JPH0255303A - Hollow optical waveguide and its production - Google Patents

Hollow optical waveguide and its production

Info

Publication number
JPH0255303A
JPH0255303A JP63206432A JP20643288A JPH0255303A JP H0255303 A JPH0255303 A JP H0255303A JP 63206432 A JP63206432 A JP 63206432A JP 20643288 A JP20643288 A JP 20643288A JP H0255303 A JPH0255303 A JP H0255303A
Authority
JP
Japan
Prior art keywords
optical waveguide
base material
hollow optical
material pipe
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63206432A
Other languages
Japanese (ja)
Inventor
Kenichi Morosawa
諸沢 健一
Akishi Hongo
晃史 本郷
Tsuneo Shioda
塩田 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63206432A priority Critical patent/JPH0255303A/en
Publication of JPH0255303A publication Critical patent/JPH0255303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To remove heating destruction due to coupling loss at an incident end and to transmit large power by forming the incident end of a hollow optical waveguide as a taper-like aperture having a specific expanding angle. CONSTITUTION:The expanding angle 2theta of the single end part of the hollow optical waveguide is formed as the taper-like aperture having the expanding angle 2theta=2lambda/Ka (0.4<=K<=0.65) (provided that 2a is the inner diameter of the hollow optical waveguide and lambda is the wavelength of a laser beam). In the case of producing the hollow optical waveguide, a conical body having a taper face with the expanding angle 2theta is heated and pressed against to the end part of a parent pipe 4 to form the optical waveguide. After forming a Ge dielectric thin film 7 and an external metallic layer 6 consisting of Ni or the like successively on the outside of the pipe 4, the pipe 4 is removed by etching. Since the incident end is shaped like a taper, the concentration of coupling loss can be suppressed and large power can be stably transmitted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はC02レーザなどの光パワーを伝送する中空導
波路とその製造方法に関わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow waveguide for transmitting optical power of a C02 laser or the like and a method for manufacturing the same.

[従来の技術] 高い効率で大出力を得ることのできるChレーザは加工
用、医療用に主とし、て利用され始め、また同位体分離
や気体濃度計測等にも応用範囲が広がろうとし、ている
。しかし低損失で可撓性をもった石英系光ファイバを利
用できるYAGレーザに比べ、波長10,6μIのCO
2レーザの場合、低損失可撓性導波路が入手できないた
め、応用上の大きな障害となっており、その実現が待た
れて久しい。現在その候補として最も有望視されている
のが金属パイプ内面に、10,6μlの波長帯で低損失
なGe、 2nSe等の誘電体材料をコーティングする
ことで金属パイプ内面の反射率を高め、中空パイプ内部
にレーザエネルギを閉じ込めて伝送する誘電体内装金属
中空導波路である。
[Conventional technology] Ch lasers, which can obtain high output with high efficiency, have begun to be used mainly for processing and medical purposes, and are also expanding their range of applications to isotope separation and gas concentration measurement. ,ing. However, compared to YAG lasers that can use low-loss, flexible silica-based optical fibers, CO2 lasers with a wavelength of 10.6 μI
In the case of two lasers, the unavailability of low-loss flexible waveguides has been a major obstacle in their application, and their realization has been long awaited. Currently, the most promising candidate is to coat the inner surface of the metal pipe with a dielectric material such as Ge or 2nSe, which has low loss in the 10.6 μl wavelength band, to increase the reflectance of the inner surface of the metal pipe and create a hollow This is a hollow metal waveguide with a dielectric interior that confines and transmits laser energy inside a pipe.

以下その導波路の製造方法を説明する。The method for manufacturing the waveguide will be explained below.

