JPH0273311A - Manufacture of energy guide - Google Patents

Manufacture of energy guide

Info

Publication number
JPH0273311A
JPH0273311A JP63227122A JP22712288A JPH0273311A JP H0273311 A JPH0273311 A JP H0273311A JP 63227122 A JP63227122 A JP 63227122A JP 22712288 A JP22712288 A JP 22712288A JP H0273311 A JPH0273311 A JP H0273311A
Authority
JP
Japan
Prior art keywords
gold
copper
waveguide
energy guide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63227122A
Other languages
Japanese (ja)
Inventor
Hirokuni Nanba
宏邦 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63227122A priority Critical patent/JPH0273311A/en
Publication of JPH0273311A publication Critical patent/JPH0273311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain the energy guide for intermediate infrared rays, whose output power is not fluctuated by a bending state by forming spirally a copper wire, forming a gold plating layer on its surface, and thereafter, eliminating copper of the inside by thick nitric acid, and forming a hollow waveguide made of gold. CONSTITUTION:In order to make a spiral thin gold tube, a copper wire is formed spirally and the surface of copper is plated by gold, and also, by immersing it in thick nitric acid, copper of the inside is smelted and eliminated. As a result, gold of a shell is left, and a hollow waveguide of gold can be formed. Accordingly, since the hollow waveguide is spiral shape from the beginning, there is no optical component which passes through by only traveling straight, even the component which goes into any direction advances in the waveguide, while being brought to multipath reflection. In such a way, even if the waveguide is bent, a loss does not increase newly, that is, the energy guide which is excellent in a characteristic against bending, and whose emitted optical power is stable can be obtained.

Description

【発明の詳細な説明】 (ト)技術分野 この発明は、炭酸ガス(Co2)レーザ光、又は−酸化
炭素ガス(CO)レーザ光の輸送に適したエネルギーガ
イドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (g) Technical Field The present invention relates to a method for manufacturing an energy guide suitable for transporting carbon dioxide gas (Co2) laser light or -carbon oxide gas (CO) laser light.

可視および近赤外のレーザ光のパワー伝送には石英系ガ
ラスファイバが用いられている。
Silica-based glass fibers are used for power transmission of visible and near-infrared laser light.

しかし、CO2レーザ、COレーザのように中間赤外域
のレーザ光に対して、石英ファイバは用いる事ができな
い。損失が大きいからである。
However, quartz fibers cannot be used for laser beams in the mid-infrared region such as CO2 lasers and CO lasers. This is because the loss is large.

Co2レーザは、大出力のエネルギーを容易に得る事が
できるので、工業加工用、医療用に広く用いられている
Co2 lasers are widely used for industrial processing and medical purposes because they can easily obtain high-output energy.

CO□レーザの光を導く伝送系として、(1)  ミラ
ー関節型 (2)  光フアイバ型 (3)  中空導波路型 ・のものが提案され、使用されている。
Transmission systems for guiding CO□ laser light have been proposed and used: (1) mirror joint type, (2) optical fiber type, and (3) hollow waveguide type.

ミラー関節型のものは、おおがかりになり、関節での運
動が複雑である。柔軟性に乏しい。
The mirror joint type is bulky and the movement at the joint is complicated. Lack of flexibility.

光フアイバ型というのは、銀ハライド系結晶質ファイバ
、タリウムハライド系結晶質ファイバ、アルカリハライ
ド系結晶質ファイバの中に、レーザ光を通すものである
。これらは、赤外光に対して、比較的吸収の少い材料で
ある。また1ffJIφ以下の径にできるので、可撓性
、柔軟性に富む。しかし、ファイバがレーザ光によ′り
強く加熱されるので、大出力のレーザ光を通す事は難し
い。
The optical fiber type is one in which a laser beam is passed through a silver halide crystalline fiber, a thallium halide crystalline fiber, or an alkali halide crystalline fiber. These materials have relatively low absorption of infrared light. Furthermore, since the diameter can be made to be 1ffJIφ or less, it is highly flexible and pliable. However, since the fiber is strongly heated by laser light, it is difficult to pass high-power laser light through it.

中空導波路は、金属によって囲まれた空気中を伝搬させ
るものである。媒質は空気であるから透過損失は少い。
A hollow waveguide allows propagation in air surrounded by metal. Since the medium is air, there is little transmission loss.

