JP3391521B2 - Optical frequency wave transmission line - Google Patents

Optical frequency wave transmission line

Info

Publication number
JP3391521B2
JP3391521B2 JP26329693A JP26329693A JP3391521B2 JP 3391521 B2 JP3391521 B2 JP 3391521B2 JP 26329693 A JP26329693 A JP 26329693A JP 26329693 A JP26329693 A JP 26329693A JP 3391521 B2 JP3391521 B2 JP 3391521B2
Authority
JP
Japan
Prior art keywords
dielectric medium
transmission line
negative
negative dielectric
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26329693A
Other languages
Japanese (ja)
Other versions
JPH07120636A (en
Inventor
哲郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26329693A priority Critical patent/JP3391521B2/en
Publication of JPH07120636A publication Critical patent/JPH07120636A/en
Application granted granted Critical
Publication of JP3391521B2 publication Critical patent/JP3391521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規な光波伝送線路と
なる光周波数波動伝送線路は、例えば高空間分解の情報
書き込み、読み取り、加工、マニピュレーション等に利
用でき、超小形高性能の光変調器、検波器、光回路、光
読み取りヘッド、光書き込みヘッド、センサ用ヘッド、
STM用光探針、微細加工器、光ピンセット・マニピュ
レータ用ヘッド、光ディスク等幅広い応用分野がある。
BACKGROUND OF THE INVENTION The present invention relates to a novel lightwave transmission line and
The optical frequency wave transmission line can be used for, for example, information writing, reading, processing, manipulation and the like of high spatial resolution, and is a very small and high-performance optical modulator, detector, optical circuit, optical reading head, optical writing head, sensor For head,
There are a wide range of application fields such as optical probes for STM, micro-processing machines, heads for optical tweezers / manipulators, and optical disks.

【0002】[0002]

【従来の技術】従来の光導波路としては、例えば光ファ
イバで代表されるように、主に高屈折率媒質をコアと
し、低屈折率媒質をクラッドとする光閉じ込め型の誘電
体導波路が検討されている。
2. Description of the Related Art As a conventional optical waveguide, for example, an optical confinement type dielectric waveguide mainly comprising a high refractive index medium as a core and a low refractive index medium as a clad, as represented by an optical fiber, is studied. Have been.

【0003】この光閉じ込め型誘電体導波路では、導波
路内の屈折率不連続部で光が全反射を繰り返すことによ
り、または、レンズ状媒質で光の進行方向を曲げること
等により、光波の横方向への進行や回折広がりを抑え、
光波を等価的に軸方向にのみ伝搬させることが光導波路
の原理になっている。
[0003] In this optical confinement type dielectric waveguide, the light wave is formed by repeating total reflection of the light at a discontinuous portion of the refractive index in the waveguide, or by bending the traveling direction of the light with a lenticular medium. Suppresses lateral progression and diffraction spread,
It is the principle of an optical waveguide that an optical wave is equivalently propagated only in the axial direction.

【0004】従って、光波は主伝送成分(軸方向伝送成
分)のみならず、若干の横方向伝送成分も定在波となる
もののもつ3次元的な電磁界である。すなわち、波数ベ
クトル(位相定数)の実数部は3次元成分を有する。
[0004] Therefore, the light wave is a three-dimensional electromagnetic field which has not only the main transmission component (axial transmission component) but also some lateral transmission components as standing waves. That is, the real part of the wave number vector (phase constant) has a three-dimensional component.

【0005】[0005]

【発明が解決しようとする課題】従来の波数ベクトルの
横成分は、導波路の断面構造(横方向境界条件)から特
定の値(固有値)に規定され、これによりいわゆる伝搬
モ−ドが規定される。
The transverse component of the conventional wave vector is defined to a specific value (eigenvalue) from the cross-sectional structure (lateral boundary condition) of the waveguide, thereby defining a so-called propagation mode. You.

【0006】横伝搬成分を持つ光ビームでは、光ビーム
の太さは原理的に少なくとも半波長程度になる。実際の
例では、例えば光ファイバーのように屈折率変化が小さ
いためクラッドがさらに太くなり、数μm〜十数μmと
μm以上で波長に比べ太くなる。このため光回路、光素
子は光波長に比べて太く、大きくなり、現在サブμmか
らさらに小さくなりつつある半導体電子素子または回路
に比べ高集積化できず、不利と言われている。
For a light beam having a lateral propagation component, the thickness of the light beam is at least about half a wavelength in principle. In an actual example, the cladding is further thickened because the change in the refractive index is small, for example, like an optical fiber. For this reason, optical circuits and optical elements are thicker and larger than optical wavelengths, and cannot be highly integrated as compared with semiconductor electronic elements or circuits that are now becoming smaller than sub-μm, which is said to be disadvantageous.