母材パイプは軸方向に一様な外径を有しており、その材
料はA2またはポリイミドが使用される。 AQの場合
その外表面を例えばダイヤモンドベースト等を用いて鏡
面化する必要がある。この母材パイプの外表面に約0.
5μmの厚さのGeあるいは約0.8μ厖厚さのZn5
eを高周波マグネトロンスパッタリング法により形成す
る。この誘電体薄膜の外表面にAg、Cu、Au等の金
属薄膜を形成する。その厚さは波長10.6μlにおけ
るスキンデプス以上であり、約300Å以上であれば充
分である0次にこの金属薄膜表面に例えばワット浴また
はスルファミン酸浴の光沢めっきによってNi層を形成
する。その厚さはa械的強度から定められるが約100
μmから200μm程度である。最後に母材パイプをエ
ツチング除去して誘電体内装金属中空導波路が製造され
る9エツチング液にはMの場合約10%程度のN a 
OH溶液を、またポリイミドの場合にはヒドラジンとエ
チレンジアミンの混合液を使用する。
The base material pipe has a uniform outer diameter in the axial direction, and its material is A2 or polyimide. In the case of AQ, its outer surface must be mirror-finished using, for example, diamond base. Approximately 0.0% is applied to the outer surface of this base material pipe.
5μm thick Ge or about 0.8μm thick Zn5
e is formed by high frequency magnetron sputtering method. A metal thin film of Ag, Cu, Au, etc. is formed on the outer surface of this dielectric thin film. The thickness is equal to or greater than the skin depth at a wavelength of 10.6 .mu.l, and it is sufficient if it is approximately 300 .ANG. or greater.A Ni layer is formed on the surface of this metal thin film by bright plating in, for example, a Watt bath or a sulfamic acid bath. The thickness is determined from the mechanical strength of approximately 100
It is from μm to about 200 μm. Finally, the base material pipe is removed by etching to produce a dielectric-incorporated metal hollow waveguide.9 The etching solution contains about 10% Na in the case of M.
An OH solution or, in the case of polyimide, a mixture of hydrazine and ethylenediamine is used.

二のように、従来、誘電体内装金属円形中空導波路の作
製には母材パイプの回りに誘電体および金属層を形成し
、て、I&後に母材パイプをエツチング等で除去する「
外づけ法」が用いられていた。
As shown in step 2, conventionally, to fabricate a dielectric-incorporated metal circular hollow waveguide, a dielectric and a metal layer are formed around a base material pipe, and the base material pipe is removed by etching or the like after I&.
The external method was used.

そして、母材パイプは軸方向に一様な外形をしており、
従って!!!遺した中空導波路の内形も軸方向。
The base material pipe has a uniform outer shape in the axial direction,
Therefore! ! ! The inner shape of the remaining hollow waveguide is also axial.

に−様であった。It was like that.

[発明が解決しようとする課題] しかし、従来の「外づけ法」で作製した中空導波路は、
導波路の内形が伝送方向に一様であるため、レーザビー
ムと結合した時、導波路入射端ではモード閉込め(1o
de conf 1nenent )が空気中と異なる
ために結合損失が発生し、入射端付近の集中的な発熱温
度上昇をひき起こしていた。特に大パワーの伝送におい
ては結合損失により入射端のみが破壊してしまう危険が
あった。
[Problems to be solved by the invention] However, hollow waveguides fabricated using the conventional "external attachment method"
Since the internal shape of the waveguide is uniform in the transmission direction, mode confinement (1o
de conf 1nenent ) is different from that in air, coupling loss occurs, causing a concentrated heat generation temperature increase near the input end. Particularly in high power transmission, there was a risk that only the input end would be destroyed due to coupling loss.

本発明の目的は前記した従来技術の問題点を解決し、入
射端における結合損失による導波路の局部的な破壊をな
くし、大パワー伝送可能な、光パワー伝送装置の構造と
その製造方法を提供することにある。
An object of the present invention is to solve the problems of the prior art described above, eliminate local destruction of the waveguide due to coupling loss at the input end, and provide a structure of an optical power transmission device and a method for manufacturing the same, which can transmit large power. It's about doing.

[課題を解決するための手段] 本発明の中空光導波路は、外部金属層の内側に誘電体薄
膜を形成し、てなる中空導波路において、少なくとも前
記中空光導波路の片端部が広がり角2θ=2λ、/Ka
r(0,4≦K≦O,f35)但し、2a・・・中空光
導波路の内径 λ・・・レーザビームの波長 のテーパ状開口を有してなるものである9その製造方法
としては、少なくとも外部金属層の内側に誘電体薄膜を
形成してなる中空光導波路の製造方法において、少なく
とも片端部外周に広がり角 2 θ = 2 λ 、/Kar(0,4≦K ≦0.
65)但し、2a・・・中空光導波路の内径 λ・・・レーザビームの波長 のテーパ面を形成し、てなる成型母材パイプの外側に誘
電体薄膜を設け、さらにその外側に外部金属層を形成し
た後、上記母材パイプをエツチング除去することによる
[Means for Solving the Problems] A hollow optical waveguide of the present invention includes a dielectric thin film formed inside an external metal layer, and at least one end of the hollow optical waveguide has a divergence angle 2θ= 2λ, /Ka
r (0, 4≦K≦O, f35) However, 2a... The inner diameter of the hollow optical waveguide λ... It has a tapered aperture of the wavelength of the laser beam 9 As for its manufacturing method, In a method for manufacturing a hollow optical waveguide in which a dielectric thin film is formed inside at least an external metal layer, a divergence angle 2 θ = 2 λ, /Kar (0, 4≦K≦0.
65) However, 2a... Inner diameter of the hollow optical waveguide λ... A tapered surface of the wavelength of the laser beam is formed, a dielectric thin film is provided on the outside of the molded base material pipe, and an external metal layer is further provided on the outside of the formed base material pipe. After forming the base material pipe, the base material pipe is removed by etching.

