JPS60247983A - Erbium laser oscillator - Google Patents

Erbium laser oscillator

Info

Publication number
JPS60247983A
JPS60247983A JP10359484A JP10359484A JPS60247983A JP S60247983 A JPS60247983 A JP S60247983A JP 10359484 A JP10359484 A JP 10359484A JP 10359484 A JP10359484 A JP 10359484A JP S60247983 A JPS60247983 A JP S60247983A
Authority
JP
Japan
Prior art keywords
ions
erbium
wavelength
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10359484A
Other languages
Japanese (ja)
Other versions
JPH0256835B2 (en
Inventor
Tetsuo Izumitani
泉谷 徹郎
Sadaichi Suzuki
貞一 鈴木
Chiemi Kanamori
金森 智恵美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP10359484A priority Critical patent/JPS60247983A/en
Publication of JPS60247983A publication Critical patent/JPS60247983A/en
Publication of JPH0256835B2 publication Critical patent/JPH0256835B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve the efficiency of oscillation by interposing a neodymium laser medium between an erbium laser medium containing erbium Er ions and ytterbium Yb ions and a light source for excitation. CONSTITUTION:Neodymium laser media 2, 2' containing Nd ions on both the surface and the back of an erbium laser medium 1 containing Er ions and Yb ions, a solid-state laser element, on an outer surface thereof reflecting films 3, 3' are formed, and cylindrical flash lamps 4, 4' as light sources for excitation are housed in a lamp house 5 directly or through supporters 6. Inflow ports 7 and outflow ports 8 for a refrigerant are formed to the lamp house 5, and transmitting windows 9, 9' emitting laser beams to a total reflection mirror 10 and a semi-transmitting mirror 10' are shaped onto the optical axis of the solid-state laser element.

Description

【発明の詳細な説明】 【産業上の利用分野] この発明はエルビウムレーザ発振装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an erbium laser oscillation device.

[従来技術] エルビウムレーザから発振される波長1.54μmのレ
ーザ光は、目に安全なレーザ光、石英系ファイバに対し
損失の少ないレーザ光として注目を浴びている。
[Prior Art] Laser light with a wavelength of 1.54 μm emitted from an erbium laser is attracting attention as a laser light that is safe for the eyes and a laser light with less loss compared to quartz fibers.

一般に、エルビウムレーザはガラス中にEr(エルビウ
ム)イオンをドープして作られるが、それだけでは発振
が困難であるため増感剤としてYb(イッテルビウム)
イオンをドープし、フラッシュランプから発生する光の
うち波長1.0μmの光をYbイオンが吸収してこのエ
ネルギを非輻射遷移でErイオンに移すことによって波
長1.54μmのレーザ光を発振させるようになってい
る。
Generally, erbium lasers are made by doping glass with Er (erbium) ions, but since it is difficult to oscillate with just that, Yb (ytterbium) is used as a sensitizer.
By doping ions, Yb ions absorb light with a wavelength of 1.0 μm out of the light generated from the flash lamp, and this energy is transferred to Er ions through non-radiative transition, thereby emitting laser light with a wavelength of 1.54 μm. It has become.

しかしながら、このような従来のものは、フラッシュラ
ンプの発光エネルギのうら波長1.0μmの光しかボン
ピングに利用できないため、効率が非常に低く、かつ発
振のしきい値も高いという欠点があり、たとえば発振効
率は0.1%以下であって実用に適さなかった。
However, such conventional devices have the drawbacks of extremely low efficiency and high oscillation threshold, as they can only use light with a wavelength of 1.0 μm behind the flash lamp's emission energy for bombing. The oscillation efficiency was 0.1% or less, making it unsuitable for practical use.

[発明の目的] この発明は上記従来のもののもつ欠点を排除し、励起用
光源の発光エネルギをより有効に利用して発振効率を向
上させることのできるエルビウムレーザ発振装置を提供
することを目的とするものである。
[Objective of the Invention] An object of the present invention is to provide an erbium laser oscillation device that eliminates the drawbacks of the above-mentioned conventional devices and can improve oscillation efficiency by more effectively utilizing the emission energy of an excitation light source. It is something to do.

[発明の構成] この発明は上記目的を達成するため、Erイオンおよび
Ybイオンを含むエルビウムレーザ媒質と、励起用光源
との間に、Ndイオンを含むネオジムレーザ媒質を介在
させた構成を有している。
[Configuration of the Invention] In order to achieve the above object, the present invention has a configuration in which a neodymium laser medium containing Nd ions is interposed between an erbium laser medium containing Er ions and Yb ions and an excitation light source. ing.

