JPS61151039A - Quartz laser glass - Google Patents

Quartz laser glass

Info

Publication number
JPS61151039A
JPS61151039A JP27314584A JP27314584A JPS61151039A JP S61151039 A JPS61151039 A JP S61151039A JP 27314584 A JP27314584 A JP 27314584A JP 27314584 A JP27314584 A JP 27314584A JP S61151039 A JPS61151039 A JP S61151039A
Authority
JP
Japan
Prior art keywords
laser glass
quartz
laser
glass
quartz laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27314584A
Other languages
Japanese (ja)
Other versions
JPH058130B2 (en
Inventor
Akira Hayashi
瑛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Original Assignee
NIPPON SEKIEI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP27314584A priority Critical patent/JPS61151039A/en
Publication of JPS61151039A publication Critical patent/JPS61151039A/en
Publication of JPH058130B2 publication Critical patent/JPH058130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass

Abstract

PURPOSE:To provide a quartz laser glass composed of Eu2O3, Er2O3, Sm2O3, Al2O3, P2O5 and SiO2, and having smaller nonlinear refractive index, heat- expansion coefficient and heat-conductivity than the conventional laser glass, high ultraviolet transmittance and excellent water-resistance. CONSTITUTION:The objective quartz laser glass is produced from a composition composed of 0.5-10(wt)% Eu2O3, 0.2-10% Er2O3, 0.2-10% Sm2O3 (Er2O3+Sm2 O3=0.2-10%), 1-20% Al2O3, 1-20% P2O5 (Al2O3+P2O5=1-20%) and the remaining part of SiO2.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は石英レーザーガラス、さらに詳しくは従来のレ
ーザーガラスにないすぐれた特長を毬も石英レーザーガ
ラスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to quartz laser glass, and more particularly to quartz laser glass, which has excellent features not found in conventional laser glasses.

〈従来の技術〉 自己集束はレーザーガラスの非線形屈折率できまるので
、この小さいレーザーガラス程高出力で使用できる。し
かし、従来のケイ酸塩系、燐酸塩系のレーザーガラスで
はレーザー光がレーザーガラス中で自己集束をおこなう
ために超高出力では使用できなかった。
<Prior art> Since self-focusing is determined by the nonlinear refractive index of the laser glass, the smaller the laser glass, the higher the output power. However, conventional silicate-based and phosphate-based laser glasses cannot be used at ultra-high power because the laser beam self-focuses within the laser glass.

〈発明が解決しようとする問題点〉 従来のケイ酸塩系及び燐酸塩系レーザーガラスよりも画
期的に非線形屈折率、熱膨張率、熱伝導率が小さく、紫
外線透過率が大きく、かつ、耐水性にすぐれたレーザー
ガラスを提供することを目的とするものである。
<Problems to be solved by the invention> The nonlinear refractive index, thermal expansion coefficient, and thermal conductivity are significantly lower than those of conventional silicate-based and phosphate-based laser glasses, and the ultraviolet transmittance is large, and The purpose is to provide laser glass with excellent water resistance.

く問題点を解決するための手段〉 本発明者は前記目的とするレーザーガラスを求めて種々
研究した結果、下記組成の石英レーザーガラスは下記の
特長を有することを見いだした。
Means for Solving the Problems The inventors of the present invention conducted various studies in search of the above-mentioned objective laser glass, and found that a quartz laser glass having the following composition has the following features.

(本発明の石英レーザーガラスの組成)重量%で、E 
u、Os : 0.5〜10t E raoi ;0.
2〜lOs Sm、O,; 0.2〜10.E r、O
(Composition of quartz laser glass of the present invention) In weight%, E
u, Os: 0.5-10t Eraoi; 0.
2~lOs Sm, O,; 0.2~10. E r, O
.

+Sm、O,:0.2〜Lot A1.O,; 1〜2
0゜P、O,; 1〜20.At、○z+”PxOs;
 1〜20゜残りSiO□からなる石英レーザーガラス
+Sm, O,: 0.2~Lot A1. O,; 1-2
0°P, O,; 1-20. At, ○z+”PxOs;
Quartz laser glass consisting of 1-20° remaining SiO□.

(本発明の石英レーザーガラスの特長)(1)従来のケ
イ酸塩系、燐酸塩系のレーザーガラスの各々の約1/3
.1/2の非線形屈折率をもつもので同じ大きさで3,
2倍の高出力をうろことができる。
(Features of the quartz laser glass of the present invention) (1) Approximately 1/3 of each of conventional silicate-based and phosphate-based laser glasses
.. 3 with the same size and a nonlinear refractive index of 1/2,
It can generate twice as much power.

