JPH057332B2 - - Google Patents

Info

Publication number
JPH057332B2
JPH057332B2 JP19805084A JP19805084A JPH057332B2 JP H057332 B2 JPH057332 B2 JP H057332B2 JP 19805084 A JP19805084 A JP 19805084A JP 19805084 A JP19805084 A JP 19805084A JP H057332 B2 JPH057332 B2 JP H057332B2
Authority
JP
Japan
Prior art keywords
laser glass
quartz
laser
glass
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19805084A
Other languages
Japanese (ja)
Other versions
JPS6177634A (en
Inventor
Akira Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Original Assignee
NIPPON SEKIEI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP19805084A priority Critical patent/JPS6177634A/en
Publication of JPS6177634A publication Critical patent/JPS6177634A/en
Publication of JPH057332B2 publication Critical patent/JPH057332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は石英レーザーガラス、さらに詳しくは
従来のレーザーガラスにないすぐれた特長をもつ
石英レーザーガラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to quartz laser glass, and more particularly to quartz laser glass having excellent features not found in conventional laser glasses.

<従来の技術> 自己集束はレーザーガラスの非線形屈折率でき
まるので、この小さいレーザーガラス程高出力で
使用できる。しかし、従来のケイ酸塩系、燐酸塩
系のレーザーガラスではレーザー光がレーザーガ
ラス中で自己集束をおこなうために超高出力では
使用できなかつた。
<Prior Art> Since self-focusing is determined by the nonlinear refractive index of the laser glass, the smaller the laser glass is, the higher the output power can be used. However, conventional silicate-based and phosphate-based laser glasses cannot be used at ultra-high power because the laser beam self-focuses within the laser glass.

<発明が解決しようとする問題点> 従来のケイ酸塩系及び燐酸塩系レーザーガラス
よりも画期的に非線形屈折率、熱膨張率が小さ
く、熱伝導率、紫外線透過率が大きく、かつ、耐
水性にすぐれたレーザーガラスを提供することを
目的とするものである。
<Problems to be solved by the invention> The nonlinear refractive index and coefficient of thermal expansion are significantly lower than those of conventional silicate-based and phosphate-based laser glasses, and the thermal conductivity and ultraviolet transmittance are large. The purpose is to provide laser glass with excellent water resistance.

<問題点を解決するための手段> 本発明者は前記目的とするレーザーガラスを求
めて種々研究した結果、下記組成の石英レーザー
ガラスは下記の特長を有することを見いだした。
<Means for Solving the Problems> As a result of various studies conducted by the present inventor in search of the above-mentioned objective laser glass, the inventor found that a quartz laser glass having the following composition has the following features.

本発明の石英レーザーガラスの組成 重量%で、Nd2O3:0.5〜10、Cr2O3:0.2〜10、
Tb2O7:0.2〜10、Eu2O3:0.2〜10、Ce2O3:0.2
〜10、Al2O3:1〜20、P2O5:1〜20、残りSiO2
からなる石英レーザーガラスである。
Composition of the quartz laser glass of the present invention: Nd 2 O 3 : 0.5-10, Cr 2 O 3 : 0.2-10, in weight %
Tb2O7 : 0.2 ~ 10, Eu2O3 : 0.2 ~ 10 , Ce2O3 : 0.2
~10, Al2O3 : 1-20, P2O5 : 1-20 , remaining SiO2
It is a quartz laser glass made of.

また、Cr2O3、Tb2O7、Eu2O3、Ce2O3の添加量
は、複合して用いるときCr2O3+Tb2O7+Eu2O3
+Ce2O3:0.2〜10、また、Al2O3、P2O5を複合し
て用いるときは、Al2O3+P2O5:1〜20となる石
英レーザーガラスである。
Moreover, the amount of addition of Cr 2 O 3 , Tb 2 O 7 , Eu 2 O 3 , and Ce 2 O 3 is Cr 2 O 3 +Tb 2 O 7 +Eu 2 O 3 when used in combination.
+Ce 2 O 3 : 0.2 to 10, and when Al 2 O 3 and P 2 O 5 are used in combination, the quartz laser glass has Al 2 O 3 +P 2 O 5 : 1 to 20.