しかし、導波路中で壁面に当り反射されるので、反射損
失がある。
However, since the light hits a wall in the waveguide and is reflected, there is a reflection loss.

反射を少なくするため、導波路の壁は金属製にする。The walls of the waveguide are made of metal to reduce reflections.

どのような金属、どのような形状にするかという事につ
いて、多様な中空導波路が提案されている。
Various hollow waveguides have been proposed, depending on the type of metal and shape.

(イ)従来技術 橋新、久保らは、テープ状の(幅4H〜8H)アルミホ
イルを、テフロンスペーサで両端を支持し、外側を熱収
縮チューブで囲んだC02レーザ光用の中空導波路を試
作している。
(a) Prior art Hashishin, Kubo et al. have created a hollow waveguide for C02 laser light using a tape-shaped aluminum foil (width 4H to 8H) supported at both ends with Teflon spacers and surrounded by a heat shrinkable tube on the outside. We are making a prototype.

導波路の断面は扁平で、0.5xgx4+w又はo、5
Hx8朋である。短辺の方向には十分な可撓性がある。
The cross section of the waveguide is flat, 0.5xgx4+w or o,5
This is Hx8 Tomo. There is sufficient flexibility in the direction of the short sides.

反射面はアルミである。橋新、久保「CO2レーザ−ビ
ーム可撓伝送路の高出力化」レーザ学会研究会報告、R
TM −85−24(1985)V−1゜第3図にこの
エネルギーガイドの断面図を示す。
The reflective surface is aluminum. Hashi Arata, Kubo “High output power of CO2 laser beam flexible transmission line” Laser Society Research Group Report, R
TM-85-24 (1985) V-1° Fig. 3 shows a sectional view of this energy guide.

本発明者は、モリブデンMOをチューブ状に加工し、こ
の外周に冷却水を通す水冷式のエネルギーガイドを提案
している(実願昭63−4558号S63.1゜18出
願)。第4図にこの略断面図を示す。
The present inventor has proposed a water-cooled energy guide in which molybdenum MO is processed into a tube shape and cooling water is passed around the outer periphery of the tube (filed in U.S. Pat. No. 63-4558, S63.1.18). A schematic sectional view of this is shown in FIG.

(O)  発明が解決しようとする問題点エネルギーガ
イドであるから、CO2レーザ、COレーザなどの光を
効率よく伝送するものでなければならない。また、ガイ
ドが柔軟であって、曲がりやすい、という事も強く望ま
れる。
(O) Problems to be Solved by the Invention Since it is an energy guide, it must be able to efficiently transmit light such as a CO2 laser or a CO laser. It is also strongly desired that the guide be flexible and easy to bend.

さらに、曲げ状態によって、出力のパワーが変動しない
、という事も望ましいことである。そうでなければ、エ
ネルギーガイドの振動により、出力パワーの強度が変化
してしまう。一定パワーで加工する、という事ができな
くなる。
Furthermore, it is desirable that the output power does not vary depending on the bending state. Otherwise, vibrations of the energy guide will change the intensity of the output power. It becomes impossible to process with constant power.

曲げ状態を変えると、導波路内での多重反射の回数や反
射角が異なる。
Changing the bending state changes the number of multiple reflections and the reflection angle within the waveguide.

それにも拘わらず出力パワーが変動しないというために
は、反射面に使われた金属の反射率が極めて高いもので
なければならない。
In order for the output power to remain unchanged despite this, the metal used for the reflective surface must have an extremely high reflectance.

前述のアルミホイルを用いた中空導波路は、短辺方向に
は曲るが、長辺方向には曲らない。可撓性の点で難があ
る。
The hollow waveguide using aluminum foil described above bends in the short side direction, but not in the long side direction. There is a problem with flexibility.

また、これは、曲げ状態によって、出力パワーが著しく
変動する、という欠点がある。長辺が8Hの中空導波路
の場合、曲げ半径が8a以下であると、直線の場合に比
べて出力パワーが50%以下になる。
This also has the disadvantage that the output power varies significantly depending on the bending state. In the case of a hollow waveguide with a long side of 8H, if the bending radius is 8a or less, the output power will be 50% or less compared to a straight waveguide.

M、パイプを用いるものは、薄肉のM、を加工するのが
難しい。MOはかたくて脆いからである。また、MOパ
イプは可撓性に難がある。自在に曲げるというわけには
ゆかない。無理に曲げると折れてしまう。
It is difficult to process a thin M when using a pipe. This is because MO is hard and brittle. Additionally, MO pipes have difficulty in flexibility. It is not possible to bend it freely. If you bend it forcibly, it will break.