(2)熱膨張率が従来のレーザーガラスの1720以下
であるので光路長変化が小さく安定して使用できる。
(2) Since the coefficient of thermal expansion is 1720 or less than that of conventional laser glass, it can be used stably with little change in optical path length.

(3)熱伝導率が従来のレーザーガラスの約2倍大きい
ので冷却効率がよく約2倍の高くりかえし度かえられる
(3) Since the thermal conductivity is about twice as high as that of conventional laser glass, it has good cooling efficiency and can be reused about twice as often.

(4)当石英レーザーガラスは従来のレーザーガラスと
違って紫外域での光学的吸収を有効に使用でき励起効率
を高めることができる。
(4) Unlike conventional laser glasses, this quartz laser glass can effectively use optical absorption in the ultraviolet region, increasing excitation efficiency.

(5)当石英レーザーガラスはソラリゼーションがない
ので紫外線に対する保護の必要がない。
(5) Since our quartz laser glass does not undergo solarization, there is no need for protection against ultraviolet rays.

(6)当石英レーザーガラスは耐水性がよく、磨き表面
の焼けがおこりにくく光学的に安定である。
(6) Our quartz laser glass has good water resistance, and the polished surface is hard to burn and is optically stable.

(7)当石英レーザーガラスは光学的に均質性がよくレ
ーザーによる損傷がきわめて少ない。
(7) This quartz laser glass has good optical homogeneity and is extremely unlikely to be damaged by laser.

(8)当石英レーザーガラスの発振波長は0.55μで
あるので可視、紫外域での蛍光を利用できる。
(8) Since the oscillation wavelength of this quartz laser glass is 0.55μ, fluorescence in the visible and ultraviolet regions can be used.

(9)2倍高調波で簡単に紫外光を発生できるので、レ
ーザーCVD、レーザーアニールえの利用゛が期待でき
る。
(9) Since ultraviolet light can be easily generated with double harmonics, it can be expected to be used in laser CVD and laser annealing.

(10)当石英レーザーガラスの上記諸特性を数字で述
べると次の通りである。
(10) The above-mentioned properties of the quartz laser glass are described in numerical terms as follows.

非線形屈折率 0.6 X 10″″13esu熱膨張
率   5〜10 X 10−7/’C熱伝導率 0.
030〜0 、035 cal/cm sec’c耐水
性(wt 1oss%)(H,0100℃l h )0
.000以下紫外線透過率  50%以下(10m /
 m 200n+n)均質性      4x10″″
S以下である。
Nonlinear refractive index 0.6 x 10''''13esu Coefficient of thermal expansion 5-10 x 10-7/'C Thermal conductivity 0.
030~0, 035 cal/cm sec'c Water resistance (wt 1oss%) (H, 0100℃l h) 0
.. 000 or less Ultraviolet transmittance 50% or less (10m/
m 200n+n) Homogeneity 4x10″″
S or less.

〈作用〉 当該石英レーザーガラスにおいてEu、O,はEu3+
イオンとしてレーザーの発光イオンとして働き、好まし
い濃度Eu、O,: 0.5〜10%である。10%以
上では濃度消光をおこし実用的でない。
<Function> In the quartz laser glass, Eu, O, are Eu3+
The ions act as light-emitting ions for lasers, and the preferred concentration of Eu, O, is 0.5 to 10%. If it exceeds 10%, concentration quenching occurs and is not practical.

E r、O,、Sm、O,、は各々Er”、Sm3+と
してレーザーの増感イオンとして働き単独又は複合して
添加される。
Er, O, Sm, O, serve as laser sensitizing ions as Er'' and Sm3+, respectively, and are added singly or in combination.

この好ましい濃度範囲は Er、03    °   0.2〜10wt%。This preferred concentration range is Er, 03 ° 0.2 to 10 wt%.

Sm2O3、0,2〜10wt%。Sm2O3, 0.2-10 wt%.

Er、O,+Sm、○、;  0.2〜10wt%。Er, O, +Sm, ○; 0.2 to 10 wt%.

である。It is.