本発明の石英レーザーガラスの特長 (1) 従来のケイ酸塩系、燐酸塩系のレーザーガラ
スの各々の約1/3、1/2の非線形屈折率をもつも
ので同じ大きさで3、2倍の高出力をうること
ができる。
Features of the quartz laser glass of the present invention (1) It has a nonlinear refractive index of approximately 1/3 and 1/2 that of conventional silicate-based and phosphate-based laser glasses, respectively, and has a nonlinear refractive index of 3 and 2 with the same size. You can get twice as much power.

(2) 熱膨張率が従来のレーザーガラスの1/20以下
であるので光路長変化が小さく安定して使用で
きる。
(2) Since the coefficient of thermal expansion is less than 1/20 of that of conventional laser glass, changes in optical path length are small and it can be used stably.

(3) 熱伝導率が従来のレーザーガラスの約2倍大
きいので冷却効率がよく約2倍の高くりかえし
度がえられる。
(3) Thermal conductivity is about twice as high as conventional laser glass, so it has good cooling efficiency and can achieve about twice the repeatability.

(4) 当石英レーザーガラスは従来のレーザーガラ
スと違つて紫外域での光学的吸収を有効に使用
でき励起効率を高めることができる。
(4) Unlike conventional laser glasses, this quartz laser glass can effectively use optical absorption in the ultraviolet region, increasing excitation efficiency.

(5) 当石英レーザーガラスはソラリゼーシヨンが
ないので紫外線に対する保護の必要がない。
(5) Since this quartz laser glass has no solarization, there is no need for protection against ultraviolet rays.

(6) 当石英レーザーガラスは耐水性がよく、磨き
表面の焼けがおこりにくく光学的に安定であ
る。
(6) Our quartz laser glass has good water resistance, is hard to burn on the polished surface, and is optically stable.

(7) 当石英レーザーガラスは光学的に均質性がよ
くレーザーによる損傷がきわめて少ない。
(7) Our quartz laser glass has good optical homogeneity and is extremely unlikely to be damaged by laser.

(8) 当石英レーザーガラスの上記諸特性を数字で
述べると次の通りである。
(8) The above-mentioned properties of this quartz laser glass can be expressed numerically as follows.

非線形屈折率 0.6×10-13esu 熱膨張率 5〜10×10-7/℃ 熱伝導率 0.030〜0.035cal/cmsec℃ 耐水性(wt loss%)(H2O100℃1h) 0.000以下 均質性 4×10-6以下 である。Nonlinear refractive index 0.6× 10 -13 esu Coefficient of thermal expansion 5 to 10 ×10 -6 or less.

<作用> 当該石英レーザーガラスにおいてNd2O3
Nd3+イオンとしてレーザーの発光イオンとして
働き、好ましい発振範囲はNd2O30.5〜10wt%で
ある。10wt%を超えると濃度消光をおこし実用
的でない。
<Function> In the quartz laser glass, Nd 2 O 3 is
Nd 3+ ions act as light emitting ions for lasers, and the preferred oscillation range is 0.5 to 10 wt% Nd 2 O 3 . If it exceeds 10wt%, concentration quenching occurs and is not practical.

Cr2O3、Ce2O3、Tb2O7、Eu2O3は各々Cr3+
Ce3+、Tb3+、Eu3+イオンとしてレーザーの増感
イオンとして働き単独又は複合して添加される。
Cr 2 O 3 , Ce 2 O 3 , Tb 2 O 7 and Eu 2 O 3 are each Cr 3+ ,
Ce 3+ , Tb 3+ , and Eu 3+ ions act as laser sensitizing ions and are added singly or in combination.

この好ましい濃度範囲は、単独のとき Cr2O3 0.2〜10wt%、 Ce2O3 0.2〜10wt%、 Tb2O7 0.2〜10wt%、 Eu2O3 0.2〜10wt%、 複合したときCr2O3+Ce2O3+Tb2O7+Eu2O3
0.2〜10である。
This preferred concentration range is Cr 2 O 3 0.2-10 wt% when alone, Ce 2 O 3 0.2-10 wt%, Tb 2 O 7 0.2-10 wt%, Eu 2 O 3 0.2-10 wt%, and Cr 2 when combined. O 3 +Ce 2 O 3 +Tb 2 O 7 +Eu 2 O 3
It is between 0.2 and 10.

Al2O3とP2O5は母体の石英ガラスのSi−O網目
構造中にNd3+のような発光性イオン又は増感イ
オンを導入し有効な蛍光特性を発揮することに働
き単独又は複合して1〜20wt%の範囲が好まし
い。
Al 2 O 3 and P 2 O 5 work to introduce luminescent ions or sensitizing ions such as Nd 3+ into the Si-O network structure of the matrix quartz glass and exhibit effective fluorescent properties. The combined amount is preferably in the range of 1 to 20 wt%.