00  目     的 可撓性に富み、伝送損失が少なく、曲げ状態によって出
力パワーが変動しないような中間赤外光用のエネルギー
ガイドの製造方法を提供することが本発明の目的である
00 OBJECTIVES It is an object of the present invention to provide a method for manufacturing an energy guide for mid-infrared light that is highly flexible, has low transmission loss, and whose output power does not vary depending on the bending state.

(イ)本発明の方法 本発明は、螺旋状の細い金のチューブを作る事を目的と
する。
(a) Method of the present invention The purpose of the present invention is to produce a thin spiral gold tube.

このために、銅線を螺旋状に成形し、銅の表面に金Au
をメッキし、さらに、濃硝酸に漬けて、内部の銅を溶か
して除去する。こうすると、外殻の金かのこる。これは
、はじめから螺旋状になっている。直管を螺旋に加工す
るのではない。
For this purpose, the copper wire is formed into a spiral shape, and the surface of the copper is coated with gold (Au).
is plated, and then soaked in concentrated nitric acid to dissolve and remove the copper inside. When you do this, the outer shell will be golden. This is a spiral from the beginning. It is not a process of turning a straight pipe into a spiral.

銅線は芯になるが、後に除去される。銅線の寸法が、導
波路の内径を規定する。銅の直径は例えば0,3Hφ〜
2111φ程度である。
The copper wire becomes the core, but is later removed. The dimensions of the copper wire define the inner diameter of the waveguide. The diameter of copper is, for example, 0.3Hφ~
It is approximately 2111φ.

銅線を螺旋に巻くが、このピッチや螺旋の直径は、目的
によって適当に決定すればよい。
The copper wire is wound into a spiral, and the pitch and diameter of the spiral may be appropriately determined depending on the purpose.

銅線の周囲にメッキする金は、一定の厚みがなければな
らない。金層だけで形状を維持しなければならないから
である。このため、厚みは50μm以上なければならな
い。
The gold plated around the copper wire must have a certain thickness. This is because the shape must be maintained only by the gold layer. Therefore, the thickness must be 50 μm or more.

金メッキ層が厚いと、可撓性が乏しくなるし、金も無駄
になる。それで、金メッキ層の厚さは、0.5ff以下
とする。
A thick gold plating layer results in poor flexibility and wastes money. Therefore, the thickness of the gold plating layer is set to 0.5 ff or less.

濃硝酸に漬けるのは、内部の銅だけを溶かすためである
。銅線の外径が大きいと、濃硝酸が内部へ入りやすいの
で、銅の除去が早くなる。
The purpose of soaking in concentrated nitric acid is to dissolve only the copper inside. If the outer diameter of the copper wire is large, concentrated nitric acid can easily enter the wire, so copper can be removed more quickly.

内部の銅を完全に除去した後、十分に洗浄し、乾燥させ
る。
After completely removing the copper inside, thoroughly wash and dry.

こうして、螺旋状の金チューブ中空導波路を得る。第1
図は、この工程を略示するものである。
In this way, a spiral gold tube hollow waveguide is obtained. 1st
The figure schematically illustrates this process.

この金チューブ中空導波路の一端に、赤外レーザ光を入
射きせ、他端から出射させる。第2図にこれを示す。
Infrared laser light is incident on one end of this gold tube hollow waveguide and emitted from the other end. This is shown in Figure 2.

そのまま使ってもよいが、レーザパワーが大きい場合は
、螺旋状の金チューブの全体を水冷し、加熱による損傷
を防ぐようにする。
It can be used as is, but if the laser power is high, the entire spiral gold tube should be water-cooled to prevent damage from heating.

ψ)実施例 (1)直径40Hの円柱状物体に、直径INMφ、長さ
5mの銅線を巻きつけて、螺旋状に加工した。
ψ) Example (1) A copper wire having a diameter of INMφ and a length of 5 m was wound around a cylindrical object having a diameter of 40H and processed into a spiral shape.

(2)螺旋状の銅線に、電気メッキにより、厚さが約1
00μmの金メッキ層を形成した。
(2) The thickness of the spiral copper wire is approximately 1 mm by electroplating.
A gold plating layer of 00 μm was formed.

