JPS6319888A - Slab type laser element - Google Patents

Slab type laser element

Info

Publication number
JPS6319888A
JPS6319888A JP16517186A JP16517186A JPS6319888A JP S6319888 A JPS6319888 A JP S6319888A JP 16517186 A JP16517186 A JP 16517186A JP 16517186 A JP16517186 A JP 16517186A JP S6319888 A JPS6319888 A JP S6319888A
Authority
JP
Japan
Prior art keywords
laser
angle
refractive index
total reflection
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16517186A
Other languages
Japanese (ja)
Other versions
JPH0738469B2 (en
Inventor
Eiichi Takazawa
高澤 榮一
Kazuo Maeda
一夫 前田
Takio Sekino
関野 滝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61165171A priority Critical patent/JPH0738469B2/en
Publication of JPS6319888A publication Critical patent/JPS6319888A/en
Publication of JPH0738469B2 publication Critical patent/JPH0738469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain an emitted light having a uniform transverse mode as well as to eliminate absorption loss by substances coming into contact to totally reflecting surfaces by a method wherein coating layers which satisfy specific conditions are each applied to two surfaces equivalent to the back surfaces of the two totally reflecting surfaces. CONSTITUTION:Coating layers having a refractive index (n2) and a thickness (t), which satisfy the conditions of formulars I and II, are each applied to two surfaces equivalent to the back surfaces of two totally reflecting surfaces. In the formulars, (n1) shows the refractive index of a laser medium, (alpha) the vertical angle of the end part of an element, (theta) a Brewster angle, (phi) the angle of refraction of a laser light incided in the end surface at a Brewster angle and (lambda) the wavelength (in a vacuum) of the laser light. As laser mediums for a slab type laser element, Nd: GGG(Nd<3+> doped Gd3GaO12), Nd: YAG (Nd<3+> doped Y3Al5O3) and so on are exemplified and moreover, as materials which satisfy the conditions of Formula I for these medium materials and are used as one for the substantially transparent coating layers, SiO2, LaF3, BaF2 and so on, for example, are exemplified. From the view-point of the strength, durability, water resistance and so on of the coting layers to be formed, the SiO2 is desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スラブ型レーザ素子に関し、特に全反射面に
接する物質による吸収損失がなく、かつ均一な横モード
を有する出力光が得られるスラブ型レーザ素子に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a slab type laser device, and in particular to a slab type laser device that is free from absorption loss due to substances in contact with a total reflection surface and that provides output light having a uniform transverse mode. This invention relates to type laser elements.

〔従来の技術〕[Conventional technology]

近年、固体レーザ素子をスラブ状に形成し、その素子内
を全反射を利用してレーザ光をジグザグに進行させるこ
とにより、従来の固体レーザ素子内に生じていた熱歪に
より発振パターンの乱れを解消できるというスラブ型レ
ーザが注目されている。このようなスラブ型レーザ素子
の表面は全反射面を形成するための光学研摩面の状態に
あり、そのまま使用されている。その結果、全反射面の
裏面に当る表面は、通常、中央部は冷却水と接し。
In recent years, by forming solid-state laser devices into slab shapes and making the laser beam travel in a zigzag pattern using total internal reflection, it has been possible to eliminate the disturbance of the oscillation pattern due to thermal strain that occurs in conventional solid-state laser devices. Slab-type lasers are attracting attention as they are said to be able to solve this problem. The surface of such a slab type laser element is in the state of an optically polished surface to form a total reflection surface, and is used as is. As a result, the center of the surface that corresponds to the back side of the total reflection surface is usually in contact with the cooling water.