【0007】一方、自由空間で伝搬する3次元光波につ
いてもこれを集光しても、回折限界によりスポットサイ
ズは波長程度以下にはできず、これが光ディスク、レ−
ザ加工またはマニピュレーション等の空間密度や分解能
を制限しているという課題があった。
On the other hand, even if a three-dimensional light wave propagating in free space is collected, the spot size cannot be reduced below the wavelength due to the diffraction limit.
There is a problem that the spatial density and resolution of the processing or manipulation are limited.

【0008】また、自由空間集光ビームの代わりに、従
来型の光導波路の導波光やその漏れを利用するにして
も、導波路中のビームの太さがやはり半波長程度以下に
はならないため、例えば上記に例示した応用分野におい
ては空間分解能を制限するという課題があった。
Further, even if the guided light of the conventional optical waveguide or its leakage is used instead of the free-space condensed beam, the thickness of the beam in the waveguide does not become less than about half a wavelength. For example, in the application fields exemplified above, there is a problem that the spatial resolution is limited.

【0009】唯一の例外が、波長に比べ小さい穴からの
光電磁界の漏れ(伝搬せずエバネッセント波と呼ばれ
る)を利用する光走査型トンネル顕微鏡(フォトンST
M)があるが、この場合、小さい穴になればなるほど効
率が低下するという課題があった。
The only exception is the optical scanning tunneling microscope (Photon ST, which utilizes the leakage of the photoelectric field from a hole smaller than the wavelength (which does not propagate and is called an evanescent wave).
M), but in this case, there is a problem that the smaller the hole, the lower the efficiency.

【0010】金属は光波領域では導体というよりプラズ
マ媒質として振舞い、近似的に負の誘電率と虚数の屈折
率を有する負誘電体媒質であることが知られている。さ
らに、金属界面に垂直の方向には波数の実数部を持た
ず、この方向には伝搬しない2次元光波(表面波といわ
れる)プラズモン(ここで表面プラズモンと称す)が伝
搬することも知られている。そしてこれを応用した金属
薄膜の2次元光波の伝送に関する研究論文も、例えばフィ
シ゛カル レヒ゛ューB第33巻第5186〜5201頁(1986)(PHYSICAL R
EVIEW B vol33,5186(1986))に報告されている。
It is known that metal behaves as a plasma medium rather than a conductor in the lightwave region, and is a negative dielectric medium having approximately a negative dielectric constant and an imaginary refractive index. Furthermore, it is also known that a two-dimensional light wave (called a surface wave) plasmon (herein referred to as a surface plasmon ) that does not have a real part of the wave number in a direction perpendicular to the metal interface and does not propagate in this direction propagates. I have. A research paper on the transmission of two-dimensional light waves through a metal thin film using this technique is also available in, for example, Physical Review B, Vol. 33, pp. 5186-5201 (1986) (PHYSICAL R
EVIEW B vol 33, 5186 (1986)).

【0011】実際の金属では誘電率の虚部および屈折率
の実部が無視できないため、表面プラズモン伝送の伝送
損失は102〜104cm 1と従来の光伝送路に比べ桁違
いに伝送損失が多いという欠点があり、10 1〜10k
1程度の低損失の導波路に馴染んでいる一般の研究者
の立場にたてば、表面プラズモンを用いたこの光導波路
は到底使用できないとみなし、打ち捨てられ研究は進め
られず、この損失の大きさを逆用して、表面プラズモン
が特定の偏波になることから、通常の太い誘電体導波路
と結合させ、高損失の表面ラズモンと結合する偏波モ
ードをカットする導波型の偏波フィルタとして利用され
ている。
[0011] Since the actual metal can not be ignored is the real part of the imaginary part and the refractive index of the dielectric constant, the transmission loss of the surface plasmon transmission transmission 10 2 to 10 4 cm -1 and incomparably compared with the conventional optical transmission path There is a drawback that the loss is large, 10 over 1 ~10k
From the standpoint of a general researcher familiar with waveguides with a low loss of about m - 1 , this optical waveguide using surface plasmons is considered to be totally unusable, and is discarded and research is not proceeded. and Gyakuyo the size of, since the surface plasmon is a particular polarization, coupled with ordinary thick dielectric waveguide, waveguide type for cutting the polarization mode of binding to the surface plasmon of the high loss Is used as a polarization filter.

【0012】一方、波長がkm以上にもなる低周波電磁
波に対し、波長に比べ桁違いに小さいμmサイズの半導
体電子回路が構成できていることを勘案すると、導波路
の問題さえなければ波長がサブμmの光回路は本来さら
に小さく構成できるはずである。
On the other hand, in consideration of the fact that a semiconductor electronic circuit of μm size, which is orders of magnitude smaller than the wavelength, can be constructed for a low-frequency electromagnetic wave whose wavelength is longer than km, the wavelength can be as long as there is no problem with the waveguide. An optical circuit of sub-μm should be able to be made smaller originally.

