堆積物の空孔中に常温で
添加元素のハロゲン化物のアルコール溶液を含浸
させ、乾燥アルコールを除去後1400℃以上の高温
でHe、Cl2雰囲気中で加熱し透明な石英ガラス体
をうるものである。又ソルゲル法ではケイ素のア
ルコキシド溶液又はこの加水分解物のシリカゲル
や、ケイ素ハロゲン化物の火災分解酸化物(例フ
ユームドシリカ)の分散コロイドゾルに添加元素
のアルコキシド溶液や無機、有機化合物を導入し
たのち、得られた混合ゲルを1000℃以上に注意深
く加熱、必要によつてはHe−Cl2処理を行つて石
英ガラス体をうるものであり、石英レーザーガラ
スの製造に適用できる。
The pores of this soot-like silica deposit are impregnated with an alcoholic solution of a halide as an additive element at room temperature, and after removing the dry alcohol, heated in a He, Cl 2 atmosphere at a high temperature of 1400°C or higher to form transparent quartz glass. It nourishes the body. In addition, in the sol-gel method, an alkoxide solution of an additive element or an inorganic or organic compound is introduced into a dispersion colloidal sol of a silicon alkoxide solution or its hydrolyzed product, silica gel, or a fire-decomposed oxide of silicon halide (e.g. fumed silica). The mixed gel is carefully heated to 1000°C or higher, and if necessary, He-Cl 2 treatment is performed to obtain a quartz glass body, which can be applied to the production of quartz laser glass.

以上の方法で作られた石英レーザーガラス体を
高温において管、棒をへてフアイバーに加工す
る。
The quartz laser glass body made by the above method is processed into a tube or rod into a fiber at a high temperature.

(効果) 本発明石英レーザーガラスは熱膨張率が他のす
べての材料より極めて小さいので光路長変化が小
さく安定して使用出来る。かつ、熱伝導率がよい
ので連続発振増幅ができる。
(Effects) Since the quartz laser glass of the present invention has an extremely smaller coefficient of thermal expansion than all other materials, it can be stably used with little change in optical path length. Moreover, since it has good thermal conductivity, continuous wave amplification is possible.

又石英系光フアイバーで最も伝送損失の小さい
1.55μ帯の発振ができる。1.55μ帯の光透過率はほ
ぼ100%である。さらに耐久性がよく焼けがおこ
りにくく光学的に安定であり、かつまた光学的に
均質性がよくレーザーによる損傷は極めて小さ
い。
It also has the lowest transmission loss among silica-based optical fibers.
Capable of oscillating in the 1.55μ band. The light transmittance in the 1.55μ band is almost 100%. Furthermore, it has good durability, is resistant to burnout, is optically stable, has good optical homogeneity, and is extremely susceptible to laser damage.

当該石英レーザーガラスは上記の特長を有する
ことが見いだされ前記目的を遂行できる。
The quartz laser glass has been found to have the above-mentioned features and can achieve the above-mentioned purpose.

本発明の石英レーザーガラスをCVD法(変法
としてのVAD法)を用いて製造した。
The quartz laser glass of the present invention was manufactured using the CVD method (VAD method as a modified method).

実施例 1 石英の融点1713℃よりはるかに低温の1100℃で
H2ガス6/min、O2ガス13/minでの酸水素
炎中にケイ素のハロゲン化物であるSiCl40.6/
minをキヤリアーのArガスとともに導入して加
水分解した。
Example 1 At 1100°C, which is much lower than the melting point of quartz, 1713°C.
Silicon halide SiCl 4 0.6/min in an oxyhydrogen flame with H 2 gas 6/min and O 2 gas 13/min
min was introduced together with carrier Ar gas for hydrolysis.

得られたスス状酸化物を石英ターゲツト上に堆
積させ50mmφ×150mmのスート状のシリカ堆積
を得た。
The obtained soot-like oxide was deposited on a quartz target to obtain a soot-like silica deposit measuring 50 mmφ×150 mm.

