JPS6177634A - Quartz laser glass - Google Patents

Quartz laser glass

Info

Publication number
JPS6177634A
JPS6177634A JP19805084A JP19805084A JPS6177634A JP S6177634 A JPS6177634 A JP S6177634A JP 19805084 A JP19805084 A JP 19805084A JP 19805084 A JP19805084 A JP 19805084A JP S6177634 A JPS6177634 A JP S6177634A
Authority
JP
Japan
Prior art keywords
laser glass
quartz
glass
quartz laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19805084A
Other languages
Japanese (ja)
Other versions
JPH057332B2 (en
Inventor
Akira Hayashi
瑛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Original Assignee
NIPPON SEKIEI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP19805084A priority Critical patent/JPS6177634A/en
Publication of JPS6177634A publication Critical patent/JPS6177634A/en
Publication of JPH057332B2 publication Critical patent/JPH057332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain quartz laser glass which is small in nonlinear refractive index or the like and large in ultraviolet rays transmittance and excellent in water resistance by containing Nd2O3, Cr2O3, Tb2O7, Eu2O3, Ce2O3, Al2O3 and P2O5 respectively in the specified proportion for SiO2. CONSTITUTION:The quartz laser glass is manufactured which consists of 0.5-10wt% Nd2O3, 0.2-10wt% Cr2O3, 0.2-10wt% Tb2O7, 0.2-10wt% Eu2O3, 0.2-10wt% Ce2O3, 0.2-10wt% (Cr2O3+Tb2O7+Eu2O3+Ce2O3), 1-20wt% Al2O3, 1-20wt% P2O5, 1-20wt% (A2O3+P2O5) and the balance SiO2. In this quartz laser glass, the nonlinear refractive index is about 1/3-1/2, thermal expansion coefficient is about <=1/20 and heat conductivity is about two times in comparison with a conventional glass and the quartz laser glass is excellent in water resistance, stable optically and excellent in homogeneity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は石英レーザーガラス、さらに詳しくは従来のレ
ーザーガラスにないすぐれた特長をもつ石英レーザーガ
ラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to quartz laser glass, and more particularly to quartz laser glass having excellent features not found in conventional laser glasses.

〈従来の技術〉 自己集束はレーザーガラスの非線形屈折率できまるので
、この小さいレーザーガラス程高出力で使用できる。し
かし、従来のケイ酸塩系、燐酸塩系のレーザーガラスで
はレーザー光がレーザーガラス中で自己集束をおこなう
ために超高出力では使用できなかった。
<Prior art> Since self-focusing is determined by the nonlinear refractive index of the laser glass, the smaller the laser glass, the higher the output power. However, conventional silicate-based and phosphate-based laser glasses cannot be used at ultra-high power because the laser beam self-focuses within the laser glass.

〈発明が解決しようとする問題点〉 従来のケイ酸塩系及び燐酸塩系レーザーガラスよりも画
期的に非線形屈折率、熱膨張率、熱伝導率が小さく、紫
外線透過率が大きく、かつ、耐水性にすぐれたレーザー
ガラスを提供することを目的とするものである。
<Problems to be solved by the invention> The nonlinear refractive index, thermal expansion coefficient, and thermal conductivity are significantly lower than those of conventional silicate-based and phosphate-based laser glasses, and the ultraviolet transmittance is large, and The purpose is to provide laser glass with excellent water resistance.

く問題点を解決するための手段〉 本発明者は前記目的とするレーザーガラスを求めて種々
研究した結果、下記組成の石英レーザーガラスは下記の
特長を有することを見いだした。
Means for Solving the Problems The inventors of the present invention conducted various studies in search of the above-mentioned objective laser glass, and found that a quartz laser glass having the following composition has the following features.

