JPS63209188A - Waveguide laser reaction tube - Google Patents

Waveguide laser reaction tube

Info

Publication number
JPS63209188A
JPS63209188A JP4235887A JP4235887A JPS63209188A JP S63209188 A JPS63209188 A JP S63209188A JP 4235887 A JP4235887 A JP 4235887A JP 4235887 A JP4235887 A JP 4235887A JP S63209188 A JPS63209188 A JP S63209188A
Authority
JP
Japan
Prior art keywords
thin film
film layer
waveguide
metal thin
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4235887A
Other languages
Japanese (ja)
Inventor
Akishi Hongo
晃史 本郷
Tsuneo Shioda
塩田 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4235887A priority Critical patent/JPS63209188A/en
Publication of JPS63209188A publication Critical patent/JPS63209188A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To contrive to make it possible for laser beam to react efficiently with an encapsulating gas by a method wherein a hollow waveguide is formed of a glass pipe, a metal thin film layer formed on the inside of this pipe and a thin film layer, which is formed on the inside of this metal thin film layer and has all absorption of laser beam smaller than that of the metal thin film layer. CONSTITUTION:A hollow waveguide 3A is formed of a glass pipe 5, a metal thin film layer 6 formed on the inside of this pipe 5 and a thin film layer 7, which is formed on the inside of this layer 6 and has an absorption of laser beam smaller than that of the layer 6. As the glass pipe is used in such a way, the inner wall of the waveguide can be very smoothed and a low-loss waveguide can be obtained. Thereby, the waveguide 3A enables laser beam to react efficiently with an encapsulating gas.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は導波路型レーザ反応管に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to a waveguide type laser reaction tube.

[従来の技術] 中空パイプを先導波路として用いる研究が活発に行われ
ている。特に炭酸ガスレーザは発振波長が赤外領域にあ
るため石英系光ファイバを光導波路として用いることが
できない。このため中空導波路は伝搬領域が気体であり
、入出射端面での反射がなく、大電力伝送という点でも
有利である。
[Prior Art] Research is actively being conducted on the use of hollow pipes as leading waveguides. In particular, since the oscillation wavelength of carbon dioxide lasers is in the infrared region, silica-based optical fibers cannot be used as optical waveguides. Therefore, the hollow waveguide has a propagation region of gas, there is no reflection at the input/output end face, and it is also advantageous in terms of large power transmission.

これらの炭酸ガスレーザ光用中空導波路は主に、切断溶
接等の金属加工用、或はレーザメス等の医療用を目高と
じている。現在までに検討されている中空導波路は金属
中空導波路、ガラス中空導波路、誘電体内装金属中空導
波路に大別できる。金属中空導波路は切断が矩形構造を
しており、入射ビームの偏光方向により損失が大きく異
なる。ガラス中空導波路はレーザ光の発振波長帯での屈
折率が1よりも小さくなるようガラス材料からなり、従
来の光フアイバ同様境界面での全反射によってレーザ光
が伝搬される。しかしながら実際はクラッドとなるガラ
スの吸収損失が無視できず、またガラス材料の作製が難
しい。誘電体内装金属中空導波路は第3図に示されてい
るように、金属バイブ1の内壁にレーザ光の発振波長帯
での吸収の小さい誘電帯薄膜2を内装して内壁の反射率
を高め、低損失化を図るものである。なおこのように構
成された誘電体内装金属中空導波路3で、4は中空領域
である。金属材料は熱伝導率の点で大電力伝送に有利で
あ、ガラス材料は導波路内壁の平滑さの点てすぐれてい
る。
These hollow waveguides for carbon dioxide laser light are mainly used for metal processing such as cutting and welding, or for medical purposes such as laser scalpels. Hollow waveguides that have been studied to date can be broadly classified into metal hollow waveguides, glass hollow waveguides, and dielectric-incorporated metal hollow waveguides. The hollow metal waveguide has a rectangular cut structure, and the loss varies greatly depending on the polarization direction of the incident beam. The glass hollow waveguide is made of a glass material so that the refractive index in the oscillation wavelength band of the laser beam is smaller than 1, and the laser beam is propagated by total reflection at the boundary surface, similar to conventional optical fibers. However, in reality, the absorption loss of the glass that forms the cladding cannot be ignored, and it is difficult to manufacture the glass material. As shown in Fig. 3, the dielectric-incorporated metal hollow waveguide is constructed by incorporating a dielectric band thin film 2 with low absorption in the oscillation wavelength band of the laser beam on the inner wall of the metal vibe 1 to increase the reflectance of the inner wall. , which aims to reduce loss. Note that in the dielectric-incorporated metal hollow waveguide 3 configured as described above, 4 is a hollow region. Metal materials are advantageous for large power transmission in terms of thermal conductivity, and glass materials are excellent in terms of smoothness of the inner wall of the waveguide.