以上の組成範囲の石英レーザーガラスは下記の
特性を示す。
The quartz laser glass having the above composition range exhibits the following characteristics.

Γ レーザー特性 Nd2O3(wt%) 0.5〜8 誘導放出断面積σp(10-20cm2) 2.2〜5 蛍光寿命(μsec) 250〜400 発振波長(μm) 1.06 減衰係数(1.06μ)(m-1) 0.1以下 Γ レーザー損傷閾値(1nsecパルス)(J/cm2) 表面損傷 20〜25 内部損傷 30〜40 Γ 光学的特性 非線形屈折率n2(×10-13esu) 0.6 屈折率n(1.06μ) 1.450〜1.470 アツベ数(νd) 68 ブリユースター角 55°24′〜55°47′ 線膨張係数(10-6/℃) 0.5〜0.9 屈折率の温度係数(0〜100℃) 1.0×10-5/℃ 光路長の温度変化(10-6/℃) 5.0〜5.4 Γ 熱的特性 熱伝導率(25℃)(cal/cmsec℃)0.030〜0.035 Γ 化学的特性 耐水性(wt loss%)(H2O100℃1h) 0.000以下 Γ その他特性 ヌープ硬さ(100g)(1Kgf/mm2) 590〜620 製造方法 本発明の石英レーザーガラスを製造するには基
本的に火焔酸化分解溶融(Flame oxidation
hydro−lysis Method)法かスート混入ガラス化
法(Soote impregnation)を用いる。
Γ Laser characteristics Nd 2 O 3 (wt%) 0.5~8 Stimulated emission cross section σp (10 -20 cm 2 ) 2.2~5 Fluorescence lifetime (μsec) 250~400 Laser wavelength (μm) 1.06 Attenuation coefficient (1.06μ) ( m -1 ) 0.1 or less Γ Laser damage threshold (1 nsec pulse) (J/cm 2 ) Surface damage 20-25 Internal damage 30-40 Γ Optical properties Nonlinear refractive index n 2 (×10 -13 esu) 0.6 Refractive index n (1.06μ) 1.450 to 1.470 Atsbe number (νd) 68 Brewster angle 55°24' to 55°47' Coefficient of linear expansion (10 -6 /℃) 0.5 to 0.9 Temperature coefficient of refractive index (0 to 100℃) 1.0×10 -5 /℃ Temperature change in optical path length (10 -6 /℃) 5.0 to 5.4 Γ Thermal properties Thermal conductivity (25℃) (cal/cmsec℃) 0.030 to 0.035 Γ Chemical properties Water resistance (wt loss%) (H 2 O 100℃ 1h ) 0.000 or less (Flame oxidation
The hydrolysis method or soote impregnation method is used.

火焔酸化分散溶融は直接高温酸化焔中に石英レ
ーザーガラスを構成する成分の化合物を添加する
方法−ベルヌイ法、高周波酸素プラズマ法等であ
る。
Flame oxidation dispersion melting is a method in which a compound of components constituting quartz laser glass is added directly into a high-temperature oxidation flame, such as the Bernoulli method and the high-frequency oxygen plasma method.

例えば石英レーザーガラスを構成する各々の元
素のハロゲン化物の蒸気を酸素プラズマ炎中に導
入する。低沸点のハロゲン化化合物、例えば
SiO2(シリカ)源として四塩化ケイ素(SiCl4
P2O5源としてオキシ塩化燐(POCl3)Cr2O3源と
しての塩化クロミル(CrO2Cl2)はキヤリヤーガ
スとしてのアルゴン(Ar)と共に導入し、高沸
点のハロゲン化化合物AlCl3、NdCl3、CeCl3
TbCl3、EuCl3は高温にして高蒸気圧にして火焔
中に単独又は混合して各々所定量導入する。
For example, vapors of halides of each element constituting quartz laser glass are introduced into an oxygen plasma flame. Low-boiling halogenated compounds, e.g.
Silicon tetrachloride (SiCl 4 ) as a SiO 2 (silica) source
Phosphorous oxychloride (POCl 3 ) as a P 2 O 5 source, chromyl chloride (CrO 2 Cl 2 ) as a Cr 2 O 3 source are introduced together with argon (Ar) as a carrier gas, and high boiling point halogenated compounds AlCl 3 , NdCl 3 , CeCl3 ,
TbCl 3 and EuCl 3 are heated to high temperature and made to have high vapor pressure, and are introduced into the flame in predetermined amounts individually or in combination.