【0013】光回路や光伝送路が小さくできない理由
は、マイクロ波で言う導波管に相当する導波路を光導波
路に用いていることに起因する。実際、波長が数m領域
のVHF帯のテレビセットを金属導波管回路で構成する
と、1部屋程度の大きさの巨大な電子装置になる。
The reason why an optical circuit or an optical transmission line cannot be reduced is that a waveguide equivalent to a waveguide referred to by microwave is used for an optical waveguide. In fact, when a TV set in the VHF band having a wavelength of several meters is constituted by a metal waveguide circuit, it becomes a huge electronic device having a size of about one room.

【0014】そこで、電磁波または光波の波長に制限さ
れず細くできる導波路の開発が望まれている。
Therefore, there is a demand for the development of a waveguide that can be made narrow without being restricted by the wavelength of an electromagnetic wave or a light wave.

【0015】しかし、太いとはいえ、従来の光導波路で
も太さがμm程度であり、マイクロ波やミリ波の導波路
に比べ充分に細くなっていること、また、現在の光導波
路の代表例である光ファイバーが劇的に低損失で、有用
で、あまりにも華々しく登場し、かつ、まだ充分にその
能力を使いきっていない現状から、極細の光周波数波動
伝送線路の開発研究を進めようという研究者は、本発明
者らを除いてほとんどいなかったようである。
However, even though the thickness is large, the thickness of the conventional optical waveguide is about μm, which is sufficiently smaller than that of a microwave or millimeter wave waveguide. Optical fibers are dramatically lower loss, useful, too brilliant, and have not yet fully utilized their capabilities, leading to ultra-fine optical frequency waves.
There seem to be few researchers, except the present inventors, who would proceed with transmission line development research.

【0016】本発明は、光信号を伝送する場合、光の波
長に制限され細くできないとされていた光導波路または
光ビームの太さの下限を、波長よりはるかに小さくし、
光回路の小型化が計れ、極微細の光周波数波動伝送線路
周囲または先端部近傍における光電磁界が光波長に比べ
充分に小さい範囲に局在できることを利用した各種デバ
イスに適用できる光周波数波動伝送線路を提供すること
を目的とする。
According to the present invention, when transmitting an optical signal, the lower limit of the thickness of an optical waveguide or a light beam, which is considered to be limited by the wavelength of the light and cannot be narrowed, is made much smaller than the wavelength,
Miniaturization of the optical circuit Hakare, light can be applied to various devices which light the electromagnetic field is utilized to be able to localize a sufficiently small range than the light wavelength in the optical frequency wave transmission line <br/> periphery or tip vicinity of the very fine It is an object to provide a frequency wave transmission line .

【0017】[0017]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次の光周波数波動伝送線路である。
According to the present invention, there is provided the following optical frequency wave transmission line .

【0018】(1)単一の柱形状を有し、かつ誘電率の
実数部が負の負誘電体媒質を誘電率が正の正誘電体媒質
にて取り囲み、前記負誘電体媒質の長手方向に交差する
断面の長さが、光波長よりも小さい形状を有することを
特徴とする光周波数波動伝送線路である。 また、単一の
柱形状を有し、かつ誘電率の実数部が負の負誘電体媒質
を誘電率が正の正誘電体媒質にて取り囲み、前記負誘電
体媒質の長手方向に交差する少なくとも一断面の対角
線、長軸または直径の何れかが、光波長よりも小さい距
離の形状を有することを特徴とする光周波数波動伝送線
路である。 また、単一の筒形状を有しかつ誘電率の実数
部が負の負誘電体媒質にて誘電率が正の正誘電体媒質を
取り囲み、前記負誘電体媒質が、前記筒形状の長手方向
に交差する少なくとも一断面の対角線、長軸または直径
の何れかが、光波長よりも小さい内径を有する筒形状を
することを特徴とする光周波数波動伝送線路である。
[0018] (1) has a single column-shaped, and encloses the real part of the dielectric constant negative negative dielectric medium the dielectric constant at positive positive dielectric medium, the longitudinal direction of the negative dielectric medium The length of the cross section that intersects with
It is a characteristic optical frequency wave transmission line. Also a single
Diagonal line of at least one cross section that has a columnar shape, and the real part of the dielectric constant surrounds the negative dielectric medium having a negative dielectric constant with a positive dielectric medium having a positive dielectric constant, and intersects the longitudinal direction of the negative dielectric medium. An optical frequency wave transmission line characterized in that either the major axis or the diameter has a shape with a distance smaller than the optical wavelength.
Road. Further, the negative dielectric medium has a single cylindrical shape and the real part of the dielectric constant is a negative dielectric medium surrounding the positive dielectric medium with a negative dielectric medium, and the negative dielectric medium is in the longitudinal direction of the cylindrical shape. diagonal of at least one cross section intersecting, one of the major axis or diameter is a optical frequency wave transmission line, characterized by <br/> have a cylindrical shape having an inner diameter smaller than the light wavelength.