このスート状のシリカ堆積物の空孔中に常温で
添加元素のハロゲン化化合物のアルコール溶液と
してErCl3がEr2O3/SiO2=0.5wt%溶けたメタノ
ール溶液と、NdCl3がNd2O3/SiO2=2wt%、
YbCl3がYb2O3/SiO2=1wt%、MoCl3
Mo2O3/SiO2=1wt%、AlCl3がAl2O3/SiO2
2wt、PoCl3がP2O5/SiO2=3wtが単独で各々溶
けたメタノール溶液を含浸させた。
In the pores of this soot-like silica deposit, a methanol solution in which ErCl 3 is dissolved at Er 2 O 3 /SiO 2 =0.5wt% as an alcoholic solution of a halogenated compound as an added element at room temperature, and NdCl 3 is dissolved in Nd 2 O. 3 /SiO 2 = 2wt%,
YbCl 3 is Yb 2 O 3 /SiO 2 = 1wt%, MoCl 3 is
Mo 2 O 3 /SiO 2 = 1wt%, AlCl 3 is Al 2 O 3 /SiO 2 =
It was impregnated with a methanol solution in which 2wt of PoCl 3 and 3wt of P 2 O 5 /SiO 2 were individually dissolved.

その後、室温大気中で24時間乾燥させ、アルコ
ールを除去後、1400℃以上の高温(1400〜1600
℃)でHe=3/min、Cl2=0.1/min(また
はSOCl2=0.07g/min)の雰囲気で加熱し透明
な石英ガラス体を得た。
After that, it is dried in the air at room temperature for 24 hours to remove alcohol, and then dried at a high temperature of 1400℃ or higher (1400-1600℃).
℃) in an atmosphere of He=3/min and Cl 2 =0.1/min (or SOCl 2 =0.07 g/min) to obtain a transparent quartz glass body.

得られた石英レーザーガラス母体の特性は下記
の通りであつた。
The properties of the obtained quartz laser glass matrix were as follows.

非線形屈折率 0.6×10- 13esu 熱膨張率 5×10- 7℃ 熱伝導率 0.030cal/cmsec℃ 耐水性(wtloss%)(H2O100℃1h)
0.000以均質性 4×10-6以下 実施例 2 NdCl3、YbCl3、MoCl3を(Nd2O3+Yb2O3
Mo2O3)/SiO2=4wt%、AlCl3、POCl3
(Al2O3+P2O5):/SiO2=5wt%となるように複
合して導入した以外は実施例1に準じて石英ガラ
ス体を得た。
Nonlinear refractive index 0.6×10 - 13 esu Thermal expansion coefficient 5×10 - 7 ℃ Thermal conductivity 0.030cal/cmsec℃ Water resistance (wtloss%) (H 2 O 100℃ 1h)
Homogeneity of 0.000 or more 4×10 -6 or less Example 2 NdCl 3 , YbCl 3 , MoCl 3 (Nd 2 O 3 + Yb 2 O 3 +
Example 1 except that AlCl 3 and POCl 3 were introduced in combination so that (Al 2 O 3 + P 2 O 5 ):/ SiO 2 = 5 wt%. A quartz glass body was obtained in the same manner.

得られた石英レーザーガラス母体の特性は下記
の通りであつた。
The properties of the obtained quartz laser glass matrix were as follows.

非線形屈折率 0.6×10-13esu 熱膨張率 6×10-7/℃ 熱伝導率 0.031cal/cmsec℃ 耐水性(wt loss%)(H2O100℃1h) 0.000以下 均質性 4×10-6以下Nonlinear refractive index 0.6×10 -13 esu Thermal expansion coefficient 6×10 -7 /℃ Thermal conductivity 0.031cal/cmsec℃ Water resistance (wt loss%) (H 2 O 100℃ 1h) Homogeneity below 0.000 4×10 -6 below

Claims (1)