以上の方法の別法として光フアイバーの製造に
も用いられるCVD法(変法としてのVAD法)が
ある。低温で酸水素炎中でケイ素のハロゲン化物
の加水分解したスス状態化物を支持体に堆積させ
る。
An alternative method to the above methods is the CVD method (VAD method as a modified method), which is also used for manufacturing optical fibers. A hydrolyzed soot of a silicon halide is deposited on a support in an oxyhydrogen flame at low temperatures.

このスート状のシリカ堆積物の空孔中で常温で
添加元素のハロゲン化物のアルコール溶液を含浸
させ、乾燥アルコールを除去後、1400℃以上の高
温でHe、Cl2雰囲気中で加熱し透明な石英ガラス
体をうるものであり、石英レーザーガラスの製造
に適用できる。
The pores of this soot-like silica deposit are impregnated with an alcohol solution of the halide of the added element at room temperature, and after removing the dry alcohol, heated in a He, Cl 2 atmosphere at a high temperature of 1400℃ or higher to form transparent quartz. It can be applied to the production of quartz laser glass.

<効果> 本発明石英レーザーガラスは従来のケイ酸塩
系、燐酸塩系レーザーガラスのそれぞれに比して
非線形屈折率約1/3〜1/2であるので同じ大きさ
で、3、2倍の高出力が得られ、熱膨張率が従来
のレーザーガラスの約1/20以下なので、光路長変
化が小さく安定して使用でき、かつ、熱伝導率が
従来のレーザーガラスの約2倍大きいので、冷却
効率がよく約2倍のくりかえしが得られ、紫外域
での光学的吸収を有効に使用でき励起効率を高め
ることができ、ソラリゼーシヨンがないので紫外
線に対する保護をする必要がなく、さらに耐水性
がよく磨き表面の焼けがおこりにくく、光学的に
安定であり、かつまた光学的に均質性がよくレー
ザーによる損傷がきわめて少ない。
<Effects> The quartz laser glass of the present invention has a nonlinear refractive index of about 1/3 to 1/2 compared to conventional silicate-based and phosphate-based laser glasses, so it has a nonlinear refractive index of about 3 to 2 times that of conventional silicate-based and phosphate-based laser glasses. It can obtain high output power, has a thermal expansion coefficient of about 1/20 or less of conventional laser glass, so it can be used stably with little change in optical path length, and has a thermal conductivity that is about twice as high as conventional laser glass. , has good cooling efficiency and can obtain approximately twice the number of repetitions, can effectively use optical absorption in the ultraviolet region to increase excitation efficiency, does not require protection against ultraviolet rays as there is no solarization, and is water resistant. It has a well-polished surface that is hard to burn, is optically stable, has good optical homogeneity, and is extremely unlikely to be damaged by laser.

本発明の石英レーザーガラスは、石英ガラスの
もつ本質的な構造(X線反射像、赤外線吸収像な
ど)、物理的、化学的、熱的、光学的特性を十分
に保持する。
The quartz laser glass of the present invention sufficiently retains the essential structure (X-ray reflection image, infrared absorption image, etc.), physical, chemical, thermal, and optical properties of quartz glass.

ガラスは上記の特長を有することが見いださ
れ、前記目的を遂行できる。
Glass has been found to have the above-mentioned characteristics and can fulfill the above-mentioned purpose.

本発明の石英レーザーガラスを火焔酸化分解溶
融法の高周波酸素プラズマ法を用いて製造した。
The quartz laser glass of the present invention was manufactured using a flame oxidation decomposition melting method and a high frequency oxygen plasma method.

実施例 1 石英レーザーガラスの構成する各々の元素のハ
ロゲン化物の蒸気をO2ガス約200/hr流による
酸素プラズマ炎中に導入した。
Example 1 Vapors of halides of each element constituting a quartz laser glass were introduced into an oxygen plasma flame using a flow of O 2 gas of about 200/hr.