一方、レーザ光の吸収特性を利用し、特定の気体を選択
的に励起したり、あるいは特定の気体の濃度を検出する
試みが行われて1する。例えば赤外レーザを用いて分子
の振動準位を励起し、同位体を分離する検討や、大気汚
染物質を導波路内に封入し、導波損失を測定して特定物
質の濃度を測定する検討が行われている。
On the other hand, attempts have been made to utilize the absorption characteristics of laser light to selectively excite a specific gas or to detect the concentration of a specific gas. For example, we are considering using an infrared laser to excite the vibrational level of a molecule to separate isotopes, or encapsulating air pollutants in a waveguide and measuring the waveguide loss to determine the concentration of a specific substance. is being carried out.

[発明が解決しようとする問題点] 上記従来技術のようにレーザ光を用いて特定気体の励起
・分析を行う場合には、反応空間をどのように効率よく
作るかが問題となる。すなわち反応に寄与する気体の占
める領域とレーザ光との重なりが十分行われるようにす
ることが重要である。
[Problems to be Solved by the Invention] When a laser beam is used to excite and analyze a specific gas as in the prior art described above, the problem is how to efficiently create a reaction space. That is, it is important to ensure that the area occupied by the gas contributing to the reaction and the laser beam are sufficiently overlapped.

パワー密度の高い領域に気体を十分閉じ込めるには、細
径で低損失な中空導波路が必要となる。しかしながら上
述の各種中空導波路は大電力のエネルギー伝送を目的と
しており、レーザ反応管としてはまだ損失が大きすぎた
り、あるいは気体を封入するための加工が困難であるな
ど十分なものとは言えない。
In order to sufficiently confine gas in a region with high power density, a hollow waveguide with a small diameter and low loss is required. However, the various hollow waveguides mentioned above are intended for high-power energy transmission, and cannot be said to be sufficient as laser reaction tubes, as they still have too large a loss or are difficult to process to enclose gas. .

本発明は以上の点に鑑みなされたものであり、効率的に
レーザ光と封入気体との反応を行うことを可能とした中
空導波路を有する導波路型レーザ反応管を提供すること
を目的とするものである。
The present invention was made in view of the above points, and an object of the present invention is to provide a waveguide type laser reaction tube having a hollow waveguide that enables efficient reaction between laser light and sealed gas. It is something to do.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、中空導波路をガラスパイプと、このバイブ
の内側に形成した金属薄膜層と、この金属薄膜層の内側
に形成し、かつ金属薄膜層のそれよりレーザ光の吸収の
小さい薄膜層とで形成することにより、達成される。
The above purpose is to connect a hollow waveguide to a glass pipe, a metal thin film layer formed inside the vibrator, and a thin film layer formed inside the metal thin film layer that absorbs less laser light than the metal thin film layer. This is achieved by forming the

[作 用] 中空導波路をガラスパイプの内側に形成した金属薄膜層
の内側に、レーザ光の発振波長での吸収の小さな薄膜層
を設′けて形成したので、低損失な中空導波路が形成さ
れるようになって、中空導波路内の封入気体とレーザ光
との相互作用を効率よく行うことができる。
[Function] The hollow waveguide is formed by providing a thin film layer with low absorption at the oscillation wavelength of the laser beam on the inside of the metal thin film layer formed inside the glass pipe, so a low loss hollow waveguide can be created. As a result, the gas enclosed within the hollow waveguide and the laser beam can interact efficiently.