本発明の石英レーザーガラスの組成 重量%で、Nd2O,: 0.5〜10゜Cr2O3:
 0.2〜10.Tb、O,: 0.2〜10゜Eu2
O3: O−2〜10 、Ce z Os : O−2
〜10 。
The composition weight % of the quartz laser glass of the present invention is Nd2O: 0.5~10°Cr2O3:
0.2-10. Tb, O,: 0.2~10゜Eu2
O3: O-2~10, CezOs: O-2
~10.

Cr、○、+Tb20.+Eu、○、+Ce、o3:0
.2〜10.Al、O,:  1〜20.P2O5=1
〜20.Al、O+PzOs: 1〜20.残りSiO
,からなる石英レーザーガラス。
Cr, ○, +Tb20. +Eu, ○, +Ce, o3:0
.. 2-10. Al, O,: 1-20. P2O5=1
~20. Al, O+PzOs: 1-20. remaining SiO
, quartz laser glass consisting of.

本発明の石英レーザーガラスの特長 (1)従来のケイ酸塩系、燐酸塩系のレーザーガラスの
各々の約1/3.1/2の非線形屈折率をもつもので同
じ大きさで3,2倍の高出力をうろことができる。
Features of the quartz laser glass of the present invention (1) It has a nonlinear refractive index of approximately 1/3. Can reach twice as high output.

(2)熱膨張率が従来のレーザーガラスの1/20以下
であるので光路長変化が小さく安定して使用できる。
(2) Since the coefficient of thermal expansion is 1/20 or less of that of conventional laser glass, the change in optical path length is small and it can be used stably.

(3)熱伝導率が従来のレーザーガラスの約2倍大きい
ので冷却効率がよく約2倍の高くりかえし度かえられる
(3) Since the thermal conductivity is about twice as high as that of conventional laser glass, it has good cooling efficiency and can be reused about twice as often.

(4)当石英レーザーガラスは従来のレーザーガラスと
違って紫外域での光学的吸収を有効に使用でき励起効率
を高めることができる。
(4) Unlike conventional laser glasses, this quartz laser glass can effectively use optical absorption in the ultraviolet region, increasing excitation efficiency.

(5)当石英レーザーガラスはソラリゼーションがない
ので紫外線に対する保護の必要がない。
(5) Since our quartz laser glass does not undergo solarization, there is no need for protection against ultraviolet rays.

(6)当石英レーザーガラスは耐水性がよく、磨き表面
の焼けがおこりにくく光学的に安定である。
(6) Our quartz laser glass has good water resistance, and the polished surface is hard to burn and is optically stable.

(7)当石英レーザーガラスは光学的に均質性がよくレ
ーザーによる損傷がきわめて少ない。
(7) This quartz laser glass has good optical homogeneity and is extremely unlikely to be damaged by laser.

(8)当石英レーザーガラスの上記諸特性を数字で述べ
ると次の通りである。
(8) The above-mentioned properties of this quartz laser glass are described in numerical terms as follows.

非線形屈折率 0.6 X 10″″13esu熱膨張
率   5〜10 X I O−’/’C熱伝導率 0
.030〜0.035cal/am sec’C耐水性
(wt 1oss%)(H20100℃1 h )0.
000以下紫外線透過率  50%以下(10m / 
m 200nm)均質性      4X10−’以下 である。
Nonlinear refractive index 0.6 X 10''''13esu Coefficient of thermal expansion 5-10 X I O-'/'C Thermal conductivity 0
.. 030-0.035 cal/am sec'C Water resistance (wt 1oss%) (H20100°C 1 h) 0.
000 or less Ultraviolet transmittance 50% or less (10m/
m 200 nm) Homogeneity 4X10-' or less.

く作用〉 当該石英レーザーガラスにおいてNd2O□はNd+3
イオンとしてレーザーの発光イオンとして働き、好まし
い発振範囲はN d 20s  0 、5〜10%であ
る。10%以上では9度消光をおこし実用的でない。
Effect> In the quartz laser glass, Nd2O□ is Nd+3
The ion acts as a light emitting ion of a laser, and the preferable oscillation range is N d 20s 0 of 5 to 10%. If it exceeds 10%, 9 degree quenching occurs and is not practical.