その成形母材パイプ自体は、前記広がり角2θのテーパ
面を有する円錐体を、加熱した母材パイプ端部に押しあ
てて成型してもよいし、母材パイプの端部をめっき浴に
浸漬し引上げるに際し、その引上げ速度を徐々に遅くす
ることにより、前記広がり角2θのテーパ面を有するめ
っき層を形成したものであってもよい、更には、母材パ
イプの端部をめっき浴に浸漬し引上げる動作を繰返すに
際し、その浸漬領域を徐々に先@部に制限することによ
り、前記広がり角2θのテーパ面を有するめっき層を形
成したものであってもよい。
The molded base material pipe itself may be formed by pressing a cone having a tapered surface with the spread angle 2θ against the heated end of the base material pipe, or by immersing the end of the base material pipe in a plating bath. However, a plating layer having a tapered surface with the spread angle 2θ may be formed by gradually slowing down the pulling speed during pulling.Furthermore, the end of the base material pipe may be placed in a plating bath. When repeating the dipping and pulling operations, the dipping region may be gradually limited to the tip, thereby forming a plating layer having a tapered surface with the spread angle 2θ.

[作用] 本発明の要点は、「外づけ法」による中空導波路作製に
おいて、母材パイプの片端を前述した広がり角2θ=2
λ、/ K aπの円錐形状に加工したことにあり、こ
の母材パイプを用いて製造した導波路入射端においては
、K=0.4〜0.65とすることで入射レーザビーム
との結合損失をほぼ最小にできるため、結合部のモード
閉込め(nodeconf inement )が空気
中の状態からきわめてゆるやかに変化し、中空導波路入
射端での結合損失の集中を防ぎ、局部的な破壊を無< 
L、て、大パワー伝送を可能にしたものである。
[Function] The main point of the present invention is that in fabricating a hollow waveguide by the "external attaching method", one end of the base material pipe is set to the above-mentioned divergence angle 2θ=2.
λ, / K aπ is processed into a conical shape, and at the input end of the waveguide manufactured using this base material pipe, coupling with the incident laser beam is achieved by setting K = 0.4 to 0.65. Since the loss can be almost minimized, the mode confinement of the coupling part changes very slowly from the state in air, preventing the concentration of coupling loss at the input end of the hollow waveguide, and eliminating local destruction. <
L, this enables large power transmission.

母材パイプとし、ては、^Q、 C++、 Niおよび
ポリイミド、ガラス等を用いる5これに対し、成型のた
めの円錐体の材料としては、母材を加熱しながらでも円
錐体の変形を生じる恐れの無いように、母材よりも融点
の高いものが望まし、い1例えば母材に72パイプ(融
点660℃)を用いた時は、円jif4cにはC1」(
融点1080℃)、AU(融点960℃) 、 Ni(
融点1455℃)等を用いることができる。
For the base material pipe, materials such as ^Q, C++, Ni, polyimide, glass, etc. are used5.On the other hand, as the material for the cone for molding, the cone can be deformed even while heating the base material. To avoid any fear, it is preferable to use a material with a higher melting point than the base material.For example, when using 72 pipe (melting point 660°C) as the base material, the circle jif4c is C1'' (
melting point 1080℃), AU (melting point 960℃), Ni(
(melting point: 1455°C), etc. can be used.

誘電体薄膜にはGe、 1nse、 ZnS等を用い金
属層にはNi、へg、Ct+等を用いる。誘電体薄膜は
スパッタリングやめつき或いはCVD法によって形成す
ることができる。
Ge, 1nse, ZnS, etc. are used for the dielectric thin film, and Ni, Heg, Ct+, etc. are used for the metal layer. The dielectric thin film can be formed by sputtering, plating, or CVD.