【0019】(2)誘電率の実数部が負であり単一の負
誘電体媒質を誘電率が正の正誘電体媒質にて取り囲み、
あるいは誘電率が正の正誘電体媒質を誘電率の実数部が
であり単一の負誘電体媒質にて取り囲み、前記負誘電
体媒質と前記正誘電体媒質との境界面に表面プラズモン
を伝送する伝送線路であって、前記正誘電体媒質の主伝
搬方向に交差する断面の一部に、周辺部に比べ等価的に
屈折率が高い屈折率分布を付与し、主伝搬方向に交差す
る負誘電体媒質の厚さが、光波長よりも小さいことを特
徴とする光周波数波動伝送線路である。 また、誘電率の
実数部が負であり単一の負誘電体媒質と、誘電率が正の
正誘電体媒質Aと、前記正誘電体媒質Aより低い屈折率
を有する正誘電体媒質Bとを含み、前記負誘電体媒質を
前記正誘電体媒質Aにて取り囲みあるいは前記正誘電体
媒質Aを前記負誘電体媒質にて取り囲み、前記負誘電体
媒質と前記正誘電体媒質Aとの境界面に表面プラズモン
を伝送する伝送線路であって、前記正誘電体媒質Aの主
伝搬方向に交差する断面の一部に前記負誘電体媒質を存
在させ、主伝搬方向に交差する負誘電体媒質の厚さが光
波長よりも小さい形状を有し、前記負誘電体媒質の前記
正誘電体媒質Aと接触しない面を、前記正誘電体媒質B
取り囲むことを特徴とする光周波数波動伝送線路であ
る。
(2) Surrounding a single negative dielectric medium whose real part is negative with a positive dielectric medium having a positive dielectric constant,
Alternatively, a positive dielectric medium having a positive dielectric constant is surrounded by a single negative dielectric medium in which the real part of the dielectric constant is negative , and a surface plasmon is formed on an interface between the negative dielectric medium and the positive dielectric medium. A transmission line for transmission, in which a part of a cross section intersecting the main propagation direction of the positive dielectric medium is given a refractive index distribution having a refractive index equivalent to that of a peripheral portion, and intersects the main propagation direction. the thickness of the negative dielectric medium, especially smaller than the light wavelength
This is an optical frequency wave transmission line. Further , a single negative dielectric medium having a negative real part of the dielectric constant, a positive dielectric medium A having a positive dielectric constant, and a positive dielectric medium B having a lower refractive index than the positive dielectric medium A Wherein the negative dielectric medium is surrounded by the positive dielectric medium A or the positive dielectric medium A is surrounded by the negative dielectric medium, and a boundary between the negative dielectric medium and the positive dielectric medium A is included. A transmission line for transmitting surface plasmons to a surface, wherein the negative dielectric medium is present in a part of a cross section of the positive dielectric medium A crossing the main propagation direction, and the negative dielectric medium crosses the main propagation direction. The thickness of the negative dielectric medium is smaller than the light wavelength, and the surface of the negative dielectric medium that is not in contact with the positive dielectric medium A is contacted with the positive dielectric medium B.
An optical frequency wave transmission line characterized by being surrounded by
You.

【0020】[0020]

【作用】本発明の基本構成は、誘電率の実数部が負であ
る負誘電体媒質と、誘電率が正の正誘電体媒質の境界部
での相互作用に基づく。
The basic structure of the present invention is based on the interaction at the boundary between a negative dielectric medium having a negative real part and a positive dielectric medium having a positive dielectric constant.

【0021】すなわち、波長に比べると充分に小さい口
径を有する負誘電体媒質(負誘電体媒質が柱形状の場
合)もしくは負誘電体媒質(負誘電体媒質が筒形状の場
合)の何れかの境界面に沿って軸方向にのみ伝送し、径
方向にはどの方向にも伝送できなく、軸方向にのみ位相
定数を有する形状、または、正誘電体媒質と負誘電体
とが接合した形状を有する。
That is, either a negative dielectric medium (when the negative dielectric medium has a columnar shape) or a negative dielectric medium (when the negative dielectric medium has a cylindrical shape) having a diameter sufficiently smaller than the wavelength. A shape that transmits only in the axial direction along the boundary surface, cannot transmit in any direction in the radial direction, and has a phase constant only in the axial direction, or a positive dielectric medium and a negative dielectric medium
It has a shape joined with the material .

【0022】例えば円筒状の伝送線路では、直角座標系
の指数関数または双曲線関数に対応して、界分布は従来
のベッセル型とは異なり変形ベッセル関数状の径方向分
布となるため、半波長程度あるいはそれ以上の厚さの正
誘電体を内部に含み、内部で全反射を繰り返す従来の3
次元光波円筒導波路とは全く導波原理が異なる。
For example, in a cylindrical transmission line, the field distribution becomes a modified Bessel function radial distribution unlike a conventional Bessel type corresponding to an exponential function or a hyperbolic function of a rectangular coordinate system. Or, a conventional dielectric material containing a thicker than normal dielectric and repeating total internal reflection inside
The waveguide principle is completely different from that of the three-dimensional lightwave cylindrical waveguide.