Cr、O,、Ce2O,、Tb、07.Eu2O,は各
々Cu4L、Ce”λ、 T b” 、 E u”イオ
ンとじてレーザーの増感イオンとして働き単独又は複合
して添加される。
Cr, O,, Ce2O,, Tb, 07. Eu2O acts as a laser sensitizing ion along with Cu4L, Ce"λ, Tb", and Eu" ions, and is added singly or in combination.

この好ましい濃度範囲は Cr20=     o、2〜10wt%。This preferred concentration range is Cr20 = o, 2 to 10 wt%.

Ce、O,0、2〜10 w t%。Ce, O, 0, 2-10 wt%.

Tbよ07   0.2〜10wt%。Tbyo07 0.2-10wt%.

Eu、O,0,2〜10wt%。Eu, O, 0.2-10 wt%.

Cr、○、+Ce、O,+  Tb20t+Eu、0゜
0.2〜10である。
Cr, ○, +Ce, O, +Tb20t+Eu, 0°0.2-10.

A1.O,とp、o、は母体の石英ガラスのSi−〇網
目構造中にNd+3のような発光性イオン又は増感イオ
ンを導入し有効な蛍光特性を発揮することに働き単独又
は複合して1〜20wt%の範囲が好ましい。
A1. O, p, and o work to introduce luminescent ions or sensitizing ions such as Nd+3 into the Si-〇 network structure of the matrix quartz glass and exhibit effective fluorescent properties, either singly or in combination. A range of 20 wt% is preferable.

以上の組成範囲の石英レーザーガラスは下記の特性を示
す。
The quartz laser glass having the above composition range exhibits the following characteristics.

0レーザー特性 Nd、03(wt%)0.5〜8 誘導放出断面積σp(10″″”cm2)  0.2〜
5蛍光寿命(u s e c )       250
〜400発振波長(μm)         1.06
減衰係数(1,06μ )(m″″’)   0.1以
下Oレーザー損傷閾値(1n5ecパルス)(J/am
2)(1,06) 表面損傷            20〜25内部損傷
            30〜40Q光学的特性 非線形屈折率n 2(X 10””’esu)0.6屈
折率n (L 、 06 u )    1.450〜
1.470アツベ数(νd)68 ブリュースター角     55@24’〜55@47
’線膨張係数(10−’/’C)    0.5〜0.
9屈折率の温度係数(0〜100℃) 1.0 x 1
0−’/’C光路長の温度変化(10−’/”C)  
5.0〜5.40熱的特性 熱伝導率(25℃)(cal/cm sec’c)  
0.030−0.0350化学的特性 耐水性(wt 1oss%)(H,Otoo℃th) 
o、ooo以下0その他特性 ヌープ硬さく100g)(IKgf/mm”)   5
90〜620製造方法 本発明の石英レーザーガラスを製造するには基本的に火
焔酸化分解溶融(Flame oxidation h
ydr。
0 Laser characteristics Nd, 03 (wt%) 0.5~8 Stimulated emission cross section σp (10''''cm2) 0.2~
5 Fluorescence lifetime (U sec) 250
~400 oscillation wavelength (μm) 1.06
Attenuation coefficient (1,06μ) (m'''') 0.1 or less O laser damage threshold (1n5ec pulse) (J/am
2) (1,06) Surface damage 20~25 Internal damage 30~40Q Optical properties Nonlinear refractive index n 2 (X 10'''''esu) 0.6 Refractive index n (L, 06 u) 1.450 ~
1.470 Atsube number (νd) 68 Brewster angle 55@24'~55@47
'Linear expansion coefficient (10-'/'C) 0.5~0.
9 Temperature coefficient of refractive index (0-100℃) 1.0 x 1
0-'/'C Temperature change in optical path length (10-'/'C)
5.0-5.40 Thermal properties Thermal conductivity (25℃) (cal/cm sec'c)
0.030-0.0350 Chemical properties Water resistance (wt 1oss%) (H, Otoo℃th)
o, ooo or less 0 Other characteristics Knoop hardness 100g) (IKgf/mm”) 5
90-620 Production Method The quartz laser glass of the present invention is basically produced by flame oxidation decomposition and melting.
ydr.