[実施例コ 以下、図示の実施例について説明する。[Example code] The illustrated embodiment will be described below.

実施例1 母材パイプに八2を用いてGe/Ni中空導波路を作製
する場合、第1図に示した様な円錐体l及び支持部2を
有するCLIの円錐針3を用いて、これを第2図に示す
様に回転させながら、バーナ5で加熱したAQHk材パ
イプ4の片端に円錐針先端を押付け、当該片端部を円錐
状に成形し、てテーパ状開口とする。
Example 1 When fabricating a Ge/Ni hollow waveguide using 82 as the base material pipe, a CLI conical needle 3 having a conical body 1 and a support part 2 as shown in FIG. While rotating as shown in FIG. 2, the tip of the conical needle is pressed against one end of the AQHk material pipe 4 heated by the burner 5, and the one end is formed into a conical shape to form a tapered opening.

ここで用いられる円錐針3の円錐体1の部分の形状は、
成型された母材パイプ4の片端部内錐形状が、広がり角 2θ=2λ、/Kar(0,4≦K≦0.65)但し、
2a・・・中空光導波路の内径 λ・・・レーザビームの波長 のテーパ状開口となるようにする。即ち、これと同じ2
θのテーパ面を持つ円錐形とする。
The shape of the conical body 1 of the conical needle 3 used here is as follows:
The inner conical shape of one end of the molded base material pipe 4 has a divergence angle 2θ=2λ, /Kar (0,4≦K≦0.65), however,
2a: Inner diameter λ of the hollow optical waveguide: A tapered aperture with the wavelength of the laser beam. That is, the same 2
It has a conical shape with a tapered surface of θ.

次いで、このようにし、て得られた成型母材パイプ4を
用い、その外側に高周波スパッタリングによりGe誘電
体膜を形成し1、さらに、旧めっきを行なって金属層を
形成する。次に、このAQ 、/ Ge、/ N iパ
イプを苛性ソーダに浸漬して^之のみをエツチングする
。こうし、てできたGe/Ni導波路は第3図に示す様
に片端に円錐形状を有し、レーザビームとの結合におい
て、結合損失が入射端近傍に集中することがなく、大パ
ワー伝送が可能となる9一般に、円形の中空導波路に励
振される夫々のモードの励振効率は、導波路半径aと導
波路入射端のレーザビームのスポットサイズWとの比w
7/aによって大きく異なる。第5図には横方向に軸ず
れがなくガウスビームを入射した時の円形の中空導波路
に励振されるHE、、モードの励振効率が示されている
。同図から明らかなように、般に円形の中空導波路のH
E、、モードのうち鼓も低損失なモードはIIE、、モ
ードであり、このモードはw、/a=0.64のとき最
大効率で励振される。
Next, using the molded base material pipe 4 thus obtained, a Ge dielectric film is formed on the outside by high frequency sputtering 1, and a metal layer is further formed by performing old plating. Next, the AQ, /Ge, /Ni pipes are immersed in caustic soda to etch only the AQ, /Ge, /Ni pipes. The Ge/Ni waveguide made in this way has a conical shape at one end as shown in Figure 3, and when coupled with a laser beam, the coupling loss is not concentrated near the input end, allowing high power transmission. 9 In general, the excitation efficiency of each mode excited in a circular hollow waveguide is determined by the ratio w of the waveguide radius a and the spot size W of the laser beam at the input end of the waveguide.
It varies greatly depending on 7/a. FIG. 5 shows the excitation efficiency of the HE mode excited in the circular hollow waveguide when a Gaussian beam is incident with no axis deviation in the lateral direction. As is clear from the figure, H of the circular hollow waveguide is generally
Among the E, modes, the mode with the lowest loss is the IIE mode, which is excited at maximum efficiency when w,/a=0.64.