すなわち中空導波路はエネルギー伝送用導波路と異なり
、可撓性を特に必要としないのでガラスパイプを用いて
構成した。レーザ光の伝搬領域は薄膜層によって囲まれ
た中空領域であり、ガラス材料へのレーザ光のしみ出し
はなく、光学的にガラスパイプは導波機構に寄与しない
。しかしながらガラスパイプを用いたので、中空導波路
内壁を極めて平滑化することが可能となり、従来の金属
パイプの内側に吸収の小さい薄膜層を設けた誘電体内装
金属中空導波路よりも低損失な導波路が実現でき、上述
のように所期の目的が達成できるのである。
That is, unlike an energy transmission waveguide, the hollow waveguide does not particularly require flexibility, so it was constructed using a glass pipe. The propagation region of the laser light is a hollow region surrounded by a thin film layer, and the laser light does not seep into the glass material, and the glass pipe does not optically contribute to the waveguide mechanism. However, since a glass pipe is used, it is possible to make the inner wall of the hollow waveguide extremely smooth, resulting in a lower-loss guide than the conventional hollow metal waveguide with a dielectric interior, in which a thin film layer with low absorption is provided inside the metal pipe. A wave path can be realized, and the desired purpose can be achieved as described above.

[実施例] 以下、図示した実施例に基づいて本発明を説明する。第
1図及び第2図には本発明の一実施例が示されている。
[Example] The present invention will be described below based on the illustrated example. An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

なお従来と同じ部品には同じ符号を付したので説明を省
略する。本実施例では中空導波路3Aをガラスパイプ5
と、このガラスパイプ5の内側に形成した金属薄膜層6
と、この金属薄膜層6の内側に形成し、金属薄膜層6の
それよリレーザ光の吸収の小さい薄膜層7とで形成した
(第1図参照)。このようにすることにより中空導波路
3Aは効率的にレーザ光と封入気体との反応を行うこと
ができるようになって、効率的にレーザ光と封入気体と
の反応を行うことを可能とした中空導波路3Aを有する
導波路型レーザ反応管を得ることができる。
Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the hollow waveguide 3A is replaced by a glass pipe 5.
and a metal thin film layer 6 formed inside this glass pipe 5.
A thin film layer 7 was formed inside this metal thin film layer 6, and the thin film layer 7 had a smaller absorption of laser light than that of the metal thin film layer 6 (see FIG. 1). By doing so, the hollow waveguide 3A can efficiently react between the laser beam and the gas enclosed in the hollow waveguide 3A. A waveguide type laser reaction tube having a hollow waveguide 3A can be obtained.

すなわち中空導波路3Aを、ガラスパイプ5として石英
ガラス管を使用し、金属薄膜層6として金を使用し、薄
膜層7としてゲルマニウムを使用して形成した。レーザ
光は中空領域4を伝搬し、中空領域4には特定の気体が
封入される。この中空導波路3Aの製作は無電解めっき
法を用い、まず石英ガラス内壁にニッケルめっきを行い
、後で金で置換する。次のこの金層を陰極とし、ガラス
管中心に張設した白金線を陽極として、四塩化ゲルマニ
ウムのプロピレンゲコール溶液によりゲルマニウム層を
電気めっき法で形成する。ゲルマニウムはニッケルにも
直接めっきが可能であるが、金はニッケルよりも複素屈
折率の絶対値が大きく、より低損失な導波路を形成する
ためにニッケルを金で置換している。このようにして形
成した中空導波路3Aにレンズ8、ウィンド9を通して
炭酸ガスレーザ光10が入射される。また同時にレーザ
光10の発振波長付近に吸収点を有する気体が中空導波
路3Aの入出射端付近のガス流入口11a1ガス流出口
11bを通して流入、流出される(第2図参照)。
That is, the hollow waveguide 3A was formed using a quartz glass tube as the glass pipe 5, gold as the metal thin film layer 6, and germanium as the thin film layer 7. The laser beam propagates through the hollow region 4, and the hollow region 4 is filled with a specific gas. This hollow waveguide 3A is manufactured using an electroless plating method, in which the inner wall of the quartz glass is first plated with nickel, and later replaced with gold. Next, using this gold layer as a cathode and a platinum wire stretched at the center of the glass tube as an anode, a germanium layer is formed by electroplating using a propylene glycol solution of germanium tetrachloride. Germanium can also be directly plated on nickel, but gold has a larger absolute value of the complex refractive index than nickel, so nickel is replaced with gold to form a waveguide with lower loss. A carbon dioxide laser beam 10 is incident on the hollow waveguide 3A formed in this way through a lens 8 and a window 9. At the same time, a gas having an absorption point near the oscillation wavelength of the laser beam 10 flows in and out through the gas inlet 11a and gas outlet 11b near the input and output ends of the hollow waveguide 3A (see FIG. 2).