(3)  これの全体を、多量の濃硝酸中に一昼夜浸漬
した。すると、中心部の銅が完全に除去された。
(3) The whole was immersed in a large amount of concentrated nitric acid all day and night. The copper in the center was then completely removed.

(4)全体を十分に洗浄し、完全に乾燥させた。(4) The whole was thoroughly washed and completely dried.

(5)  両端に光学系を取りつけ、CO□レーザ光に
対する伝送特性を測定した。
(5) Optical systems were attached to both ends, and the transmission characteristics for CO□ laser light were measured.

(6)  Co□レーザの入射光パワーが200 Wで
ある時、スパイラル状の導波路を通過したレーザパワー
は150Wであった。通過に伴なう損失が少いという事
がわかる。
(6) When the incident light power of the Co□ laser was 200 W, the laser power that passed through the spiral waveguide was 150 W. It can be seen that the loss associated with passage is small.

(7)  さらに導波路の曲げに対する特性を調べた。(7) We also investigated the bending characteristics of the waveguide.

出射端を、左右に曲げて出力パワーの変化を測定した。The output end was bent left and right to measure changes in output power.

出射端を最大±60°まで曲げても出射光パワーは変動
しなかった。導波路の曲げに対して極めて有効であるこ
とが分る。
Even when the output end was bent by up to ±60°, the output light power did not fluctuate. It turns out that this method is extremely effective against waveguide bending.

(ト)  効   果 (1)  はじめから螺旋形状になった中空導波路であ
る。直進するだけで通過する光成分がなく、どの方向へ
入った成分も多重反射されながら、導波路の中を進む。
(g) Effects (1) It is a hollow waveguide with a spiral shape from the beginning. There is no light component that passes through the waveguide as it only travels in a straight line, and components that enter in any direction are subject to multiple reflections as they travel through the waveguide.

このため、導波路を曲げても、これによって新しく損失
が増えない。すなわち、曲げに対する特性が優れている
For this reason, even if the waveguide is bent, no new loss increases. That is, it has excellent bending properties.

導波路が振動しても、出射光パワーが安定している。Even if the waveguide vibrates, the output light power remains stable.

(2)押出し成型して金の直管を作るのではなく、銅の
上に金メッキして螺旋状のものを作る。直管を螺旋に成
形しようとすると、不均一な歪みが生じて、正しい螺旋
にならず、導波路の一部が塞されたり、破断したりする
(2) Instead of making straight gold tubes by extrusion molding, a spiral shape is made by plating gold on copper. When attempting to form a straight pipe into a spiral, non-uniform distortion occurs, the spiral does not form properly, and part of the waveguide is blocked or broken.

ところが、はじめから螺旋である銅の上にメッキして、
金の螺旋を作るのである。銅を除いた後、機械的な応力
、歪みが残らない。
However, when plating was done on copper, which was spiral from the beginning,
Create a golden spiral. No mechanical stress or distortion remains after copper is removed.

(3)銅と金の濃硝酸に対する化学的性質の相違を巧み
に利用している。銅は全て除きうるが、金は損耗しない
(3) The difference in chemical properties of copper and gold towards concentrated nitric acid is skillfully utilized. All copper can be removed, but gold is not wasted.

(4)外殻として残る金は、赤外光に対する反射率が極
めて高い。このため、アルミニウムやモリブデンの中空
導波路よりも反射損失が少い。
(4) The gold that remains as the outer shell has an extremely high reflectance to infrared light. Therefore, the reflection loss is lower than that of aluminum or molybdenum hollow waveguides.

(5)外殻として残る金は、延性、展性に富む。柔軟な
材料であるので、導波路を繰り返し撓ませても、疲労が
少い。
(5) The gold that remains as the outer shell is highly ductile and malleable. Since it is a flexible material, even if the waveguide is repeatedly bent, there is little fatigue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のエネルギーガイド製造方法の工程図。 第2図は赤外レーザ光を入射させ出射光を測定する光学
系の略図。 第3図はアルミホイルを用いる扁平中空導波路の断面図
。 第4図は本発明者になる実願昭63−4558号のエネ
ルギーガイド断面図。 発  明  者 難波宏邦
FIG. 1 is a process diagram of the energy guide manufacturing method of the present invention. FIG. 2 is a schematic diagram of an optical system for inputting infrared laser light and measuring output light. Figure 3 is a cross-sectional view of a flat hollow waveguide using aluminum foil. FIG. 4 is a sectional view of the energy guide of Utility Application No. 63-4558 filed by the present inventor. Inventor Hirokuni Namba