A1っ○、とP2O5は母体の石英ガラスの5i−O網
目構造中にEu3+のような発光性イオン又は増感イオ
ンを導入し有効な蛍光特性を発揮することに働き単独又
は複合して1〜20wt%の範囲が好ましい。
A1○ and P2O5 work to introduce luminescent ions or sensitizing ions such as Eu3+ into the 5i-O network structure of the matrix quartz glass and exhibit effective fluorescent properties. A range of 20 wt% is preferred.

以上の組成範囲の石英レーザーガラスは下記の特性を示
す。
The quartz laser glass having the above composition range exhibits the following characteristics.

0レーザー特性 Eu、○、(wt%)0.5〜g 誘導放出断面積’a p (10−”c+++”)  
2.2〜5蛍光寿命(μ5ec)        25
0〜400発振波長(μm)         0.5
5減衰係数(0,55u  )(m−1)    0.
1以下0レーザー損傷閾値(l n5ecパルス)(J
/cm”)(0,55μ ) 表面損傷            20〜25内部損傷
            30〜400光学的特性 非線形屈折率n 、 (X 10−”esu)0.6屈
折率n (0、55)     1.460〜1.48
0アツベ数(νd)68 ブリュースター角     55’ 33’〜55’ 
54’線膨張係数(10″″@/’C)    0.5
〜0.9屈折率ノ温度係数(0〜100℃) 1.0x
l0.s/”C光路長の温度変化(10′″!/’C)
  5.0〜5.40熱的特性 熱伝導率(25℃)(cal/c+w sec’c) 
 0.030〜0.0350化学的特性 耐水性(wt 1oss%)(8,0100℃lh) 
0.000以下0その低時性 ヌープ硬さく100g) (IKgf/am”)   
 590〜620製造方法 本発明の石英レーザーガラスを製造するには基本的に火
焔酸化分解溶融(Flame oxidation h
ydr。
0 Laser characteristics Eu, ○, (wt%) 0.5~g Stimulated emission cross section 'a p (10-"c+++")
2.2-5 Fluorescence lifetime (μ5ec) 25
0-400 oscillation wavelength (μm) 0.5
5 Attenuation coefficient (0,55u) (m-1) 0.
1 or less 0 laser damage threshold (l n5ec pulse) (J
/cm") (0,55μ) Surface damage 20-25 Internal damage 30-400 Optical properties Nonlinear refractive index n, (X 10-"esu)0.6 Refractive index n (0,55) 1.460-1 .48
0 Atsube number (νd) 68 Brewster angle 55'33'~55'
54' Linear expansion coefficient (10''''@/'C) 0.5
~0.9 Temperature coefficient of refractive index (0-100℃) 1.0x
l0. Temperature change in optical path length (10'''!/'C)
5.0-5.40 Thermal properties Thermal conductivity (25℃) (cal/c+w sec'c)
0.030-0.0350 Chemical properties Water resistance (wt 1oss%) (8,0100℃lh)
0.000 or less Knoop hardness 100g) (IKgf/am”)
590-620 Manufacturing method To manufacture the quartz laser glass of the present invention, basically flame oxidation decomposition and melting (Flame oxidation decomposition and melting) is used.
ydr.

−1ysis Method)法かスート混入ガラス化
法(Sootsimpregnation Metho
d)を用いる。
-1ysis Method or Sootsimpregnation Method
d) is used.

火焔酸化分解溶融は直接高温酸化焔中に石英レーザーガ
ラスを構成する成分の化合物を添加する方法−ベルタイ
法、高周波酸素プラズマ法等である。
Flame oxidative decomposition melting is a method in which a compound of the components constituting quartz laser glass is added directly into a high-temperature oxidizing flame, such as the Bertai method and the high-frequency oxygen plasma method.

例えば石英レーザーガラスを構成する各々の元素のハロ
ゲン化物の蒸気を酸素プラズマ炎中に導入する。低沸点
のハロゲン化化合物、例えば5i08(シリカ)源とし
て四塩化ケイ素(Sil14)p、os源としてオキシ
塩化燐(POCl2)キャリヤーガスとしてのアルゴン
(Ar)と共に導入し、高沸点のハロゲン化化合物AI
CI)、EuCl、、 E rC1,、SmC1,は高
温にして高蒸気圧にして火焔中に単独又は混合して各々
所定量導入する。
For example, vapors of halides of each element constituting quartz laser glass are introduced into an oxygen plasma flame. A low boiling point halogenated compound, such as silicon tetrachloride (Sil14) p as a 5i08 (silica) source, phosphorus oxychloride (POCl2) as an os source, is introduced together with argon (Ar) as a carrier gas, and a high boiling point halogenated compound AI
CI), EuCl, E rC1, and SmC1 are heated to a high temperature and have a high vapor pressure, and are introduced into the flame in predetermined amounts individually or as a mixture.