−1ysis Method)mかスート混入ガラス化
法(Sooteimpregnation)を用いる。
-1ysis Method) or soot impregnation vitrification method is used.

火焔酸化分解溶融は直接高温酸化焔中に石英レーザーガ
ラスを構成する成分の化合物を添加する方法−ベルタイ
法、高周波酸素プラズマ法等である。
Flame oxidative decomposition melting is a method in which a compound of the components constituting quartz laser glass is added directly into a high-temperature oxidizing flame, such as the Bertai method and the high-frequency oxygen plasma method.

例えば石英レーザーガラスを構成する各々の元素のハロ
ゲン化物の蒸気を酸素プラズマ炎中に導入する。低沸点
のハロゲン化化合物、例えばSiO2(シリカ)源とし
て四塩化ケイ素(S i C1,)P2O3源としてオ
キシ塩化燐(P OCl 、) Cr 20、源として
の塩化クロミル(Cro、C1,)はキャリヤーガスと
してのアルゴン(Ar)と共に導入し、高沸点のハロゲ
ン化化合物A I C1,。
For example, vapors of halides of each element constituting quartz laser glass are introduced into an oxygen plasma flame. Low boiling point halogenated compounds, such as silicon tetrachloride (S i C1,) as a source of SiO2 (silica), phosphorus oxychloride (POCl,) Cr20 as a source of P2O3, chromyl chloride (Cro, C1,) as a source are carriers. High-boiling halogenated compound A I C1, introduced together with argon (Ar) as gas.

NdC1,、CeC11+ TbC1,、EuC1,は
高温にして高蒸気圧にして火焔中に単独又は混合して各
々所定量導入する。
NdC1, CeC11+ TbC1, EuC1, are heated to high temperature and have a high vapor pressure, and are introduced into the flame in predetermined amounts individually or as a mixture.

以上の方法の別法として光ファイバーの製造にも用いら
れるCVD法(変法としてのvAD法)がある。低温で
酸水素炎中でケイ素のハロゲン化物の加水分解したスス
状酸化物を支持体に堆積させる。
As an alternative method to the above methods, there is a CVD method (a modified vAD method) which is also used for manufacturing optical fibers. Hydrolyzed soot-like oxides of silicon halides are deposited on a support in an oxyhydrogen flame at low temperatures.

このスート状のシリカ堆積物の空孔中に常温で添加元素
のハロゲン化物のアルコール溶液を含浸させ、乾燥アル
コールを除去後、1400℃以上の高温でHe、CI□
雰囲気中で加熱し透明な石英ガラス体をうるものであり
1石英レーザーガラスの製造に適用できる。
The pores of this soot-like silica deposit are impregnated with an alcohol solution of the halide of the added element at room temperature, and after removing the dry alcohol, He, CI□
It can be heated in an atmosphere to obtain a transparent quartz glass body, and can be applied to the production of 1-quartz laser glass.

く効果〉 本発明石英レーザーガラスは従来のケイ酸塩系。Effect〉 The quartz laser glass of the present invention is a conventional silicate-based glass.