本実施例による中空導波路3Aに例えばCHF2CΩガ
スを所定の気圧導入し、炭酸ガスレーザ光10を照射し
て13Cの同位体分離を行うことができる。或は大気汚
染排ガスを導入し、中空導波路3A中を通過する炭酸ガ
スレーザ光10の透過率を測定して、例えばN Ha等
の気体濃度を測定することができる。
For example, CHF2CΩ gas is introduced at a predetermined pressure into the hollow waveguide 3A according to this embodiment, and the carbon dioxide laser beam 10 is irradiated to perform 13C isotope separation. Alternatively, the concentration of a gas such as N 2 Ha can be measured by introducing air polluting exhaust gas and measuring the transmittance of the carbon dioxide laser beam 10 passing through the hollow waveguide 3A.

このように本実施例によればガスの封入に好適なガラス
材料を用い、低損失な中空導波路を形成でき、パワー密
度の高い領域に気体を十分閉じ込めることができるので
、レーザ光と封入気体との反応を効率的に行うことがで
きる。
In this way, according to this embodiment, a low-loss hollow waveguide can be formed by using a glass material suitable for gas encapsulation, and the gas can be sufficiently confined in a region with high power density. The reaction with can be carried out efficiently.

なお、ガラスバイブの内側に形成する金属薄膜層は使用
レーザ光の発振波長帯で複素屈折率の大きな材料はど、
導波損失が小さくなる。例えば波長10.6μmの炭酸
ガスレーザを用いる場合には金、銀、銅、アルミニウム
等が好適である。また、この金属薄膜層の内側に形成す
る吸収の小さな、すなわち複素屈折率の虚数部が十分小
さな薄膜層の材料としては、同じく波長10.6μmで
ゲルマニウム、セレン化亜鉛、カルコゲナイドガラス等
が好適である。金属薄膜層は吸収が大きいのでスキンデ
プスより十分厚ければよく、波長10.6μmで1μm
程度あれば十分である。金属薄膜層の内側に形成する吸
収の小さな薄膜層の膜厚は導波損失に影響し、その膜厚
dはλをレーザの波長、aを薄膜層の屈折率とした場合
に、(q−0,1,2・・・) を満足しなけれればならない。例えば λ−10,6μmとしてゲルマニウムの場合はd二0.
5μm1セレン化亜鉛の場合はd=Q、8μmのとき、
低損失な導波路が形成できる。
The metal thin film layer formed inside the glass vibrator should be made of a material with a large complex refractive index in the oscillation wavelength band of the laser beam used.
Waveguide loss is reduced. For example, when using a carbon dioxide laser with a wavelength of 10.6 μm, gold, silver, copper, aluminum, etc. are suitable. In addition, germanium, zinc selenide, chalcogenide glass, etc. are suitable materials for the thin film layer with low absorption, that is, the imaginary part of the complex refractive index is sufficiently small, which is formed inside the metal thin film layer at a wavelength of 10.6 μm. be. The metal thin film layer has high absorption, so it only needs to be sufficiently thicker than the skin depth, which is 1 μm at a wavelength of 10.6 μm.
A certain degree is sufficient. The thickness of the thin film layer with low absorption formed inside the metal thin film layer affects the waveguide loss, and the film thickness d is expressed as (q- 0, 1, 2...) must be satisfied. For example, in the case of germanium, assuming λ-10.6 μm, d20.
In the case of 5 μm1 zinc selenide, d=Q, and when 8 μm,
A waveguide with low loss can be formed.