【0023】すなわち、本発明の伝送線路では、負誘電
媒質表面に光を照射することにより負誘電体媒質内部
に生じる光周波数で振動する分極が、近くの分極を励起
し、これをリレーしてゆく分極波伝送となる。従って、
境界で反射する以外は自由空間の電磁波伝搬と同じよう
に伝搬する従来の光導波とは全く原理がことなり、本発
明の光周波数波動伝送線路の伝送路の太さは波長による
制限は生じない。
[0023] That is, the transmission line of the present invention, polarization oscillates at optical frequencies generated inside the negative dielectric medium by irradiating light to the negative dielectric medium surface, excites the nearby polarization, which relays Polarized wave transmission. Therefore,
The principle is completely different from the conventional optical waveguide that propagates in the same way as electromagnetic wave propagation in free space except for reflection at the boundary, and the thickness of the transmission path of the optical frequency wave transmission line of the present invention is not limited by wavelength. .

【0024】この結果、媒質が負の誘電率を持つ波長域
では、導波路を波長よりいくら細くしてもカットオフは
生じないため、波長に制限されること無く細い光周波数
波動伝送線路が構成でき、波長に制限されずに高密度の
光回路が構成できる。
As a result, in a wavelength range where the medium has a negative dielectric constant, no cutoff occurs even if the waveguide is made thinner than the wavelength, so that the optical frequency is narrow without being limited by the wavelength.
A wave transmission line can be configured, and a high-density optical circuit can be configured without being limited by wavelength.

【0025】従って、mm以内あるいは波長オーダー以
内で光回路を作成できる非常に小さな光回路であるた
め、mm程度、場合によっては波長程度の距離だけ伝搬
すれば充分であり、通常では使いものにならないとして
考慮対象外であった大きい伝送損失であっても使用で
き、この表面波をもっと活用することが本発明のモティ
ベーションであり、ユニークなところでもある。
Therefore, since it is a very small optical circuit capable of producing an optical circuit within the order of mm or within the order of the wavelength, it is sufficient to propagate the optical circuit by a distance of the order of mm or, in some cases, the wavelength. Even a large transmission loss that was out of consideration can be used, and utilizing this surface wave more is the motivation of the present invention and is unique.

【0026】なお、このような発想は、1984年に本
発明者が推奨し、光周波数帯での電圧・電流を低周波ま
たは直流と同様に伝送させる光伝送線路は、特許第16
23538号で既に本発明者が取得しているが、本発明
は波長制限がないと言う点で上記特許に若干関連するも
のの、その発想を構造および導波原理が異なる表面プラ
ズモン導波路または分極導波路にまで発展させたもので
あり、両者は異なる。
Such an idea was recommended by the present inventors in 1984, and an optical transmission line for transmitting a voltage / current in an optical frequency band in the same manner as low frequency or direct current is disclosed in Japanese Patent No.
No. 23538, which has already been obtained by the present inventor. Although the present invention is slightly related to the above patent in that there is no wavelength limitation, the idea is to use a surface plasmon having a different structure and waveguide principle. They have evolved into waveguides or polarized waveguides, both of which are different.

【0027】[0027]

【実施例】図1に本発明の光周波数波動伝送線路の第1
の形態の一実施例を示す。図1は、柱形状の負誘電体媒
質1の回りを正誘電体媒質2が取り囲み、一方の端から
結合整合部4を介して光ファイバ等の光導波路3と結合
している。
1 shows a first embodiment of an optical frequency wave transmission line according to the present invention.
An example of the embodiment will be described. In FIG. 1, a positive dielectric medium 2 surrounds a columnar negative dielectric medium 1, and is coupled to an optical waveguide 3 such as an optical fiber from one end via a coupling matching section 4.

【0028】なお、例えば図2に示したように、正誘電
体媒質2内に針金状の負誘電体媒質1が埋め込められた
構造であってもよく、また例えば図3に示したように保
護用クラッド5を正誘電体媒質2のクラッドの外側に具
備していても良いこと勿論である。
It should be noted that, for example, as shown in FIG. 2, a structure in which a wire-like negative dielectric medium 1 is embedded in a positive dielectric medium 2 may be used, or for example, as shown in FIG. Needless to say, the cladding 5 may be provided outside the cladding of the positive dielectric medium 2.

【0029】図4に本発明の光周波数波動伝送線路の別
の形態の一実施態様を示す。図4は、柱形状の正誘電体
媒質2の回りを負誘電体媒質1が取り囲み、一方の端か
ら結合整合部4を介して光ファイバ等の光導波路3と結
合している。すなわち、負誘電体媒質1が筒形状の場合
である。
FIG. 4 shows another embodiment of the optical frequency wave transmission line of the present invention. In FIG. 4, a negative dielectric medium 1 surrounds a columnar positive dielectric medium 2, and is coupled to an optical waveguide 3 such as an optical fiber from one end via a coupling matching section 4. That is, this is the case where the negative dielectric medium 1 is cylindrical.