従って出射ビームをガウス分布にしたい時、或いは充分
長い導波路でHE、、モード以外のモードは減衰してし
まうような導波路では、w 、/ a = 0.64を
満足するように入射すればよい。しかしながら大電力伝
送を目的とした導波路のように、比較的短尺な導波路或
いは高次モードでも低損失である導波路では、w、/a
=0.64よりも小さいビーム径で入射させた方が中空
領域外にはみ出すパワーが少なくなるので、全パワーの
伝送容量が大きくなる9 二のように導波路の寸法、損失によって入射ビームのビ
ーム径はw7/ a = 0.64以下概し、て0.4
〜0.65の範囲でf&適となるようにしなければなら
ない。更に、励振効率を最大にするにはレンズ通過後の
光ビームのビームウェスト、即ちスポットサイズが最小
値となる部分の位置に、導波路入射端がくるようにしな
ければならない。
Therefore, when you want the output beam to have a Gaussian distribution, or in a waveguide that is long enough to attenuate modes other than the HE mode, if the input beam satisfies w,/a = 0.64, then good. However, in relatively short waveguides or waveguides with low loss even in higher-order modes, such as waveguides intended for high power transmission, w, /a
If the beam diameter is smaller than 0.64, the power that protrudes outside the hollow region will be smaller, so the transmission capacity of the total power will be larger. The diameter is w7/a = 0.64 or less, generally 0.4
It is necessary to make f& suitable in the range of ~0.65. Furthermore, in order to maximize the excitation efficiency, the waveguide input end must be located at the beam waist of the light beam after passing through the lens, that is, the position where the spot size is the minimum value.

上記実施例ではパイプを加熱したが、母材パイプを成形
する際に、パイプを加熱せず円錐針を加熱し、ても同様
な導波路を得ることができる。
Although the pipe was heated in the above embodiment, a similar waveguide can be obtained by heating the conical needle without heating the pipe when forming the base material pipe.

母材パイプの円錐形状の作成方法とし、ては、前述した
以外にもめつき、鋳造、溶射、切削等がある9 実施例2 第4図はめっきによる例であり、10はC,r電極、1
1は浴槽、12は電解液を示す。実施例1の円錐針を用
いずにAQの線材パイプ14の片端をシール材13で閉
塞して浴槽11内の電解液(めっき浴)12に浸漬り1
、母材パイプ14を連結具15を介し、て、試料上下動
用の滑車9により引き上げながら、かつ引上げ速度を徐
々に遅くして片端に20の円錐形にC,rめっきし、円
錐部8を形成する9その際に、母材パイ1片端の浸漬と
引き上げを繰返し1.かつ浸漬領域を徐々に端部に制限
することにより円錐形状にする。以下、これを成型母材
パイプとし、て同様に加工すれば実施例1と同様な特性
の中空導波路を得ることができる9上記実施例1及び2
では母材パイプの片端のみを成型したが、片端のみでな
く両端を円錐形にすれば入射ビームをどちらから結合し
ても結合損失の小さな(双方向低結合損失)中空導波路
を得ることができる。
Methods for creating the conical shape of the base material pipe include plating, casting, thermal spraying, cutting, etc. in addition to those described above.9 Example 2 Figure 4 is an example of plating, and 10 is a C, r electrode, 1
1 indicates a bathtub, and 12 indicates an electrolyte. Instead of using the conical needle of Example 1, one end of the AQ wire pipe 14 was closed with the sealing material 13 and immersed in the electrolytic solution (plating bath) 12 in the bath 11.
While pulling the base material pipe 14 through the connector 15 and using the pulley 9 for moving the sample up and down, and gradually slowing down the pulling speed, one end is plated with C and R in a conical shape of 20 mm, and the conical part 8 is plated. Forming 9 At that time, repeat the dipping and pulling up of one end of the base material pie 1. and a conical shape by gradually restricting the immersion area to the ends. Hereinafter, if this is used as a molded base material pipe and processed in the same manner, a hollow waveguide with characteristics similar to those of Example 1 can be obtained.9 Above Examples 1 and 2
In this example, only one end of the base material pipe was molded, but by making both ends conical instead of just one end, it is possible to obtain a hollow waveguide with low coupling loss (bidirectional low coupling loss) no matter which direction the incident beam is coupled. can.

第6図は、入射ビームのビーム径をW、/a=0.4〜
0.65の範囲で最適化させる装置例を示したもので、
便宜上、光導波路の端部のテーパ状態は省略しである。
Figure 6 shows the beam diameter of the incident beam W, /a=0.4~
This shows an example of a device that optimizes within the range of 0.65.
For convenience, the tapered state at the end of the optical waveguide is omitted.