また、本実施例による中空導波路はガラス材料でできて
いるので、レーザ光と導波路入射端の結合損失を低減す
るため、導波路入射端をテーバ状にしたり、あるいは導
波路側面にガス流入、流出口を設けるような加工が容易
である。
In addition, since the hollow waveguide according to this example is made of glass material, in order to reduce the coupling loss between the laser beam and the waveguide input end, the waveguide input end may be made into a tapered shape, or the gas may flow into the waveguide side surface. , processing such as providing an outlet is easy.

なおまた、本実施例では吸収の小さな薄膜層の形成方法
として電気めっき法をとりあげたが、この他にCVD法
等も薄膜層形成方法として考えられる。
Furthermore, although electroplating is used as a method for forming a thin film layer with low absorption in this embodiment, other methods such as CVD may also be considered as a method for forming a thin film layer.

[発明の効果コ 上述のように本発明は中空導波路が効率的にレーザ光と
封入気体との反応を行うことができるようになって、効
率的にレーザ光と封入気体との反応を行うことを可能と
した中空導波路を有する導波路型レーザ反応管を得るこ
とができる。
[Effects of the Invention] As described above, the present invention enables the hollow waveguide to efficiently react with the laser beam and the gas enclosed in the hollow waveguide. It is possible to obtain a waveguide type laser reaction tube having a hollow waveguide that makes it possible to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導波路型レーザ反応管の一実施例の中
空導波路の横断面図、第2図は同じく−実施例の縦断側
面図、第3図は従来の導波路型レーザ反応管の誘電体内
装金属中空導波路の横断面図である。 3A:中空導波路、 5ニガラスパイプ、 6:金属薄膜層、 7:薄膜層、 10:炭酸°ガスレーザ光。 第 1 凹 3へ 第2 旧 第 3 ロ
FIG. 1 is a cross-sectional view of a hollow waveguide according to an embodiment of the waveguide-type laser reaction tube of the present invention, FIG. 2 is a vertical cross-sectional side view of the same embodiment, and FIG. 3 is a conventional waveguide-type laser reaction tube. FIG. 2 is a cross-sectional view of a hollow metal waveguide with a dielectric interior in a tube. 3A: hollow waveguide, 5 glass pipe, 6: metal thin film layer, 7: thin film layer, 10: carbon dioxide gas laser beam. 1st concavity 3 2nd old 3rd b

Claims (5)