左右の一部はシリコーンシーラント等からなる固定具と
接し、さらに両端部は空気と接している。
Parts of the left and right sides are in contact with a fixture made of silicone sealant, etc., and both ends are in contact with air.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、ある屈折率の媒質内を進行する電磁波がそれ
とは異なる屈折率の媒質との界面で全反射する場合、全
反射後の電磁波の位相は接する相手の媒質の屈折率によ
って変化することは周知の通りである。従って、前記従
来のスラブ型レーザ素子では、全反射面にそれぞれの屈
折率が異なる複数の物質(即ち、水、シリコーンシーラ
ントおよび空気)が接触しているため、レーザ媒質内を
同一位相で並進したレーザ光が全反射面で全反射したと
き、全反射の位置によって、即ち界面で接している相手
媒質の相違によって反射後の位相変化にズレが起り、反
射光の位相は同一でなくなってしまう。(例えば、Nd
:GGGレーザの場合、ブリュースタ角62.7@、ス
ラブ型素子の端部頂角27.3゜(全反射面への入射角
57.6°)のときに、発振波長1.06μmについて
の位相変化は、相手媒質により−116,8’(水)、
−101’(シーラント)、−152,7°(空気)と
異なる。)その結果、得られるレーザ出力光の横モード
に乱れが生じ均一な横モードを有する出力光を得ること
ができないという問題がある。また、接触している物質
により、あるいは付着するホコリ等により、全反射の際
に一部吸収損失が発生するとの問題もあった。そこで、
本発明の目的は、均一な横モードを有する出力光が得ら
れ、かつ全反射面に接する物質による吸収損失がないス
ラブ型レーザ素子を提供することにある。
By the way, it is well known that when an electromagnetic wave traveling in a medium with a certain refractive index is totally reflected at an interface with a medium with a different refractive index, the phase of the electromagnetic wave after total reflection changes depending on the refractive index of the other medium with which it comes into contact. It is as follows. Therefore, in the conventional slab type laser device, since multiple substances (i.e., water, silicone sealant, and air) each having a different refractive index are in contact with the total reflection surface, the laser elements are not translated in the same phase within the laser medium. When a laser beam is totally reflected by a total reflection surface, a shift occurs in the phase change after reflection depending on the position of the total reflection, that is, due to the difference in the partner medium in contact with the interface, and the phases of the reflected lights are no longer the same. (For example, Nd
: In the case of a GGG laser, when the Brewster angle is 62.7 @ and the end apex angle of the slab type element is 27.3° (the angle of incidence on the total reflection surface is 57.6°), the oscillation wavelength is 1.06 μm. The phase change is -116,8' (water), depending on the partner medium.
-101' (sealant), -152,7° (air). ) As a result, there is a problem in that the transverse mode of the resulting laser output light is disturbed, making it impossible to obtain output light having a uniform transverse mode. There is also the problem that some absorption loss occurs during total reflection due to contacting substances or adhering dust. Therefore,
An object of the present invention is to provide a slab-type laser element which can obtain output light having a uniform transverse mode and which is free from absorption loss due to a substance in contact with a total reflection surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記問題を解決するものとして。 The present invention aims to solve the above problem.

2つの平行な全反射面を有するスラブ型レーザ素子にお
いて、 前記2つの全反射面の裏面に相当する2つの表面に、屈
折率n2および厚さtが、それぞれ次式%式%(2): 〔上記式中、nlはレーザ媒質の屈折率、αは素子の端
部頂角、θはブリュースタ角、φは端面にブリュースタ
角で入射したレーザ光の屈折角、そしてλはレーザ光の
波長(真空中)を示す。〕の条件を満たすコーティング
層を有することを特徴とするスラブ型レーザ素子を提供
するものである。
In a slab type laser element having two parallel total reflection surfaces, the two surfaces corresponding to the back surfaces of the two total reflection surfaces have a refractive index n2 and a thickness t, respectively, as expressed by the following formula % formula % (2): [In the above formula, nl is the refractive index of the laser medium, α is the apex angle of the end of the element, θ is the Brewster angle, φ is the refraction angle of the laser beam incident on the end face at the Brewster angle, and λ is the refraction angle of the laser beam Indicates wavelength (in vacuum). The present invention provides a slab type laser element characterized by having a coating layer that satisfies the following conditions.

まず、本発明のコーティング層を、レーザ素子の全反射
面の裏面に相当する表面全体に、一定以上の厚さで形成
することにより、全反射面を界面としてレーザ媒質と接
する相手の媒質はすべて同一物質からなるコーティング
層となり、平行して進行する同位相のレーザ光は全反射
面のどの位置で全反射しても反射後の位相は同一に保た
れ、レーザ光の特徴であるコヒーレント性を損わず、横
モートに乱れを生じない。
First, by forming the coating layer of the present invention over the entire surface of the laser element, which corresponds to the back surface of the total reflection surface, to a certain thickness or more, all of the other medium that comes into contact with the laser medium with the total reflection surface as an interface. The coating layer is made of the same material, and the laser beams with the same phase traveling in parallel will maintain the same phase after reflection no matter where they are totally reflected on the total reflection surface, maintaining the coherence characteristic of laser beams. No damage and no disturbance to the transverse moat.