【0030】なお、正誘電体媒質2を取り囲む負誘電体
媒質1の厚みは、例えば図5に示したように薄い場合で
あってもよく、また例えば図6に示したように保護用ク
ラッド5が、正誘電体媒質2を取り囲む負誘電体媒質1
の外側に具備していても良く、さらに図6の保護用クラ
ッドが正誘電体媒質であっても良い。
The thickness of the negative dielectric medium 1 surrounding the positive dielectric medium 2 may be, for example, as thin as shown in FIG. 5 or, for example, as shown in FIG. Is the negative dielectric medium 1 surrounding the positive dielectric medium 2
And the protective cladding in FIG. 6 may be a positive dielectric medium.

【0031】本発明の特徴とするところは、例えば図1
に示したような負誘電体媒質1が柱形状である場合には
当該柱形状の伝送方向に交差する断面の大きさ、また
は、例えば図4に示したような負誘電体媒質1が筒形状
を有する場合には伝送方向に交差する断面の孔の大きさ
であり、何れも光の波長より小さいことである。従っ
て、例えば図6に示した保護用クラッド5が正誘電体媒
質の場合には、この正誘電体媒質も光の波長よりも小さ
い形態であっても良く、また、例えば図3に示した保護
用クラッド5が負誘電体媒質であっても良いこと勿論で
ある。
The feature of the present invention is that, for example, FIG.
When the negative dielectric medium 1 as shown in FIG. 4 has a columnar shape, the size of the cross section intersecting the transmission direction of the columnar shape or, for example, when the negative dielectric medium 1 as shown in FIG. Is the size of the hole in the cross section intersecting the transmission direction, which is smaller than the wavelength of light. Accordingly, for example, when the protective cladding 5 shown in FIG. 6 is a positive dielectric medium, the positive dielectric medium may be in a form smaller than the wavelength of light. Needless to say, the cladding 5 may be a negative dielectric medium.

【0032】従って、例えば図1に示した負誘電体媒質
1の伝送方向に交差または直交する断面形状、または例
えば図4に示した負誘電体媒質1の伝送方向に交差また
は直交する孔の断面形状は、円形、楕円形または多角形
等の何れの形状であっても良く、図1の負誘電体媒質2
の断面方向の太さ、または、図4の負誘電体媒質1の内
径の直径、長軸または対角線等の断面方向の距離が、波
長よりも小さい形状であれば良い。
Accordingly, for example, the cross-sectional shape crossing or orthogonal to the transmission direction of the negative dielectric medium 1 shown in FIG. 1 or the cross section of the hole crossing or orthogonal to the transmission direction of the negative dielectric medium 1 shown in FIG. The shape may be any shape such as a circle, an ellipse, or a polygon.
Or the distance in the cross-sectional direction, such as the diameter of the inner diameter of the negative dielectric medium 1 in FIG. 4, the long axis or the diagonal line, may be smaller than the wavelength.

【0033】本発明の負誘電体媒質1の材料としては、
通常の金属、合金、半導体等が適用でき、何等特殊な材
料ではない。しかし、例えば図1に示したように波長よ
りも小さい外径に加工する必要性、または図4に示した
ように波長よりも小さい内径に加工する必要性があるた
め、加工性に優れた材料が好ましい。
As the material of the negative dielectric medium 1 of the present invention,
Ordinary metals, alloys, semiconductors, etc. can be applied and are not special materials. However, for example, as shown in FIG. 1, it is necessary to process the outer diameter smaller than the wavelength, or as shown in FIG. 4, it is necessary to process the inner diameter smaller than the wavelength. Is preferred.

【0034】また、本発明の正誘電体媒質2の材料とし
ては、一般に光ファイバもしくは導波路として適用でき
る材料でよく、例えばLiNbO3,LiTaO3等のよ
うに用いる波長に光学的透明な材料、石英、アルミナ、
マグネシア、ジルコニア、フッ化マグネシウム、カルコ
ゲン化合物、各種ガラス等の無機化合物、ポリメチルメ
タクリル樹脂、ポリスチレン等の高分子化合物等が適用
される。
Further, the material of the positive dielectric medium 2 of the present invention may be a material which can be generally applied as an optical fiber or a waveguide, for example, a material which is optically transparent to the wavelength used such as LiNbO 3 , LiTaO 3, etc. Quartz, alumina,
Inorganic compounds such as magnesia, zirconia, magnesium fluoride, chalcogen compounds, various glasses, and high molecular compounds such as polymethyl methacrylic resin and polystyrene are used.

【0035】また、図1もしくは図4における正誘電体
媒質2は、真空あるいは空気であってもよく、この場合
には例えば図1では単に負誘電体媒質1の細線、図4で
は単に中空の負誘電体媒質1となる。
The positive dielectric medium 2 in FIG. 1 or FIG. 4 may be vacuum or air. In this case, for example, in FIG. 1, a thin wire of the negative dielectric medium 1 is used, and in FIG. It becomes the negative dielectric medium 1.