[発明の実施例] 以下、図面に示すこの発明の実施例について説明する。[Embodiments of the invention] Embodiments of the invention shown in the drawings will be described below.

第1〜3図はこの発明の一実施例を示し、1はErイオ
ンおよびYbイオンを含有したエルビウムレーザ媒質(
ガラスレーザスラブ)であって、その表裏両面にはNd
イオンを含有したネオジムレーザ媒質(ガラスレーザス
ラブ)2.2′がそれぞれ融着され、さらにネオジムレ
ーザ媒質2.2′の外表面には波長1.06μmの光を
反射する膜3.3′がそれぞれ形成され、これらが一体
となって第3図に示ずような固体レーザ素子を構成して
いる。4.4′は固体レーザ素子の膜3.3′に面して
配置された励起用光源としての棒状のフラッシュランプ
、5はフラッシュランプ4.4′を内蔵し、かつ支持具
6によって固体レーザ素子を内部に固定したランプハウ
スであって、ランプハウス5には冷却媒体流入ロアおよ
び冷却媒体流出口8が設けられ、また固体レーザ素子の
光軸上両端に波長1.54μmの光を透過する窓材9.
9′がそれぞれ設けられ、さらにランプハウス5の外側
において固体レーザ素子の光軸上には波長1.54μm
の光を全反射するミラー10と、波長1.54μmの光
を半透過するミラー10′ とが設けられている。固体
レーザ素子としては、たとえば、長さ50av、幅15
1+1R1,厚さ3IlllIlのリン酸塩ガラスにE
rイオンおよびYbイオンを適宜量ドープしてエルビウ
ムレーザ媒質1を構成し、また長さ50111J幅15
nm1厚ざ2mn+で屈折率1,52のリン酸塩ガラス
にNdイオンを10%ドープしてネオジムレーザ媒質2
.2′をそれぞれ構成することができる。
1 to 3 show an embodiment of the present invention, and 1 shows an erbium laser medium (1) containing Er ions and Yb ions.
glass laser slab), with Nd on both the front and back surfaces.
A neodymium laser medium (glass laser slab) 2.2' containing ions is fused, and a film 3.3' that reflects light with a wavelength of 1.06 μm is provided on the outer surface of the neodymium laser medium 2.2'. These are respectively formed and together constitute a solid-state laser element as shown in FIG. 4.4' is a rod-shaped flash lamp as an excitation light source placed facing the film 3.3' of the solid-state laser element; 5 has the flash lamp 4.4' built-in, and the solid-state laser is It is a lamp house in which an element is fixed inside, and the lamp house 5 is provided with a cooling medium inflow lower and a cooling medium outlet 8, and also transmits light with a wavelength of 1.54 μm at both ends on the optical axis of the solid-state laser element. Window material9.
9' are provided respectively, and a wavelength of 1.54 μm is provided on the optical axis of the solid-state laser element outside the lamp house 5.
A mirror 10 that totally reflects light with a wavelength of 1.54 μm and a mirror 10' that partially transmits light with a wavelength of 1.54 μm are provided. For example, the solid-state laser element has a length of 50 av and a width of 15 av.
E on phosphate glass of 1+1R1, thickness 3IlllIl
The erbium laser medium 1 is doped with appropriate amounts of r ions and Yb ions, and has a length of 50111J and a width of 15.
A neodymium laser medium 2 is made by doping 10% Nd ions into phosphate glass with a refractive index of 1.52 and a thickness of nm1 and a thickness of 2 mm+.
.. 2' can be configured respectively.

また膜3.3′は、ネオジムレーザ媒質2.2′から発
振した波長1,06μmのレーザ光を逃がさずにエルビ
ウムレーザ媒質1に向けて反射するものであるが、その
ためにはNdイオンが波長0.55μm付近に有してい
る幅広の吸収帯の波長の光は透過させる必要があり、ざ
らにYbイオンがフラッシュランプ4.4′から直接吸
収する波長1.0μmの光も透過させることが好ましく
、このような特性を有する膜としては、たとえば、S 
i 02とTiO2とを交互に積層し、かつそれらの膜
厚を1層目の5tO2は146.25rvとし、2層目
のT i 02から15層目のS ! 02まではいず
れも292.50nmとした誘電体多層膜を使用するこ
とができ、この誘電体多層膜は第4図に示すように、波
長1060n−の光に対しては透過率が10%以下であ
って90%以上の反射率を有する反面、波長1000n
…の先に対しては10%以上の透過率を有し、また波長
550na+付近の光に対しては95%以上の透過率を
有している。
In addition, the film 3.3' reflects the laser light with a wavelength of 1.06 μm emitted from the neodymium laser medium 2.2' toward the erbium laser medium 1 without escaping it. It is necessary to transmit light with a wavelength of a wide absorption band around 0.55 μm, and it is also possible to transmit light with a wavelength of 1.0 μm, which is directly absorbed by Yb ions from the flash lamp 4.4'. Preferably, a film having such characteristics is, for example, S
i 02 and TiO2 are alternately laminated, and their film thicknesses are 146.25rv for the first layer 5tO2, and S ! Up to 02, a dielectric multilayer film with a wavelength of 292.50nm can be used, and as shown in Figure 4, this dielectric multilayer film has a transmittance of 10% or less for light with a wavelength of 1060n-. Although it has a reflectance of 90% or more, it has a wavelength of 1000n.
It has a transmittance of 10% or more for the tip of... and a transmittance of 95% or more for light around a wavelength of 550 na+.