以上の方法の別法として光ファイバーの製造にも用いら
れるCVD法(変法としてのVAD法)がある。低温で
酸水素炎中でケイ素のハロゲン化物の加水分解したスス
状酸化物を支持体に堆積させる。
As an alternative method to the above methods, there is a CVD method (VAD method as a modified method) which is also used for manufacturing optical fibers. Hydrolyzed soot-like oxides of silicon halides are deposited on a support in an oxyhydrogen flame at low temperatures.

このスート状のシリカ堆積物の空孔中に常温で添加元素
のハロゲン化物のアルコール溶液を含浸させ、乾燥アル
コールを除去後、14.00℃以上の高温でHe、C1
□雰囲気中で加熱し透明な石英ガラス体をつるか、この
スート状のシリカ堆積物を1000℃〜1300℃の温
度でEuC1,。
The pores of this soot-like silica deposit are impregnated with an alcoholic solution of the halide of the added element at room temperature, and after removing the dry alcohol, heated to a high temperature of 14.00°C or higher, He, C1
□EuC1, by heating in an atmosphere and hanging a transparent quartz glass body, or by heating this soot-like silica deposit at a temperature of 1000°C to 1300°C.

ErC1,、SmC1,やAlCl、の蒸気にして空孔
中に酸素ガスなどをキャリヤーガスとして酸化物として
侵入させたのち、1400℃以上の高温でHe、C1□
雰囲気中で加熱透明な石英ガラス体をえてよい。又ゾゲ
ル法ではケイ素のアルコキシド溶液又はこの加水分解物
のシリカゲルや、ケイ素ハロゲン化物の火炎分解酸化物
(例フユームドシリカ)の分散コロイドゾルに添加元素
のアルコキシド溶液や無機、有機化合物を導入したのち
、得られた混合ゲルを1000℃以上に注意深く加熱、
必要によってはHe −CI□処理を行って石英ガラス
体をうるちのであり、石英レーザーガラスの製造に適用
できる。
After converting ErC1, SmC1, or AlCl into vapor and allowing oxygen gas to enter the pores as an oxide as a carrier gas, He, C1□ at a high temperature of 1400°C or higher
A transparent quartz glass body may be heated in an atmosphere. In addition, in the sol-gel method, an alkoxide solution of an additive element or an inorganic or organic compound is introduced into a dispersion colloidal sol of silicon alkoxide solution or its hydrolyzed product, silica gel, or a flame-decomposed oxide of silicon halide (e.g. fumed silica). Carefully heat the mixed gel to over 1000℃,
If necessary, a He-CI□ treatment may be performed to form a quartz glass body, which can be applied to the production of quartz laser glass.

く効果〉 本発明石英レーザーガラスは従来のケイ酸塩系。Effect〉 The quartz laser glass of the present invention is a conventional silicate-based glass.

燐酸塩系レーザーガラスのそれぞれに比して非線形屈折
率約173〜1/2であるので同じ大きさで、3,2倍
の高出力が得られ、熱膨張率が従来のレーザーガラスの
約1/20以下なので、光路長変化が小さく安定して使
用でき、かつ、熱伝導率が従来のレーザーガラスの約2
倍大きいので、冷却効率がよく約2倍のくりかえしが得
られ、紫外域での光学的吸収を有効に使用でき励起効率
を高めることができ、ソラリゼーションがないので紫外
線に対する保護をする必要がなく、さらに耐水性がよく
磨き表面の焼けがおこりにくく、光学的に安定であり、
かつまた光学的に均質性がよくレーザーによる損傷がき
わめて少ない。
The nonlinear refractive index is approximately 173 to 1/2 that of phosphate-based laser glasses, so with the same size, 3 to 2 times higher output can be obtained, and the coefficient of thermal expansion is approximately 1 of that of conventional laser glasses. /20 or less, so it can be used stably with little change in optical path length, and its thermal conductivity is about 2 that of conventional laser glass.
Since it is twice as large, it has good cooling efficiency and can obtain about twice as many repetitions, can effectively use optical absorption in the ultraviolet region and increase excitation efficiency, and since there is no solarization, there is no need to protect against ultraviolet rays. Furthermore, it has good water resistance, is hard to burn on the polished surface, and is optically stable.
Furthermore, it has good optical homogeneity and is extremely less likely to be damaged by laser.