【特許請求の範囲】[Claims] (1)その内部で入射したレーザ光と封入した封入気体
との反応が行われる中空導波路を備えた導波路型レーザ
反応管において、前記中空導波路をガラスパイプと、こ
のパイプの内側に形成した金属薄膜層と、この金属薄膜
層の内側に形成し、かつ前記金属薄膜層のそれより前記
レーザ光の吸収の小さい薄膜層とで形成したことを特徴
とする導波路型レーザ反応管。
(1) In a waveguide type laser reaction tube equipped with a hollow waveguide in which a reaction between the incident laser light and the sealed gas takes place, the hollow waveguide is formed inside a glass pipe and this pipe. 1. A waveguide type laser reaction tube comprising: a metal thin film layer; and a thin film layer formed inside the metal thin film layer, the thin film layer absorbing the laser light less than that of the metal thin film layer.
(2)前記金属薄膜層が、前記薄膜層のそれより前記レ
ーザ光の発振波長帯での複素屈折率の大きい金属材料で
形成されたものである特許請求の範囲第1項記載の導波
路型レーザ反応管。
(2) The waveguide type according to claim 1, wherein the metal thin film layer is formed of a metal material having a larger complex refractive index in the oscillation wavelength band of the laser light than that of the thin film layer. Laser reaction tube.
(3)前記金属薄膜層が、無電解めっき法で形成された
ものである特許請求の範囲第1項又は第2項記載の導波
路型レーザ反応管。
(3) The waveguide type laser reaction tube according to claim 1 or 2, wherein the metal thin film layer is formed by electroless plating.
(4)前記薄膜層が、前記金属薄膜層のそれより前記レ
ーザ光の発振波長帯での複素屈折率の虚数部の小さい材
料で形成されたものである特許請求の範囲第1項記載の
導波路型レーザ反応管。
(4) The guide according to claim 1, wherein the thin film layer is formed of a material having a smaller imaginary part of a complex refractive index in the oscillation wavelength band of the laser beam than that of the metal thin film layer. Wave-type laser reaction tube.
(5)前記封入気体が、前記中空導波路内を伝搬するレ
ーザ光の発振波長付近に吸収点を有するものである特許
請求の範囲第1項記載の導波路型レーザ反応管。
(5) The waveguide type laser reaction tube according to claim 1, wherein the sealed gas has an absorption point near the oscillation wavelength of the laser light propagating within the hollow waveguide.
JP4235887A 1987-02-25 1987-02-25 Waveguide laser reaction tube Pending JPS63209188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235887A JPS63209188A (en) 1987-02-25 1987-02-25 Waveguide laser reaction tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235887A JPS63209188A (en) 1987-02-25 1987-02-25 Waveguide laser reaction tube

Publications (1)

Publication Number Publication Date
JPS63209188A true JPS63209188A (en) 1988-08-30

Family

ID=12633809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235887A Pending JPS63209188A (en) 1987-02-25 1987-02-25 Waveguide laser reaction tube

Country Status (1)

Country Link
JP (1) JPS63209188A (en)

Similar Documents

Publication Publication Date Title
JP3299477B2 (en) Manufacturing method of hollow waveguide
EP1166160B1 (en) A photonic crystal fibre and a method for its production
US6985661B1 (en) Photonic crystal fibre and a method for its production
GB2288469A (en) Optical hollow waveguide, its fabrication and laser transmission apparatus using it
EP0261484A1 (en) Infrared transmitting fibre
Burlamacchi et al. Self-guiding flashlamp-pumped dye lasers
Abbaszadeh et al. Ammonia gas detection using photonic crystal fiber with elliptical holes
Ibrahim et al. Design a Novel Top as Based Suspended Core Single Mode Photonic Crystal Fiber Optics Communications
JPS63209188A (en) Waveguide laser reaction tube
Newstein et al. Laguerre-Gaussian periodically focusing beams in a quadratic index medium
Gangopadhyay et al. Fabrication of tapered single mode fiber by chemical etching and used as a chemical sensor based on evanescent field absorption
Croitoru et al. Use of metallic and dielectric films for hollow fibers
Hongo et al. Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO/sub 2/laser light
JP2004325948A (en) Optical transmission device
JP3391521B2 (en) Optical frequency wave transmission line
Inberg et al. Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides
Wang et al. Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er: YAG laser light
JPH0273311A (en) Manufacture of energy guide
CN113853360B (en) Method and apparatus for manufacturing hollow core optical fiber
Wen et al. Investigation of the thickness of Ag, AgI films in the capillary for hollow waveguides
Gedeon et al. Radiation loss in bends of diffused optical stripe guides
CN216433291U (en) Temperature sensor and detection system based on PDMS (polydimethylsiloxane) filled suspension core optical fiber
Humbert et al. Low-loss, 1-m long length, hollow-core THz waveguide operating at 1 THz, based on anti-resonant guiding mechanism
JPS62262835A (en) Optical waveguide type wavelength converting element
Ni et al. Recent Advancement of Anti-Resonant Hollow-Core Fibers for Sensing Applications. Photonics 2021, 8, 128