上記のエルビウムレーザ発振装置は、フラッシュランプ
4.4′から発生する光のうち波長0.55μm付近の
光が膜3.3′を透過しネオジムレーザ媒質2.2′の
Ndイオンに吸収されてそれによりネオジムレーザ媒質
2.2′から発振した波長1.06μmのレーザ光が、
一部はエルビウムレーザ媒質1に直接入射し、かつ残部
は膜3.3′によって反射されてエルビウムレーザ媒質
1に入射するため、ネオジムレーザ媒質2.2′が設け
られていない場合にフラッシュランプ4.4′からエル
ビウムレーザ媒質1に入射する光に比べて波長1.06
μmの光成分が多量に入射することとなり、一方フラッ
シュランプ4.4′から発生する光のうち波長1.0μ
mの光は膜3.3′を透過しネオジムレーザ媒質2.2
′を透過してエルビウムレーザ媒質1に直接入射するこ
ととなり、エルビウムレーザ媒質1はこの直接入射する
波長1.0μmの光とネオジムレーザ媒質2.2′で増
量された波長1,06μmの光とをYbイオンが吸収し
、それによって波長1.54μIのレーザ光を発振する
。そのため、フラッシュランプ4.4′の発光エネルギ
のうち、Ybイオンが直接吸収する波長1,0μmの光
と、Ndイオンが吸収する波長0.55μm付近の光と
がともにエルビウムレーザ光のボンピングに利用される
こととなり、したがって波長1.54μ罹のエルビウム
レーザ光が効率よくしかも低いしきい値で発振すること
となる。実験によると、効率2%、しきい値40ジュー
ルで、01ジユール/パルスのレーザ光を5パルス/秒
発振させることができた。
In the above-mentioned erbium laser oscillation device, among the light generated from the flash lamp 4.4', light with a wavelength of around 0.55 μm is transmitted through the film 3.3' and absorbed by the Nd ions of the neodymium laser medium 2.2'. As a result, the laser beam with a wavelength of 1.06 μm oscillated from the neodymium laser medium 2.2'
A portion directly enters the erbium laser medium 1, and the remainder is reflected by the film 3.3' and enters the erbium laser medium 1. Therefore, when the neodymium laser medium 2.2' is not provided, the flash lamp 4 The wavelength is 1.06 compared to the light incident on the erbium laser medium 1 from .4'.
A large amount of light components with a wavelength of 1.0μm will be incident, and on the other hand, among the light generated from the flash lamp 4.4', a wavelength of 1.0μm will be incident.
The light of m passes through the film 3.3' and enters the neodymium laser medium 2.2.
' and directly enters the erbium laser medium 1, and the erbium laser medium 1 combines this directly incident light with a wavelength of 1.0 μm and the light with a wavelength of 1.06 μm increased by the neodymium laser medium 2.2'. is absorbed by Yb ions, thereby emitting laser light with a wavelength of 1.54 μI. Therefore, of the emitted energy of the flash lamp 4.4', both the light with a wavelength of 1.0 μm, which is directly absorbed by Yb ions, and the light with a wavelength of around 0.55 μm, which is absorbed by Nd ions, are used for bombing the erbium laser light. Therefore, the erbium laser beam having a wavelength of 1.54μ can be efficiently oscillated with a low threshold value. According to experiments, with an efficiency of 2% and a threshold value of 40 Joules, it was possible to oscillate a laser beam of 01 Joules/pulse at 5 pulses/second.