前記式(1)の条件は次のように説明される。The conditions of the above formula (1) are explained as follows.

レーザ媒質(屈折率n工、波長λ)中を進行するレーザ
光が全反射面で全反射するためには、入射角O1は、全
反射の臨界角Ocより大きい必要があり、 Dj>θc             (i)である。
In order for the laser light traveling through the laser medium (refractive index n, wavelength λ) to be totally reflected by the total reflection surface, the incident angle O1 needs to be larger than the critical angle Oc for total reflection, and Dj>θc ( i).

一方、5inOc”n2/nt (nzはコーティング
層の屈折率)であることから、 sinθi>−(ii) である。さらに、レーザ光は素子の端面にブリュースタ
角θの角度で入射するので、屈折光の屈折角をφ、素子
の端面と全反射面が形成する頂角をαとすると、 θi=α+φ          (ii+)であるこ
とから、 (i )、(ii)および(市)式より、前
記式(1)の条件が導びかれる。
On the other hand, since 5inOc"n2/nt (nz is the refractive index of the coating layer), sinθi>-(ii).Furthermore, since the laser light is incident on the end face of the element at the Brewster angle θ, If the refraction angle of the refracted light is φ, and the apex angle formed by the end face of the element and the total reflection surface is α, then θi=α+φ (ii+), so from (i), (ii) and (Ichi) formula, The condition of equation (1) above is derived.

コーティング層の厚さtについての条件を表わす式(2
)は次のように説明される。θi〉θCのとき、入射電
磁波のエネルギーは全反射面においてすべて反射される
。しかし、その電磁界は全反射面の外側ですぐに消失す
るのではなく、全反射面の外側へ浸み出し、界面からの
距離とともに指数関数的に減衰する。その浸出距離dp
 (電磁波の振幅が1/eに減衰する距離)は λ/n工 で表わされるので、コーティング層の厚さtはdρより
大きく設ける必要があり、式(2)の条件が導びかれる
Expression (2) expressing the condition for the thickness t of the coating layer
) is explained as follows. When θi>θC, all the energy of the incident electromagnetic wave is reflected at the total reflection surface. However, the electromagnetic field does not disappear immediately outside the total reflection surface, but rather leaks out to the outside of the total reflection surface and decays exponentially with distance from the interface. Its seepage distance dp
Since (the distance at which the amplitude of the electromagnetic wave is attenuated to 1/e) is expressed by λ/n, the thickness t of the coating layer must be greater than dρ, and the condition of equation (2) is derived.

なお、素子の端面における入射角θ(=ブリュースタ角
)と屈折角φの間には、空気の屈折率を1として。
Note that the refractive index of air is assumed to be 1 between the incident angle θ (=Brewster's angle) and the refraction angle φ at the end face of the element.

sinθ sinφ の関係があることから、φは、 φ=sin”” (sinθ/nよ)        
・・・(3)により決定される。
Since there is a relationship of sinθ sinφ, φ is φ=sin”” (sinθ/n)
...Determined by (3).

また、コーティング層はレーザ光に対し実質的に透明で
あることが重要で、そのため吸収損失は生じない。
It is also important that the coating layer be substantially transparent to the laser light, so that no absorption losses occur.