中空導波路21にレーザ光源22から出射したレーザビ
ームを入射させる少なくともレンズを使用したレーザビ
ーム入射光学系で、レンズL3は、その焦点距M f 
3だけ中空導波路入射端よりレーザ光源2側に固定され
ている9レンスL3よりレーザ光源21!IIIに配置
したl/ンズL2とこのレンズL2より更にレーザ光源
2側に配置したレンズL1とはパルスモータ3の移動台
によって位置を可変し得る5レンズL+  L2をレン
ズL1に入射するレーザビームのビームウェストとレン
ズL1との距745.9 +の変化に応じ1、Q+−f
l (EJ L、A I2はL/7ズL+ 、12間の距離
1、Q 23はレンズL2 、L3との距離、f+  
 I2  faはレンズL+ 、L2 。
A laser beam input optical system that uses at least a lens to input the laser beam emitted from the laser light source 22 into the hollow waveguide 21, and the lens L3 has a focal length M f
Laser light source 21! from 9 lenses L3 fixed on the laser light source 2 side from the hollow waveguide entrance end by 3! The l/lens L2 placed in the lens L2 and the lens L1 placed further on the side of the laser light source 2 from this lens L2 are 5 lenses whose positions can be varied by the moving stage of the pulse motor 3. The distance between the beam waist and the lens L1 is 745.9 1, depending on the change in +, Q+-f
l (EJ L, A I2 is L/7zu L+, distance 1 between 12, Q23 is distance to lenses L2 and L3, f+
I2 fa is lens L+, L2.

L3の焦点距離、 の関係を保つように光軸方向に自動的に移動するように
する。即ち、入射ビームのビーム径が最適ビーム径より
ずれている場合には距、Jt J + を変化させる。
The focal length of L3 is automatically moved in the optical axis direction so as to maintain the following relationship. That is, when the beam diameter of the incident beam deviates from the optimum beam diameter, the distance Jt J + is changed.

これはレーザ光源22を移動するか、或いは中空導波路
21及び入射光学系全体を移動させるか、或いはレンズ
L1のレーザ光源22側に適当なレンズを新たに挿入し
、レンズL1に入射するレーザビームウェストの位置を
変化させてもよい、しかしこの時も常に上式を満足しな
ければならず、Jll+の変化に応じてパルスモータ3
を駆動し7、レンズL+ 、L2の位置を変化さぜる9
そして中空導波路1の入射端の17−ザビームのスポッ
トサイズが中空導波路1の導波路半径の0.4〜0.6
5倍になるように、ビーム径を可変する。
This can be done by moving the laser light source 22, moving the hollow waveguide 21 and the entire incident optical system, or inserting a new appropriate lens on the laser light source 22 side of the lens L1, and adjusting the laser beam incident on the lens L1. The position of the waist may be changed, but in this case, the above equation must always be satisfied, and the pulse motor 3
7, change the position of lenses L+ and L2 9
The spot size of the beam 17 at the incident end of the hollow waveguide 1 is 0.4 to 0.6 of the waveguide radius of the hollow waveguide 1.
The beam diameter is varied so that it becomes 5 times as large.

二のようにすることにより入射ビームのスポットサイズ
を広範囲にわたって任意に変換できる9二のため中空導
波路21に入射するビームのスポットサイズをi″1N
化し7、効率のよい励振が可能となり、特に大電力伝送
用導波路においても入射端の熱的損傷を抑えることがで
きる。
By doing the following, the spot size of the incident beam can be changed arbitrarily over a wide range.92 Therefore, the spot size of the beam incident on the hollow waveguide 21 is set to i″1N.
7, efficient excitation is possible, and thermal damage to the input end can be suppressed, especially in waveguides for high power transmission.

[発明の効果] 以上述べたように本発明によれば、中空導波路で光パワ
ーを伝送する際の、結合部での局部的な温度上昇とそれ
に伴う導波路の破損を防ぎ、大パワーを安定に伝送する
ことが可能となる。即ち、母材パイプの入射端を前述し
た様な入射ビームに対し、てゆるやかにモード コンフ
ァインメントが変化する円錐形の導波路とすることによ
って、結合損失の集中が避けられ、損失が導。
[Effects of the Invention] As described above, according to the present invention, when optical power is transmitted through a hollow waveguide, local temperature rise at the coupling part and the resulting damage to the waveguide can be prevented, and large power can be transmitted. Stable transmission becomes possible. In other words, by making the input end of the base material pipe a conical waveguide whose mode confinement changes gradually with respect to the incident beam as described above, concentration of coupling loss can be avoided and loss can be guided.