【0036】但し、図1および図4における結合整合部
4は、負誘電体媒質1および正誘電体媒質2で構成され
る本発明の光周波数波動伝送線路と通常の導波路3とを
結合し、本発明の光周波数波動伝送線路と導波路3との
間の伝送インピーダンスの整合をはかり、光パワーが必
要なだけ相互間に結合伝送できる構造であれば何れであ
ってもよく、本発明の本質ではない。
However, the coupling matching section 4 in FIGS. 1 and 4 couples the optical frequency wave transmission line of the present invention composed of the negative dielectric medium 1 and the positive dielectric medium 2 with the ordinary waveguide 3. Any structure may be used as long as the transmission impedance between the optical frequency wave transmission line of the present invention and the waveguide 3 can be matched and the optical power can be coupled and transmitted therebetween as much as necessary. Not essence.

【0037】また、図1および図4における光導波路3
に付いても、従来の光導波路が適用でき、本発明の本質
ではない。
The optical waveguide 3 shown in FIGS.
, A conventional optical waveguide can be applied and is not the essence of the present invention.

【0038】さらに、本発明の光周波数波動伝送線路を
例えば光ヘッドとして用いる場合の対象物としては、金
属材料、半導体材料を始め絶縁体材料の何れであっても
適用できる。
Further, when the optical frequency wave transmission line of the present invention is used as, for example, an optical head, any object such as a metal material, a semiconductor material and an insulator material can be applied.

【0039】但し、本発明の光周波数波動伝送線路を例
えば光ヘッドに適用する場合には、対象物に対向する柱
形状を有する負誘電体媒質、または、筒形状を有する負
誘電体媒質の何れかは、正誘電体媒質の端部から露出さ
せる必要がある。また、負誘電体媒質が柱形状を有する
場合、当該露出部近傍の負誘電体媒質の太さ、または、
負誘電体媒質が筒形状を有する場合、当該露出部近傍の
筒形状の内径の何れかが、光波長よりも小さいと好まし
いこと勿論である。
However, when the optical frequency wave transmission line of the present invention is applied to, for example, an optical head, either a columnar negative dielectric medium facing a target or a cylindrical negative dielectric medium is used. Must be exposed from the end of the positive dielectric medium. Further, when the negative dielectric medium has a columnar shape, the thickness of the negative dielectric medium near the exposed portion, or,
When the negative dielectric medium has a cylindrical shape, it is needless to say that one of the inner diameters of the cylindrical shape near the exposed portion is preferably smaller than the light wavelength.

【0040】このような本発明の第1の形態では、例え
ば図7〜図13に示したような組み合わせの形態であっ
ても良い。
In the first embodiment of the present invention, for example, a combination as shown in FIGS. 7 to 13 may be used.

【0041】すなわち、例えば図7に示したように、負
誘電体媒質1の回りを正誘電体媒質2で囲み、さらに当
該正誘電体媒質2の外側に別の負誘電体媒質1’が囲ん
だ形態である。図8に示した形態は、外側の負誘電体媒
質1’の厚みが薄い形態である。
That is, as shown in FIG. 7, for example, a negative dielectric medium 1 is surrounded by a positive dielectric medium 2, and another negative dielectric medium 1 ′ is surrounded outside the positive dielectric medium 2. It is a form. The form shown in FIG. 8 is a form in which the thickness of the outer negative dielectric medium 1 ′ is small.

【0042】また、例えば図9に示したように、負誘電
体媒質1の外側を正誘電体媒質2で囲み、当該正誘電体
媒質2の外側を別の負誘電体媒質1’で囲み、当該負誘
電体媒質1’の外側を別の正誘電体媒質2’で囲み、正
誘電体媒質2’の外側を他の負誘電体媒質1”で囲んだ
形態である。図10に示した形態は、内径が波長よりも
小さい負誘電体媒質1の内部および外部を各々正誘電体
媒質2および2’を配し、正誘電体媒質2’の外側に別
の負誘電体媒質1’で囲んだ形態である。
For example, as shown in FIG. 9, the outside of the negative dielectric medium 1 is surrounded by a positive dielectric medium 2, and the outside of the positive dielectric medium 2 is surrounded by another negative dielectric medium 1 '. In this embodiment, the outside of the negative dielectric medium 1 'is surrounded by another positive dielectric medium 2', and the outside of the positive dielectric medium 2 'is surrounded by another negative dielectric medium 1 ". In the form, the inside and outside of the negative dielectric medium 1 whose inner diameter is smaller than the wavelength are respectively provided with positive dielectric media 2 and 2 ′, and another negative dielectric medium 1 ′ is provided outside the positive dielectric medium 2 ′. It is an enclosed form.