本発明のスラブ型レーザ素子のレーザ媒質としては、N
d:GGG (Nd”ドープトGd、Gap、、)、N
d:YAG(Nd’ゝドープトY、AQ、0.)等が挙
げられ、また、これらの媒質材料に対し式(1)の条件
を満足し5実質的に透明であるコーティング層の材料と
しては、例えば、Sin□、 LaF3、BaF2、C
aF、、MgF、、 LiF、Na、AQF、、NaF
等が挙げられるが、特にこれらに限定するものではない
。形成されるコーティング層の強度、耐久性、耐水性等
の点からは、 5in2が好ましい材料である。コーテ
ィング層を素子基体表面に形成する方法としては、真空
蒸着法、CVD法、スパッタリング法等を利用すること
ができる。
As the laser medium of the slab type laser element of the present invention, N
d: GGG (Nd” doped Gd, Gap, ), N
d:YAG (Nd' doped Y, AQ, 0.), etc., and as a material for the coating layer that satisfies the condition of formula (1) for these medium materials and is substantially transparent, , for example, Sin□, LaF3, BaF2, C
aF, , MgF, , LiF, Na, AQF, , NaF
etc., but is not particularly limited to these. From the viewpoint of strength, durability, water resistance, etc. of the coating layer formed, 5in2 is a preferable material. As a method for forming the coating layer on the surface of the element substrate, a vacuum evaporation method, a CVD method, a sputtering method, etc. can be used.

〔実施例〕〔Example〕

第1図に示すスラブ型レーザ素子を、Nd:GGGを母
材として製造した。Nd : GGG媒質1は、上下の
2つの全反射面上に全面にわたり、5in2からなるコ
ーティング層2,2′が形成されている(図では厚さを
誇張して示しである)。レーザ光軸は全反射面と平行で
あるように製作されているので、左右の端面3および3
′はブリュースタ角(θ=52.7@)傾いており、し
たがって端部の傾斜角αは27.3゜である。
The slab type laser device shown in FIG. 1 was manufactured using Nd:GGG as a base material. In the Nd: GGG medium 1, coating layers 2 and 2' each having a thickness of 5 in2 are formed over the entire surface of the two upper and lower total reflection surfaces (the thickness is exaggerated in the figure). Since the laser optical axis is manufactured to be parallel to the total reflection surface, the left and right end surfaces 3 and 3
' is inclined by Brewster's angle (θ=52.7@), so the end inclination angle α is 27.3°.

このスラブ型レーザ素子は、発振波長λ= 1.06μ
mに対し屈折率n工=1.94であり、端面3にブリュ
ースタ角(θ=62.7°)で入射した光の屈折角φは
前記式(3)より、φ= 27.3°である。したがっ
て、式(1)より n2(1,58 でなければならない。今、Sin、コーティング層の屈
折率は、nよ=1.45であり、この条件を満たしてい
る。このときのコーティング層の必要な厚さしは、式(
2)より し>0.27 (μm) と求められる。
This slab type laser element has an oscillation wavelength λ = 1.06μ
The refractive index n = 1.94 for m, and the refraction angle φ of the light incident on the end face 3 at Brewster's angle (θ = 62.7°) is φ = 27.3° from the above formula (3). It is. Therefore, from equation (1), n2 (1,58) must be. Now, the refractive index of the coating layer is n = 1.45, which satisfies this condition. The required thickness is calculated using the formula (
2) It is determined that the thickness is >0.27 (μm).

本実施例のようにNd:GGG媒質の全反射面をSiO
□コーティング層で被覆したとき、全反射の際の位相変
化は、反射位置によらず常に−90,5°となるので、
横モードの乱れは起らない。また、 5in2は波長1
.06μmの光を吸収しないので、吸収損失も発生しな
い。
As in this example, the total reflection surface of the Nd:GGG medium is replaced with SiO
□When covered with a coating layer, the phase change during total reflection is always -90.5° regardless of the reflection position, so
No transverse mode disturbance occurs. Also, 5in2 is wavelength 1
.. Since it does not absorb light of 0.06 μm, no absorption loss occurs.

実施例2 Nd:YAGを発振媒質として用い、実施例1と同様の
スラブ型レーザ素子を製作した。この場合も発振波長は
え= 1.06μmで、該波長に対するNd:YAGの
屈折率はn 1= 1.82である。ブリュースタ角は
61.2’であり、スラブ端部の頂角α=28.8’と
した、端面3にブリュースタ角(θ=61.2″′)で
入射した光の屈折角φは前記式(3)よりφ= 28.
8°であり。
Example 2 A slab type laser device similar to Example 1 was manufactured using Nd:YAG as the oscillation medium. In this case as well, the oscillation wavelength is 1.06 μm, and the refractive index of Nd:YAG with respect to this wavelength is n 1 = 1.82. The Brewster angle is 61.2', and the apex angle α of the slab end is 28.8', and the refraction angle φ of the light incident on the end face 3 at the Brewster angle (θ = 61.2'') is From the above formula (3), φ=28.
It is 8°.