低沸点のハロゲン化化合物として、SiO2(シリ
カ)源としての四塩化ケイ素(SiCl4:沸点57.6
℃)200c.c./minとともにP2O5源としてオキシ塩
化燐(POCl3:沸点107℃)をP2O5/SiO2=4wt
%になるように添加し、またCr2O3源としての塩
化クロミル(CrO2Cl2:沸点116.63℃)を
Cr2O3/SiO2=4wt%になるように添加した。
As a low boiling point halogenated compound, silicon tetrachloride ( SiCl4 : boiling point 57.6) as a source of SiO2 (silica).
℃)200c.c./min and phosphorus oxychloride (POCl 3 : boiling point 107℃) as P 2 O 5 source P 2 O 5 /SiO 2 = 4wt
%, and chromyl chloride (CrO 2 Cl 2 : boiling point 116.63°C) as a Cr 2 O 3 source.
It was added so that Cr 2 O 3 /SiO 2 =4wt%.

これらは、低沸点のため比較的低温で蒸気化で
きるのでキヤリヤーガスとしてのアルゴン(Ar)
と共に導入した。
These have low boiling points and can be vaporized at relatively low temperatures, so argon (Ar) is used as a carrier gas.
It was introduced along with.

高沸点のハロゲン化化合物については、AlCl3
(融点190℃)をAl2O3/SiO2=3wt%になるよう
に添加し、また、NdCl3(融点784℃)をNd2O3
SiO2=1wt%、CeCl3(融点822℃)をCe2O3
SiO2=2wt%、TbCl3(融点588℃)をTb2O7
SiO2=2wt%、EuCl3(融点623℃)をEu2O3
SiO2=2wt%になるように添加し、これらは高沸
点のため高温、高蒸気圧にして火焔中に単独に
各々上記所定量導入した。
For high-boiling halogenated compounds, AlCl 3
(melting point 190°C) was added so that Al 2 O 3 /SiO 2 = 3wt%, and NdCl 3 (melting point 784°C) was added to Nd 2 O 3 /SiO 2 =3wt%.
SiO 2 = 1wt%, CeCl 3 (melting point 822℃) is converted into Ce 2 O 3 /
SiO 2 = 2wt%, TbCl 3 (melting point 588℃) is converted into Tb 2 O 7 /
SiO 2 = 2wt%, EuCl 3 (melting point 623℃) is converted into Eu 2 O 3 /
SiO 2 was added in an amount of 2 wt%, and due to their high boiling points, they were brought into the flame at high temperatures and high vapor pressures, and were individually introduced in the above-mentioned amounts into the flame.

その後、10Hr気相酸化反応させ、ターゲツト
上にガラス状物質として堆積させ、30mmφ×150
mmの石英レーザーガラス母体を得た。
After that, a gas phase oxidation reaction was performed for 10 hours, and a glass-like substance was deposited on the target.
A quartz laser glass matrix of mm was obtained.

得られた石英レーザーガラス母体の特性は下記
の通りであつた。
The properties of the obtained quartz laser glass matrix were as follows.

非線形屈折率 0.6×10-13esu 熱膨張率 6×10-7/℃ 熱伝導率 0.031cal/cmsec℃ 耐水性(wt loss%)(H2O100℃1h) 0.000以下 均質性 4×10-6以下 実施例 2 CeCl3、TbCl3、EuCl3を(Ce2O3+Tb2O7
Eu2O3)/SiO2=6wt%となるように混合して導
入した以外は実施例1に準じて30mmφ×150mm
の石英レーザーガラス母体を得た。
Nonlinear refractive index 0.6×10 -13 esu Thermal expansion coefficient 6×10 -7 /℃ Thermal conductivity 0.031cal/cmsec℃ Water resistance (wt loss%) (H 2 O 100℃ 1h) Homogeneity below 0.000 4×10 -6 The following Example 2 CeCl 3 , TbCl 3 , EuCl 3 (Ce 2 O 3 + Tb 2 O 7 +
30 mmφ x 150 mm according to Example 1 except that Eu 2 O 3 )/SiO 2 was mixed and introduced at 6 wt%.
A quartz laser glass matrix was obtained.

得られた石英レーザーガラス母体の特性は下記
の通りであつた。
The properties of the obtained quartz laser glass matrix were as follows.