燐酸塩系レーザーガラスのそれぞれに比して非線形屈折
率約1/3〜1/2であるので同じ大きさで、3,2倍
の品出力が得られ、熱膨張率が従来のレーザーガラスの
約1/20以下なので、光路長変化が小さく安定して使
用でき、かつ、熱伝導率が従来のレーザーガラスの約2
倍大きいので、冷却効率がよく約2倍のくりかえしが得
られ、紫外域での光学的吸収を有効に使用でき励起効率
を高めることができ、ソラリゼーションがないので紫外
線に対する保護をする必要がなく、さらに耐水性がよく
磨き表面の焼けがおこりにくく、光学的に安定であり、
かつまた光学的に均質性がよくレーザーによる損傷がき
わめて少ない。
The nonlinear refractive index is approximately 1/3 to 1/2 that of phosphate-based laser glasses, so with the same size, the product output is 3 to 2 times higher, and the thermal expansion coefficient is lower than that of conventional laser glasses. It is about 1/20 or less, so it can be used stably with little optical path length change, and the thermal conductivity is about 2 that of conventional laser glass.
Since it is twice as large, it has good cooling efficiency and can obtain about twice as many repetitions, can effectively use optical absorption in the ultraviolet region and increase excitation efficiency, and since there is no solarization, there is no need to protect against ultraviolet rays. Furthermore, it has good water resistance, is hard to burn on the polished surface, and is optically stable.
Furthermore, it has good optical homogeneity and is extremely less likely to be damaged by laser.

本発明の石英レーザーガラスは、石英ガラスのもつ本質
的な構造(X線反射像、赤外線吸収像など)、物理的、
化学的、熱的、光学的特性を十分に保持する。
The quartz laser glass of the present invention has the essential structure (X-ray reflection image, infrared absorption image, etc.) of quartz glass, physical
Retains chemical, thermal and optical properties well.

ガラスは上記の特長を有することが見いだされ、前記目
的を遂行できる。
Glass has been found to have the above-mentioned characteristics and can fulfill the above-mentioned purpose.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Nd_2O_3:0.5〜10、Cr_2O
_3:0.2〜10、Tb_2O_7:0.2〜10、
Eu_2O_3:0.2〜10、Ce_2O_3:0.
2〜10、Cr_2O_3+Tb_2O_7+Eu_2
O_3+Ce_2O_3:0.2〜10、Al_2O_
3:1〜20、P_2O_5:1〜20、Al_2O+
P_2O_5:1〜20、残りSiO_2からなる石英
レーザーガラス
In weight%, Nd_2O_3: 0.5-10, Cr_2O
_3: 0.2-10, Tb_2O_7: 0.2-10,
Eu_2O_3: 0.2-10, Ce_2O_3: 0.
2 to 10, Cr_2O_3 + Tb_2O_7 + Eu_2
O_3+Ce_2O_3: 0.2~10, Al_2O_
3:1-20, P_2O_5:1-20, Al_2O+
Quartz laser glass consisting of P_2O_5: 1 to 20, remaining SiO_2
JP19805084A 1984-09-21 1984-09-21 Quartz laser glass Granted JPS6177634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19805084A JPS6177634A (en) 1984-09-21 1984-09-21 Quartz laser glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19805084A JPS6177634A (en) 1984-09-21 1984-09-21 Quartz laser glass

Publications (2)

Publication Number Publication Date
JPS6177634A true JPS6177634A (en) 1986-04-21
JPH057332B2 JPH057332B2 (en) 1993-01-28

Family

ID=16384695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19805084A Granted JPS6177634A (en) 1984-09-21 1984-09-21 Quartz laser glass

Country Status (1)

Country Link
JP (1) JPS6177634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035938B2 (en) 2005-01-31 2011-10-11 Georgia Tech Research Corporation Active current surge limiters
US8039994B2 (en) 2005-10-24 2011-10-18 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags
US8325455B2 (en) 2007-04-05 2012-12-04 Georgia Tech Research Corporation Voltage surge and overvoltage protection with RC snubber current limiter
US9270170B2 (en) 2011-04-18 2016-02-23 Innovolt, Inc. Voltage sag corrector using a variable duty cycle boost converter
US9299524B2 (en) 2010-12-30 2016-03-29 Innovolt, Inc. Line cord with a ride-through functionality for momentary disturbances