したがって、式(1)より n2〈1.53 でなければならない。5in2コ一テイング層の屈折率
n、=1.45はこの条件を満たしている。このとき、
コーチイン層の必要な厚さtは、式(2)よりt>0.
33(μm) と求められる。
Therefore, from equation (1), n2<1.53 must be satisfied. The refractive index n of the 5 in 2 coating layer is 1.45, which satisfies this condition. At this time,
The required thickness t of the coach-in layer is determined by equation (2) when t>0.
It is calculated as 33 (μm).

参考例 コーティング層の材料として使用し得る物質の屈折率(
λ= 1.06μm)を第1表に例示する。これら物質
はλ= 1.06μmについて透明である。実施例1の
結果から、 LaF3以外の例示物質はいずれもNd 
: GGGレーザのコーティング層として使用できるこ
とがわかる。また、Nd:YAGレーザに対してはいず
れの例示物質も使用できることがわかる。
Reference example Refractive index of a substance that can be used as a material for a coating layer (
λ=1.06 μm) is illustrated in Table 1. These materials are transparent for λ=1.06 μm. From the results of Example 1, all the exemplified substances other than LaF3 are Nd
: It can be seen that it can be used as a coating layer for GGG lasers. It can also be seen that any of the exemplified materials can be used for Nd:YAG lasers.

第1表 〔発明の効果〕 本発明のスラブ型レーザ素子は、全反射面に接する物質
による吸収損失がなく、また全反射面のいずれの位置に
おいても反射による位相変化が常に同一であるためレー
ザ出力光に横モードの乱れが生じない。したがって、単
に広い断面積を有するばかりでなく、均一な横モードを
有する良質のレード出力光を得ることができる。このよ
うなレーザ出力光はレーザマーカー、レーザアニール等
の加工、又、微細に出力光を絞り込む事が容易であり、
該素子は切断、溶接、トリミング等の各種レーザ加工機
に有用である。
Table 1 [Effects of the Invention] The slab type laser element of the present invention has no absorption loss due to substances in contact with the total reflection surface, and the phase change due to reflection is always the same at any position on the total reflection surface. Transverse mode disturbance does not occur in the output light. Therefore, it is possible to obtain high-quality radar output light that not only has a wide cross-sectional area but also has a uniform transverse mode. This kind of laser output light is easy to process with laser markers, laser annealing, etc., and it is easy to narrow down the output light finely.
This element is useful for various laser processing machines such as cutting, welding, and trimming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明のスラブ型レーザ素子の一実施例の概
略を示す図である。
FIG. 1 is a diagram schematically showing an embodiment of a slab type laser device according to the present invention.

Claims (1)

【特許請求の範囲】  2つの平行な全反射面を有するスラブ型レーザ素子に
おいて、 前記2つの全反射面の裏面に相当する2つの表面に、屈
折率n_2および厚さtが、それぞれ次式(1)および
(2): n_2<n_1sin(α+φ)・・・(1)t>(λ
/n_1)/〔2π√(sin^2(α+φ)−(n_
2/n_1)^2)〕・・・(2)ここで、φ=sin
^−^1(sinθ/n_1)〔上記式中、n_1はレ
ーザ媒質の屈折率、αは素子の端部頂角、θはブリュー
スタ角、φは端面にブリュースタ角で入射したレーザ光
の屈折角、そしてλはレーザ光の波長(真空中)を示す
。〕の条件を満たすコーティング層を有することを特徴
とするスラブ型レーザ素子。
[Claims] In a slab type laser element having two parallel total reflection surfaces, two surfaces corresponding to the back surfaces of the two total reflection surfaces have a refractive index n_2 and a thickness t, respectively, as expressed by the following formula ( 1) and (2): n_2<n_1sin(α+φ)...(1)t>(λ
/n_1)/[2π√(sin^2(α+φ)−(n_
2/n_1)^2)]...(2) Here, φ=sin
^-^1 (sin θ/n_1) [In the above formula, n_1 is the refractive index of the laser medium, α is the apex angle of the end of the element, θ is the Brewster angle, and φ is the laser beam incident on the end face at the Brewster angle. The refraction angle and λ indicate the wavelength of the laser light (in vacuum). ] A slab-type laser element characterized by having a coating layer that satisfies the following conditions.
JP61165171A 1986-07-11 1986-07-11 Slab type laser element Expired - Lifetime JPH0738469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61165171A JPH0738469B2 (en) 1986-07-11 1986-07-11 Slab type laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165171A JPH0738469B2 (en) 1986-07-11 1986-07-11 Slab type laser element