なお、上記実施例ではネオジムレーザ媒質2.2′をエ
ルビウムレーザ媒質1の表裏両面に融着したが、単に接
触させてもよいし、また離隔させ 4゜でもよく、ざら
に膜3.3′は必ずしも設けないでよく、l!I3.3
′を設けないと[記実施例に比べて効率がやや低下する
が、それでも従来のものに比べれば著しく高い効率を得
ることができ、その他この発明は上記実施例の種々の変
更、修正が可能であることはいうまでもない。
In the above embodiment, the neodymium laser medium 2.2' is fused to both the front and back surfaces of the erbium laser medium 1, but they may be simply brought into contact with each other, or they may be separated by 4 degrees, and the film 3.3' may be roughly fused. does not necessarily have to be provided, and l! I3.3
If ' is not provided, the efficiency will be slightly lower than that of the embodiment described above, but the efficiency can still be significantly higher than that of the conventional one.In addition, this invention allows various changes and modifications of the embodiment described above. Needless to say, it is.

[発明の効果] この発明は上記のように構成したので、励起用光源から
発生づる光のうち波長1.0μmの光をYbイオンが直
接吸収するだ()でなく、波長0.55μm付近の光を
Ndイオンが吸収してネオジムレーザ媒質から発振した
波長1.06μmのレーザ光もYbイオンが吸収し、そ
れによってエルビウムレーザ媒質から波長1.54μm
のエルごラムレーザ光を発振させることができ、そのた
め励起用光源の発光エネルギを従来のものに比べてより
有効に利用することができて、発振効率を向卜させると
ともに、発振のしきい値を低下させることができる等の
ずぐれた効果を有するものである。
[Effects of the Invention] Since the present invention is configured as described above, Yb ions do not directly absorb light with a wavelength of 1.0 μm out of the light generated from the excitation light source, but instead absorb light with a wavelength of around 0.55 μm. The Nd ions absorb the light, and the laser light with a wavelength of 1.06 μm emitted from the neodymium laser medium is also absorbed by the Yb ions, which causes the laser light with a wavelength of 1.54 μm to be emitted from the erbium laser medium.
This makes it possible to oscillate Ergolam laser beams of 300 to 3000 ms, making it possible to use the emission energy of the excitation light source more effectively than conventional ones, improving oscillation efficiency and lowering the oscillation threshold. It has excellent effects such as being able to reduce the

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す縦断正面図、第2図
は第1図のものの縦断側面図、第3図は第1.2図に示
づ固体レーザ素子の斜視図、第4図は膜の透過率と波長
との関係を示す図である。 1・・・エルビウムレーザ媒質、2.2′・・・ネオジ
ムレーザ媒質、3.3′・・・膜、4.4′・・・フラ
ッシュランプ、5・・・ランプハウス、6・・・支持具
、7・・・冷却媒体流入口、8・・・冷却媒体流出口、
9.9′・・・窓材、10、io’ ・・・ミラー出 
願 人 株式会社 保谷硝子 代 理 人 朝 倉 正 幸
FIG. 1 is a longitudinal sectional front view showing one embodiment of the present invention, FIG. 2 is a longitudinal sectional side view of the one shown in FIG. 1, FIG. 3 is a perspective view of the solid-state laser device shown in FIGS. The figure is a diagram showing the relationship between the transmittance of a film and the wavelength. DESCRIPTION OF SYMBOLS 1... Erbium laser medium, 2.2'... Neodymium laser medium, 3.3'... Membrane, 4.4'... Flash lamp, 5... Lamp house, 6... Support tool, 7...cooling medium inlet, 8...cooling medium outlet,
9.9'...Window material, 10,io'...Mirror exit
Requester: Yasutani Glass Co., Ltd. Managing Director: Masayuki Asakura

Claims (1)

【特許請求の範囲】 1 ErイオンおよびYbイオンを含むエルビウムレー
ザ媒質と、励起用光源との間に、Ndイオンを含むネオ
ジムレーザ媒質を介在させたことを特徴とするエルビウ
ムレーザ発振装置。 2 前記ネオジムレーザ媒質の前記励起用光源に面した
表面には波長1.06μmの光を反射する膜が形成され
ている特許請求の範囲第1項記載のエルビウムレーザ発
振装置。 3 前記膜は前記励起用光源からYbイオンが直接吸収
する波長の光およびN(!イオンの吸収帯の波長の光を
透過するようになっている特許請求の範囲第2項記載の
エルビウムレーザ発振装置。 4 前記膜はS ! OzとT i 02との多層膜か
らなっている特許請求の範囲第2項または第3項記載の
エルビウムレーザ発振装置。
[Scope of Claims] 1. An erbium laser oscillation device characterized in that a neodymium laser medium containing Nd ions is interposed between an erbium laser medium containing Er ions and Yb ions and an excitation light source. 2. The erbium laser oscillation device according to claim 1, wherein a film that reflects light with a wavelength of 1.06 μm is formed on the surface of the neodymium laser medium facing the excitation light source. 3. The erbium laser oscillation according to claim 2, wherein the film transmits light with a wavelength directly absorbed by Yb ions and light with a wavelength in the absorption band of N(! ions) from the excitation light source. Device. 4. The erbium laser oscillation device according to claim 2 or 3, wherein the film is a multilayer film of S!Oz and Ti02.
JP10359484A 1984-05-24 1984-05-24 Erbium laser oscillator Granted JPS60247983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10359484A JPS60247983A (en) 1984-05-24 1984-05-24 Erbium laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10359484A JPS60247983A (en) 1984-05-24 1984-05-24 Erbium laser oscillator