本発明の石英レーザーガラスは、石英ガラスのもつ本質
的な構造(X線反射像、赤外線吸収像など)、物理的、
化学的、熱的、光学的特性を十分に保持する。
The quartz laser glass of the present invention has the essential structure (X-ray reflection image, infrared absorption image, etc.) of quartz glass, physical
Retains chemical, thermal and optical properties well.

ガラスは上記の特長を有することが見いだされ、前記目
的を遂行できる。
Glass has been found to have the above-mentioned characteristics and can fulfill the above-mentioned purpose.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Eu_2O_3;0.5〜10、Er_2O
_3;0.2〜10、Sm_2O_3;0.2〜10、
Er_2O_3+Sm_2O_3;0.2〜10、Al
_2O_3;1〜20、P_2O_5;1〜20、Al
_2O_3+P_2O_5;1〜20、残りがSiO_
2からなる石英レーザーガラス
In weight%, Eu_2O_3; 0.5-10, Er_2O
_3; 0.2-10, Sm_2O_3; 0.2-10,
Er_2O_3+Sm_2O_3; 0.2-10, Al
_2O_3; 1-20, P_2O_5; 1-20, Al
_2O_3+P_2O_5; 1 to 20, the rest is SiO_
Quartz laser glass consisting of 2
JP27314584A 1984-12-26 1984-12-26 Quartz laser glass Granted JPS61151039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27314584A JPS61151039A (en) 1984-12-26 1984-12-26 Quartz laser glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27314584A JPS61151039A (en) 1984-12-26 1984-12-26 Quartz laser glass

Publications (2)

Publication Number Publication Date
JPS61151039A true JPS61151039A (en) 1986-07-09
JPH058130B2 JPH058130B2 (en) 1993-02-01

Family

ID=17523741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27314584A Granted JPS61151039A (en) 1984-12-26 1984-12-26 Quartz laser glass

Country Status (1)

Country Link
JP (1) JPS61151039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263889A (en) * 1989-10-30 1991-11-25 Cavi Pirelli Spa Optical fibers and optical amplifier thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263889A (en) * 1989-10-30 1991-11-25 Cavi Pirelli Spa Optical fibers and optical amplifier thereof

Also Published As

Publication number Publication date
JPH058130B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
Le Neindre et al. Effect of relative alkali content on absorption linewidth in erbium-doped tellurite glasses
AU731393B2 (en) Transparent oxyfluoride glass-ceramic composition and process for making
TW506951B (en) Fluorinated rare earth doped glass and glass-ceramic articles
TWI235139B (en) Tantalum containing glasses and glass ceramics
Bomfim et al. Infrared-to-visible upconversion in Yb3+/Er3+ co-doped PbO–GeO2 glass with silver nanoparticles
Hau et al. Near-infrared broadband luminescence and energy transfer in Bi–Tm–Er co-doped lanthanum aluminosilicate glasses
JPS61151034A (en) Quartz laser glass for amplifying infrared light
Li et al. Enhancement of UV laser‐induced damage resistance of the fluoride‐containing phosphate glasses by regulating the intrinsic defects
Qiu Bi‐doped glass for photonic devices
JPS6177634A (en) Quartz laser glass
Martucci et al. Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides
JPS61151039A (en) Quartz laser glass
Song et al. The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2–Al2O3–CaO glass
ZHENG et al. Spectroscopic investigations on Er3+/Yb3+-doped oxyfluoride glass ceramics containing YOF nanocrystals
Dutta et al. Fabrication and characterization of chromium‐doped nanophase separated yttria–alumina–silica glass‐based optical fibers
CA2275706A1 (en) Glass composition and optical device made therefrom
JPS63184386A (en) Optical fiber and optical fiber type light emitting material
TWI236460B (en) Fused silica containing aluminum
JP2004277252A (en) Optical amplification glass and optical waveguide
Kirchhof et al. Codoping effects in fibers for active applications
JP2001516958A5 (en)
JPH0830769B2 (en) Transmission line for optical radiation and its application
Nie et al. Effect of hydroxyl groups on Er3+ doped Bi2O3–B2O3–SiO2 glasses
Ballato Optical fibers
Stręk et al. Spectroscopic properties of erbium doped silica glasses obtained by sol-gel method