Publications (2)

Publication Number Publication Date
JPS6319888A true JPS6319888A (en) 1988-01-27
JPH0738469B2 JPH0738469B2 (en) 1995-04-26

Family

ID=15807207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165171A Expired - Lifetime JPH0738469B2 (en) 1986-07-11 1986-07-11 Slab type laser element

Country Status (1)

Country Link
JP (1) JPH0738469B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198281A (en) * 1987-06-22 1989-04-17 Lasag Ag Laser having improved cooling system
JPH01272174A (en) * 1988-04-25 1989-10-31 Hikari Sangyo Gijutsu Shinko Kyokai Slab type laser element
JPH03293787A (en) * 1990-04-12 1991-12-25 Mitsubishi Electric Corp Solid state laser
WO2013140432A1 (en) * 2012-03-19 2013-09-26 三菱電機株式会社 Laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247983A (en) * 1984-05-24 1985-12-07 Hoya Corp Erbium laser oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247983A (en) * 1984-05-24 1985-12-07 Hoya Corp Erbium laser oscillator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198281A (en) * 1987-06-22 1989-04-17 Lasag Ag Laser having improved cooling system
JP2690324B2 (en) * 1987-06-22 1997-12-10 ラザグ アクチェンゲゼルシャフト Laser with improved cooling system
JPH01272174A (en) * 1988-04-25 1989-10-31 Hikari Sangyo Gijutsu Shinko Kyokai Slab type laser element
JPH0666488B2 (en) * 1988-04-25 1994-08-24 財団法人光産業技術振興協会 Slab type laser element
JPH03293787A (en) * 1990-04-12 1991-12-25 Mitsubishi Electric Corp Solid state laser
WO2013140432A1 (en) * 2012-03-19 2013-09-26 三菱電機株式会社 Laser device
CN104205528A (en) * 2012-03-19 2014-12-10 三菱电机株式会社 Laser device
JPWO2013140432A1 (en) * 2012-03-19 2015-08-03 三菱電機株式会社 Laser equipment
US9214784B2 (en) 2012-03-19 2015-12-15 Mitsubishi Electric Corporation Laser device

Also Published As

Publication number Publication date
JPH0738469B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4674827A (en) Slab-type optical device
JP3654836B2 (en) Photonic crystal omnidirectional reflector
US6977774B1 (en) Polarizer
US4208636A (en) Laser apparatus
KR940022118A (en) Semi-monolithic Saturated Optical Device
JPS6118934A (en) Device for changing wavelength of light
JPS6319888A (en) Slab type laser element
JPS60112023A (en) Light wavelength conversion element
Nightingale et al. Monolithic Nd: YAG fiber laser
JP2586110B2 (en) Solid-state laser device
JP2000180789A (en) Optical isolator
JP2542358B2 (en) Absolute single polarization type constant polarization optical fiber
JP2001083321A (en) Polarizer and method for its production
JP3060493B2 (en) Solid state laser oscillator
Baba et al. A novel 3-dimensional ARROW by thin film patterning—Stripe lateral confinement of ARROW—
JP2641238B2 (en) Polarizer
JP2764440B2 (en) Anamorphic prism
JPS63191106A (en) Optical branching circuits
JPH11281833A (en) Grating coupler
JPH03145776A (en) Slab type laser medium
JPS61133906A (en) Optical confluence circuit
JPH05273417A (en) Optical waveguide
KR100224630B1 (en) Laser diode
JPS6273685A (en) Solid-state laser device
JP2561912B2 (en) Polarization separation waveguide