【特許請求の範囲】 1 重量%で、Er2O3:0.1〜15、Nd2O3:0.2〜
15、Yb2O3:0.2〜15、Mo2O3:0.2〜15、
Al2O3:1〜20、P2O5:1〜20、残りSiO2からな
る石英レーザーガラス。 2 重量%で、Er2O3:0.1〜15、Nd2O3+Yb2O3
+Mo2O3:0.2〜15、Al2O3+P2O5:1〜20、残
りSiO2からなる石英レーザーガラス。
[Claims] 1% by weight, Er2O3 : 0.1~15, Nd2O3 : 0.2 ~
15, Yb2O3 : 0.2 ~ 15 , Mo2O3 : 0.2~15,
Quartz laser glass consisting of Al2O3 : 1-20, P2O5 : 1-20, and the remainder SiO2 . 2% by weight, Er 2 O 3 : 0.1-15, Nd 2 O 3 + Yb 2 O 3
Quartz laser glass consisting of + Mo2O3 : 0.2 to 15, Al2O3 + P2O5 : 1 to 20 , and the remainder SiO2 .
JP27314684A 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light Granted JPS61151034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27314684A JPS61151034A (en) 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27314684A JPS61151034A (en) 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light

Publications (2)

Publication Number Publication Date
JPS61151034A JPS61151034A (en) 1986-07-09
JPH058129B2 true JPH058129B2 (en) 1993-02-01

Family

ID=17523754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27314684A Granted JPS61151034A (en) 1984-12-26 1984-12-26 Quartz laser glass for amplifying infrared light

Country Status (1)

Country Link
JP (1) JPS61151034A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184386A (en) * 1986-09-18 1988-07-29 Furukawa Electric Co Ltd:The Optical fiber and optical fiber type light emitting material
JPS6437425A (en) * 1987-07-31 1989-02-08 Seiko Epson Corp Production of doped quartz glass
GB8724736D0 (en) * 1987-10-22 1987-11-25 British Telecomm Optical fibre
JPH04106418U (en) * 1991-02-27 1992-09-14 三菱重工業株式会社 air conditioner
JP2000086283A (en) * 1998-09-08 2000-03-28 Ohara Inc Luminescent glass
WO2009009888A1 (en) * 2007-07-16 2009-01-22 Coractive High-Tech Inc. Light emitting devices with phosphosilicate glass
RU2482079C2 (en) * 2011-08-31 2013-05-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Luminescent quartz glass

Also Published As

Publication number Publication date
JPS61151034A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
Wang et al. Tellurite glass: a new candidate for fiber devices
AU743385B2 (en) Composition for optical waveguide article and method for making continuous clad filament
TW506951B (en) Fluorinated rare earth doped glass and glass-ceramic articles
JPH05283789A (en) Optical fiber and manufacture thereof
JP2008518443A (en) Double clad rare earth doped single polarization optical fiber with multiple air holes
US6385384B1 (en) Glasses containing rare earth fluorides
JPH058129B2 (en)
JPS61215233A (en) Silicophosphate laser glass
CN112068243B (en) Large-mode-field triple-clad optical fiber, preparation method thereof and optical fiber laser
Martucci et al. Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides
JPH057332B2 (en)
JPH058130B2 (en)
KR20010032599A (en) Rare Earth Element-Halide Environments in Oxihalide Glasses
JP2004277252A (en) Optical amplification glass and optical waveguide
JP2931026B2 (en) Method for producing rare earth element doped glass
JP2001516958A5 (en)
Ballato Optical fibers
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
KR20030087119A (en) Tm ION-DOPED SILICATE GLASS AND THE USE THEREOF
JPH07211979A (en) Fiber for optical amplifier
JPS63195147A (en) Optical fiber
JPS60112635A (en) Manufacture of glass optical fiber preform
JPH03228849A (en) Multicomponental glass fiber doped with rare earth
JPH05279066A (en) Base material for rare earth element-doped quartz glass optical fiber and its manufacture
JPS63310744A (en) Production of glass doped with rare earth element