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766481B2 (en) 2005-01-31 2014-07-01 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags with switch and shunt resistance
US8582262B2 (en) 2005-01-31 2013-11-12 Georgia Tech Research Corporation Active current surge limiters with disturbance sensor and multistage current limiting
US8587913B2 (en) 2005-01-31 2013-11-19 Georgia Tech Research Corporation Active current surge limiters with voltage detector and relay
US8035938B2 (en) 2005-01-31 2011-10-11 Georgia Tech Research Corporation Active current surge limiters
US8643989B2 (en) 2005-01-31 2014-02-04 Georgia Tech Research Corporation Active current surge limiters with inrush current anticipation
JP4847970B2 (en) * 2005-01-31 2011-12-28 ジョージア テック リサーチ コーポレイション Active surge current limiter
US8488285B2 (en) 2005-10-24 2013-07-16 Georgia Tech Research Corporation Active current surge limiters with watchdog circuit
US9065266B2 (en) 2005-10-24 2015-06-23 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags by an isolating current limiter
US8039994B2 (en) 2005-10-24 2011-10-18 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags
US8335067B2 (en) 2007-04-05 2012-12-18 Georgia Tech Research Corporation Voltage surge and overvoltage protection with sequenced component switching
US8335068B2 (en) 2007-04-05 2012-12-18 Georgia Tech Research Corporation Voltage surge and overvoltage protection using prestored voltage-time profiles
US8593776B2 (en) 2007-04-05 2013-11-26 Georgia Tech Research Corporation Voltage surge and overvoltage protection using prestored voltage-time profiles
US8411403B2 (en) 2007-04-05 2013-04-02 Georgia Tech Research Corporation Voltage surge and overvoltage protection with current surge protection
US8325455B2 (en) 2007-04-05 2012-12-04 Georgia Tech Research Corporation Voltage surge and overvoltage protection with RC snubber current limiter
US9071048B2 (en) 2007-04-05 2015-06-30 Georgia Tech Research Corporation Voltage surge and overvoltage protection by distributed clamping device dissipation
US9299524B2 (en) 2010-12-30 2016-03-29 Innovolt, Inc. Line cord with a ride-through functionality for momentary disturbances
US9270170B2 (en) 2011-04-18 2016-02-23 Innovolt, Inc. Voltage sag corrector using a variable duty cycle boost converter

Also Published As

Publication number Publication date
JPH057332B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
TW506951B (en) Fluorinated rare earth doped glass and glass-ceramic articles
Adam Fluoride glass research in France: fundamentals and applications
CA2348615C (en) Optical amplifying glass, optical amplifying medium and resin-coated optical amplifying medium
US5718979A (en) Cladding glass ceramic for use in high powered lasers
KR20020013779A (en) Optical amplifying glass
EP0960076A1 (en) Transparent oxyfluoride glass-ceramic composition and process for making
CA2289768A1 (en) Composition for optical waveguide article and method for making continuous clad filament
Le Neindre et al. Effect of relative alkali content on absorption linewidth in erbium-doped tellurite glasses
KR20130119048A (en) Optical glass for gain medium with high fluorescence efficiency and optical fiber using the optical glass
CN1361753A (en) Borate or aluminosilicate glass composition for optical amplfication
CA2599536A1 (en) Glass composition containing bismuth and method of amplifying signal light therewith
JPS6177634A (en) Quartz laser glass
CA2368947A1 (en) Glasses containing rare earth fluorides
JPS60191029A (en) Laser glass
JPS61151034A (en) Quartz laser glass for amplifying infrared light
JPS61215233A (en) Silicophosphate laser glass
Martucci et al. Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides
WO2004007385A1 (en) Glass, optical waveguide manufacturing method, and optical waveguide
CA2275706A1 (en) Glass composition and optical device made therefrom
JPS61151039A (en) Quartz laser glass
RU2531958C2 (en) Electro-optical laser glass and method for production thereof
JPS63184386A (en) Optical fiber and optical fiber type light emitting material
JPH03275529A (en) Laser glass
JP2004277252A (en) Optical amplification glass and optical waveguide
JP4114410B2 (en) Optical amplification glass fiber