波路全体に分散するため、従来の構造で問題となった結
合損失の熱による大パワー伝送時の入射端の破損が抑制
される。
Since it is dispersed throughout the wave path, damage to the input end due to heat due to coupling loss, which was a problem with conventional structures, is suppressed during large power transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は母材パイプ端部の成型に用いる円錐針の側面図
、第2図は円錐針を用いて母材パイプ端部を成形する工
程の断面図、第3図は本発明により製造した中空光導波
路を一部WI面にて示した斜視図、第4図は母材端部に
めっきを施して円錐形状に形成する場合の概略図、第5
図は中空導波路に入射するHE、、モードの励振効率を
示す図、第6図はレーザビーム入射光学系を例示した図
である。 図中、1はCL1円錐体、2は支持部、3は円錐針、4
は母材^ρパイプ、5はバーナ、6は旧金属層、7はQ
6誘電体層、8はC「めっきにより形成した円錐部、9
は試料上下動用かつ車、10はCr電極、11は浴槽、
12は電解液、13はシール材。 14は母材^党パイプ、15は連結具である9特許出願
人  日立電線株式会社 代理人弁理士  絹 谷 信 雄 第2図 第3 図 第4図
Fig. 1 is a side view of a conical needle used for forming the end of the base material pipe, Fig. 2 is a sectional view of the process of forming the end of the base material pipe using the conical needle, and Fig. 3 is a side view of a conical needle used for forming the end of the base material pipe. FIG. 4 is a perspective view of a hollow optical waveguide partially shown in the WI plane; FIG. 4 is a schematic diagram of forming a conical shape by plating the end of the base material; FIG.
The figure shows the excitation efficiency of the HE mode incident on the hollow waveguide, and FIG. 6 is a diagram illustrating the laser beam incidence optical system. In the figure, 1 is the CL1 cone, 2 is the support part, 3 is the conical needle, 4
is the base material ^ρ pipe, 5 is the burner, 6 is the old metal layer, 7 is Q
6 a dielectric layer, 8 a conical part formed by C plating, 9
10 is a Cr electrode, 11 is a bathtub,
12 is an electrolytic solution, and 13 is a sealing material. 14 is the base material ^ pipe, 15 is the connector. 9 Patent Applicant: Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、外部金属層の内側に誘電体薄膜を形成してなる中空
導波路において、少なくとも前記中空光導波路の片端部
が広がり角 2θ=2λ/Kaπ(0.4≦K≦0.65)但し、2
a・・・中空光導波路の内径 λ・・・レーザビームの波長 のテーパ状開口を有してなることを特徴とする中空光導
波路。 2、外部金属層の内側に誘電体薄膜を形成してなる中空
光導波路の製造方法において、少なくとも片端部外周に
広がり角 2θ=2λ/Kaπ(0.4≦K≦0.65)但し、2
a・・・中空光導波路の内径 λ・・・レーザビームの波長 のテーパ面を形成してなる成型母材パイプの外側に誘電
体薄膜を設け、さらにその外側に外部金属層を形成した
後、上記母材パイプをエッチング除去することを特徴と
する中空光導波路の製造方法。 3、前記成形母材パイプは、前記広がり角2θのテーパ
面を有する円錐体を、加熱した母材パイプ端部に押しあ
てて成型したものである請求項2記載の中空光導波路の
製造方法。 4、前記成型母材パイプは、母材パイプの端部をめつき
浴に浸漬し引上げるに際し、その引上げ速度を徐々に遅
くすることにより、前記広がり角2θのテーパ面を有す
るめつき層を形成したものである請求項2記載の中空光
導波路の製造方法。 5、前記成形母材パイプは、母材パイプの端部をめっき
浴に浸漬し引上げる動作を繰返すに際し、その浸漬領域
を徐々に先端部に制限することにより、前記広がり角2
θのテーパ面を有するめっき層を形成したものである請
求項2記載の中空光導波路の製造方法。
[Claims] 1. In a hollow waveguide formed by forming a dielectric thin film inside an external metal layer, at least one end of the hollow optical waveguide has a divergence angle 2θ=2λ/Kaπ (0.4≦K≦ 0.65) However, 2
a: A hollow optical waveguide characterized by having a tapered aperture with an inner diameter λ of a wavelength of a laser beam. 2. In the manufacturing method of a hollow optical waveguide formed by forming a dielectric thin film inside an external metal layer, a spread angle 2θ=2λ/Kaπ (0.4≦K≦0.65) on the outer periphery of at least one end, provided that 2
a... Inner diameter of hollow optical waveguide λ... After providing a dielectric thin film on the outside of a molded base material pipe formed with a tapered surface of the wavelength of the laser beam, and further forming an external metal layer on the outside, A method for manufacturing a hollow optical waveguide, comprising removing the base material pipe by etching. 3. The method for manufacturing a hollow optical waveguide according to claim 2, wherein the molded base material pipe is formed by pressing a cone having a tapered surface with the spread angle of 2θ against an end of the heated base material pipe. 4. The formed base material pipe has a plating layer having a tapered surface with the spread angle 2θ by gradually slowing down the pulling speed when the end of the base material pipe is immersed in a plating bath and pulled up. 3. The method for manufacturing a hollow optical waveguide according to claim 2, wherein the hollow optical waveguide is formed by forming a hollow optical waveguide. 5. The formed base material pipe has the above-mentioned spread angle 2 by gradually limiting the immersion area to the tip when the end of the base material pipe is immersed in a plating bath and pulled up repeatedly.
3. The method of manufacturing a hollow optical waveguide according to claim 2, wherein a plating layer having a tapered surface of θ is formed.
JP63206432A 1988-08-22 1988-08-22 Hollow optical waveguide and its production Pending JPH0255303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206432A JPH0255303A (en) 1988-08-22 1988-08-22 Hollow optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206432A JPH0255303A (en) 1988-08-22 1988-08-22 Hollow optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPH0255303A true JPH0255303A (en) 1990-02-23