Claims (1)

【特許請求の範囲】[Claims] 赤外レーザ光を伝送するためのエネルギーガイドを製造
するため、銅線を螺旋状に形成し、この表面に金メッキ
層を形成した後、濃硝酸によつて内部の銅を除去し、金
よりなる中空導波路を形成する事を特徴とするエネルギ
ーガイド製造方法。
In order to manufacture an energy guide for transmitting infrared laser light, copper wire is formed into a spiral shape, a gold plating layer is formed on the surface of the wire, and the copper inside is removed using concentrated nitric acid to create a gold-plated material. An energy guide manufacturing method characterized by forming a hollow waveguide.
JP63227122A 1988-09-09 1988-09-09 Manufacture of energy guide Pending JPH0273311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227122A JPH0273311A (en) 1988-09-09 1988-09-09 Manufacture of energy guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227122A JPH0273311A (en) 1988-09-09 1988-09-09 Manufacture of energy guide

Publications (1)

Publication Number Publication Date
JPH0273311A true JPH0273311A (en) 1990-03-13

Family

ID=16855824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227122A Pending JPH0273311A (en) 1988-09-09 1988-09-09 Manufacture of energy guide

Country Status (1)

Country Link
JP (1) JPH0273311A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692366A1 (en) * 1992-06-12 1993-12-17 Soudure Autogene Francaise Helical metal waveguide for the transmission of a laser beam and laser cutting device.
US6944377B2 (en) 2002-03-15 2005-09-13 Hitachi Maxell, Ltd. Optical communication device and laminated optical communication module
CN111566905A (en) * 2018-01-12 2020-08-21 弗劳恩霍夫应用研究促进协会 Method for producing a component having a cavity
US12126232B2 (en) 2018-01-12 2024-10-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for producing a component having a cavity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692366A1 (en) * 1992-06-12 1993-12-17 Soudure Autogene Francaise Helical metal waveguide for the transmission of a laser beam and laser cutting device.
US6944377B2 (en) 2002-03-15 2005-09-13 Hitachi Maxell, Ltd. Optical communication device and laminated optical communication module
CN111566905A (en) * 2018-01-12 2020-08-21 弗劳恩霍夫应用研究促进协会 Method for producing a component having a cavity
JP2021510458A (en) * 2018-01-12 2021-04-22 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. Manufacturing method for parts with cavities
US12126232B2 (en) 2018-01-12 2024-10-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for producing a component having a cavity

Similar Documents

Publication Publication Date Title
US8720040B2 (en) Method of manufacturing a hollow waveguide
KR100348170B1 (en) Coherent, flexible, coated-bore hollow-fiber waveguide, and method of making same
US5395480A (en) Method for making monolithic hollow waveguide
CN107978960B (en) Debugging-free column vector fiber laser
JP3940504B2 (en) Optical fiber transmission laser device, pulse laser oscillator, and optical fiber light guide device
JPH0273311A (en) Manufacture of energy guide
Osawa et al. Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method
EP0741923B1 (en) Optically pumped laser apparatus
Wang et al. Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er: YAG laser light
Morrow et al. FiberlaseTM: a monolithic hollow waveguide
Inberg et al. Hollow waveguide for mid and thermal infrared radiation
JP3718127B2 (en) Medical laser transmission equipment
JP2908944B2 (en) Laser therapy equipment
JPH08234026A (en) Hollow waveguide and its production and laser transmission device
JPS63209188A (en) Waveguide laser reaction tube
JPH04174804A (en) Hollow light wave guide connecting method
Morrow et al. Monolithic flexible hollow silver waveguide for high-power industrial CO2 laser applications
Gibson Hollow glass waveguides: New variations
JPH05188225A (en) Hollow waveguide for uv laser beam
JPH09197155A (en) Structure for optical fiber outgoing end
CN114828369A (en) Metal glass ellipsoid single capillary optical device and preparation method thereof
Croitoru et al. Optical measurements of plastic (polyimide) hollow waveguides for IR radiation
JPH0255303A (en) Hollow optical waveguide and its production
JPS6028607A (en) Ir transmission path
Harrington et al. Coherent, flexible, coated-bore hollow-fiber waveguide, and method of making same, US Patent 5,567,471