非線形屈折率 0.6×10-13esu 熱膨張率 5×10-7/℃ 熱伝導率 0.032cal/cm sec℃ 耐水性(wt loss%)(H2O100℃1h) 0.000以下 均質性 4×10-6以下Nonlinear refractive index 0.6×10 -13 esu Thermal expansion coefficient 5×10 -7 /℃ Thermal conductivity 0.032cal/cm sec℃ Water resistance (wt loss%) (H 2 O 100℃ 1h) Homogeneity below 0.000 4×10 - 6 or less

Claims (1)

【特許請求の範囲】 1 重量%で、Nd2O3:0.5〜10、Cr2O3:0.2〜
10、Tb2O7:0.2〜10、Eu2O3:0.2〜10、Ce2O3
0.2〜10、Al2O3:1〜20、P2O5:1〜20、残り
SiO2からなる石英レーザーガラス。 2 重量%で、Nd2O3:0.5〜10、Cr2O3+Tb2O7
+Eu2O3+Ce2O3:0.2〜10、Al2O3+P2O5:1〜
20、残りSiO2からなる石英レーザーガラス。
[Claims] 1% by weight, Nd 2 O 3 : 0.5~10, Cr 2 O 3 : 0.2~
10, Tb2O7 : 0.2 ~ 10 , Eu2O3 : 0.2~ 10 , Ce2O3 :
0.2~10, Al2O3 : 1 ~ 20 , P2O5 : 1~20, remainder
Quartz laser glass consisting of SiO2 . 2% by weight, Nd 2 O 3 : 0.5-10, Cr 2 O 3 +Tb 2 O 7
+ Eu2O3 + Ce2O3 : 0.2 ~ 10 , Al2O3 + P2O5 : 1 ~
20, quartz laser glass consisting of remaining SiO2 .
JP19805084A 1984-09-21 1984-09-21 Quartz laser glass Granted JPS6177634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19805084A JPS6177634A (en) 1984-09-21 1984-09-21 Quartz laser glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19805084A JPS6177634A (en) 1984-09-21 1984-09-21 Quartz laser glass

Publications (2)

Publication Number Publication Date
JPS6177634A JPS6177634A (en) 1986-04-21
JPH057332B2 true JPH057332B2 (en) 1993-01-28

Family

ID=16384695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19805084A Granted JPS6177634A (en) 1984-09-21 1984-09-21 Quartz laser glass

Country Status (1)

Country Link
JP (1) JPS6177634A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083334A1 (en) 2005-01-31 2006-08-10 Georgia Tech Research Corporation Active current surge limiters
EP1946058B1 (en) 2005-10-24 2014-10-01 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags
JP5432121B2 (en) 2007-04-05 2014-03-05 ジョージア テック リサーチ コーポレーション Voltage surge and overvoltage protection
US9299524B2 (en) 2010-12-30 2016-03-29 Innovolt, Inc. Line cord with a ride-through functionality for momentary disturbances
US9270170B2 (en) 2011-04-18 2016-02-23 Innovolt, Inc. Voltage sag corrector using a variable duty cycle boost converter

Also Published As

Publication number Publication date
JPS6177634A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
CA1327845C (en) Optical fibre with fluorescent additive
TW506951B (en) Fluorinated rare earth doped glass and glass-ceramic articles
CA2289768A1 (en) Composition for optical waveguide article and method for making continuous clad filament
CA2613473C (en) Bismuth containing fluorophosphate glass and method for making thereof
US6385384B1 (en) Glasses containing rare earth fluorides
US6495481B1 (en) Glasses for laser and fiber amplifier applications and method for making thereof
JPS647015B2 (en)
JPH057332B2 (en)
JPH058129B2 (en)
JPS61215233A (en) Silicophosphate laser glass
CN112068243B (en) Large-mode-field triple-clad optical fiber, preparation method thereof and optical fiber laser
Martucci et al. Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides
JPH058130B2 (en)
RU2531958C2 (en) Electro-optical laser glass and method for production thereof
CA2275706A1 (en) Glass composition and optical device made therefrom
KR20010032599A (en) Rare Earth Element-Halide Environments in Oxihalide Glasses
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JPH06232489A (en) Rare earth material doped optical fiber for optical amplifier
JP3329465B2 (en) Halide glass composition
WO1999013541A1 (en) GLASS FOR HIGH AND FLAT GAIN 1.55 νm OPTICAL AMPLIFIERS
JP2001516958A5 (en)
JPH03265537A (en) Rare-earth element-doped glass and its production
Cavillon et al. A materials approach toward the mitigation of nonlinearities in glass optical fibers
Duan et al. Control of temperature dependent viscosity for manufacturing of Bi-doped active fiber
KR20030087119A (en) Tm ION-DOPED SILICATE GLASS AND THE USE THEREOF