Family

ID=16523279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206432A Pending JPH0255303A (en) 1988-08-22 1988-08-22 Hollow optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPH0255303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192701A (en) * 2006-01-20 2007-08-02 Institute Of Physical & Chemical Research Hollow-fiber probe
US7723640B2 (en) 2003-12-05 2010-05-25 Branson Ultrasonics Corporation Optical horned lightpipe or lightguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723640B2 (en) 2003-12-05 2010-05-25 Branson Ultrasonics Corporation Optical horned lightpipe or lightguide
JP2007192701A (en) * 2006-01-20 2007-08-02 Institute Of Physical & Chemical Research Hollow-fiber probe

Similar Documents

Publication Publication Date Title
US5729646A (en) Optical hollow waveguide, method for fabricating the same, and laser transmission apparatus using the same
US7664356B2 (en) Hollow waveguide and method of manufacturing the same
US6126741A (en) Polycrystalline carbon conversion
EP0391598A1 (en) Method and apparatus for fabricating microlenses on optical fibers
JPH0255303A (en) Hollow optical waveguide and its production
Hongo et al. Transmission of 1 kW‐class CO2 laser light through circular hollow waveguides for material processing
US6546752B2 (en) Method of making optical coupling device
JP2633866B2 (en) Hollow optical waveguide
JPH04174804A (en) Hollow light wave guide connecting method
JPH08234026A (en) Hollow waveguide and its production and laser transmission device
JP2006516810A (en) Side pump fiber laser
Shi et al. New cyclic olefin polymer-coated silver hollow glass waveguides for the near-infrared to mid-infrared
JP2001338586A (en) Mode converter and gyrotron using the same
Shi et al. Pilot beams for polymer-coated silver hollow glass fibers
JP2001269355A (en) Medical laser transmitting device
JPH0273311A (en) Manufacture of energy guide
JPH02162302A (en) Hollow light guide body and production thereof
JPH0222482A (en) Production of hollow waveguide
Hiratani et al. Power handling capability of dielectric-coated, metallic, hollow waveguides for CO2 laser light
JP2599715B2 (en) Hollow optical waveguide and method of manufacturing the same
Kobayashi et al. Microstructured tube-leaky glass waveguide for delivery of high-powered Er: YAG laser
JPS61188507A (en) Optical waveguide
JPH05188225A (en) Hollow waveguide for uv laser beam
Abe et al. Simplified technique of fabricating dielectric-coated silver hollow nickel waveguides by the outer-coating method of the liquid phase process
JP2827365B2 (en) Laser processing equipment using dielectric-hollow metal hollow optical waveguide