Publications (2)

Publication Number Publication Date
JPS60247983A true JPS60247983A (en) 1985-12-07
JPH0256835B2 JPH0256835B2 (en) 1990-12-03

Family

ID=14358091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10359484A Granted JPS60247983A (en) 1984-05-24 1984-05-24 Erbium laser oscillator

Country Status (1)

Country Link
JP (1) JPS60247983A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176180A (en) * 1986-01-29 1987-08-01 Toshiba Corp Solid state laser oscillator
JPS6319888A (en) * 1986-07-11 1988-01-27 Sumitomo Metal Mining Co Ltd Slab type laser element
JPS63114184A (en) * 1986-10-31 1988-05-19 Hoya Corp Slab type laser to which reflecting film is formed
JPH0198281A (en) * 1987-06-22 1989-04-17 Lasag Ag Laser having improved cooling system
JPH07142792A (en) * 1993-06-23 1995-06-02 Nec Corp Lamp excited temoo mode solid laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571400A (en) * 1991-09-13 1993-03-23 Mitsubishi Motors Corp Operation control method for engine using mixture fuel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590004A (en) * 1968-08-08 1971-06-29 American Optical Corp Laser material comprised of erbium and ytterbium doped glass core and neodymium doped glass sensitizer element
US3611188A (en) * 1969-05-19 1971-10-05 American Optical Corp Ytterbium laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590004A (en) * 1968-08-08 1971-06-29 American Optical Corp Laser material comprised of erbium and ytterbium doped glass core and neodymium doped glass sensitizer element
US3611188A (en) * 1969-05-19 1971-10-05 American Optical Corp Ytterbium laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176180A (en) * 1986-01-29 1987-08-01 Toshiba Corp Solid state laser oscillator
JPS6319888A (en) * 1986-07-11 1988-01-27 Sumitomo Metal Mining Co Ltd Slab type laser element
JPS63114184A (en) * 1986-10-31 1988-05-19 Hoya Corp Slab type laser to which reflecting film is formed
JPH0198281A (en) * 1987-06-22 1989-04-17 Lasag Ag Laser having improved cooling system
JP2690324B2 (en) * 1987-06-22 1997-12-10 ラザグ アクチェンゲゼルシャフト Laser with improved cooling system
JPH07142792A (en) * 1993-06-23 1995-06-02 Nec Corp Lamp excited temoo mode solid laser device

Also Published As

Publication number Publication date
JPH0256835B2 (en) 1990-12-03

Similar Documents

Publication Publication Date Title
JPS6216588A (en) Laser unit
US9515448B2 (en) Microchip laser with single solid etalon and interfacial coating
US3445785A (en) Laser systems and the like employing solid laser components and light-absorbing claddings
JPH07106665A (en) Solid state laser unit
US5365538A (en) Slab waveguide pumped channel waveguide laser
US5268913A (en) Frequency-doubling solid state laser
JPH0247111B2 (en)
US5420876A (en) Gadolinium vanadate laser
JPS60247983A (en) Erbium laser oscillator
JPS6182488A (en) Solid state laser device
US6625194B1 (en) Laser beam generation apparatus
JPH05211362A (en) Cavity mirror for suppression of high-gain laser wavelength
EP1766442A1 (en) Aperture stop assembly for high power laser beams
JPH0563263A (en) Semiconductor laser-pumped solid-state laser device
US5692005A (en) Solid-state laser
JP2005012008A (en) Optical fiber laser
JPH0652814B2 (en) Optical fiber-communication device
JP3060493B2 (en) Solid state laser oscillator
JP6690869B2 (en) Planar waveguide and laser amplifier
JPH0451501Y2 (en)
JPS637039B2 (en)
JP4325036B2 (en) aperture
JPS63254776A (en) Solid-state laser device
JPH07307507A (en) Solid laser
JPH0537052A (en) Semiconductor laser-excited solid state laser