【0043】さらに、図11は、負誘電体媒質1および
1’を平行に配した形態、すなわち正誘電体媒質が空気
または真空の形態である。図12は、図11の負誘電体
媒質1および1’が筒形状である場合であり、正誘電体
媒質2および2’を積極的にいれてもよく、また空気ま
たは真空であっても良い。さらに、図13は、複数本の
負誘電体媒質1および1’の回りを正誘電体媒質2で囲
み、当該正誘電体媒質2の回りを別の負誘電体媒質1”
で囲んだ形態である。
FIG. 11 shows a form in which the negative dielectric media 1 and 1 'are arranged in parallel, that is, the positive dielectric medium is air or vacuum. FIG. 12 shows a case where the negative dielectric media 1 and 1 ′ in FIG. 11 are cylindrical, the positive dielectric media 2 and 2 ′ may be positively inserted, or air or vacuum may be used. . Further, in FIG. 13, a plurality of negative dielectric media 1 and 1 ′ are surrounded by a positive dielectric medium 2, and the surrounding of the positive dielectric medium 2 is another negative dielectric medium 1 ″.
It is the form surrounded by.

【0044】図7〜図13に示したような多層構造を有
すると、図1または図4のような単層構造に比べると発
生する表面プラズモンを強力にできるため好ましい。
It is preferable to have a multilayer structure as shown in FIGS. 7 to 13 because surface plasmons generated can be strengthened as compared with a single-layer structure as shown in FIG. 1 or FIG.

【0045】ところで、従来の光波である3次元光波に
対しては、例えば図14(a)に示したような方形の正
誘電体媒質の導波路では、図14(b)に示したように
電磁波の横方向分布は、コア内部ではジグザグに進行し
定在波形で正弦波関数になり、この外側のクラッド部で
は図14(c)に示したように指数関数状に減衰してい
る。
By the way, with respect to a conventional three-dimensional light wave which is a light wave, for example, in a rectangular waveguide made of a positive dielectric medium as shown in FIG. 14A, as shown in FIG. The lateral distribution of the electromagnetic wave progresses in a zigzag manner inside the core and becomes a sine wave function with a standing waveform, and attenuates exponentially in the outer clad portion as shown in FIG. 14C.

【0046】また、図15(a)に示したように、例え
ば円筒形状のような筒形状の正誘電体媒質の導波路で
は、図15(b)に示したようにコア内部ではジグザグ
に進行し、界分布はこれに対応して図15(c)に示し
たようにベッセル関数形(コア部ではベッセル関数、外
部ではノイマン関数)である。
Further, as shown in FIG. 15A , in a waveguide of a cylindrical dielectric material such as a cylindrical one, for example, as shown in FIG. 15B, the waveguide progresses in a zigzag manner inside the core. The field distribution has a Bessel function (corresponding to the Bessel function in the core portion and the Neumann function in the outside) as shown in FIG.

【0047】マイクロ波領域もしくは遠赤外領域では金
属を用いた導波路もよく利用され、前者に対応するもの
として金属方形導波路、波長程度の径を有する金属円柱
としては図17(a)および図17(b)に示したよう
なクーボー線路、波長程度の内径を有する円筒形の導波
路としては図16(a)および図16(b)に示したよ
うなホロー導波路が知られており、界分布はそれぞれ図
17(c)または図16(c)に示したようになる。
In the microwave region or the far-infrared region, a waveguide using a metal is often used, and a metal square waveguide corresponding to the former and a metal cylinder having a diameter of about the wavelength shown in FIG. As a Couveau line as shown in FIG. 17B and a cylindrical waveguide having an inner diameter of about a wavelength, a hollow waveguide as shown in FIGS. 16A and 16B is known. , The field distribution is as shown in FIG. 17 (c) or FIG. 16 (c), respectively.

【0048】負誘電体媒質を金属と考えれば、外見上は
これらは図1または図4と類似しているかのように見受
けられるが、マイクロ波または遠赤外域の波長域では負
誘電体の性質はなく導電率の非常に大きい導体として作
用し、等価的にジグザグで進む3次元電磁波の完全反射
板として導波路の境界を形成しているため、例えばマイ
クロ波導波管とガス管の違いのように、これら両者は全
く異なるものである。また、導波路には口径に依存する
遮断波長が存在し、口径が半波長程度以上でないと伝送
できない。
If the negative dielectric medium is considered to be a metal, these can be seen as if they are similar to FIG. 1 or FIG. 4, but in the microwave or far-infrared wavelength range, the properties of the negative dielectric are considered. It acts as a conductor with very high electrical conductivity and forms the boundary of the waveguide as a perfect reflector for three-dimensional electromagnetic waves traveling in zigzag equivalently, so for example, the difference between a microwave waveguide and a gas pipe Furthermore, these two are completely different. Further, the waveguide has a cutoff wavelength depending on the aperture, and transmission cannot be performed unless the aperture is about half a wavelength or more.

【0049】一方、本発明のような光波領域では、金属
は基本的にはマイナスの誘電率を持つ負誘電体媒質とし
て作用する他、高密度プラズマも負誘電体媒質として作
用する。
On the other hand, in the light wave region as in the present invention, metal basically acts as a negative dielectric medium having a negative dielectric constant, and high density plasma also acts as a negative dielectric medium. I do.

【0050】例えば図18(a)に示したように、正誘
電率を有する通常の光学透明媒質(正誘電体媒質2)か
ら負誘電体媒質1に光波が入射すると、光電磁波は図1
8(b)に示したように負誘電体媒質1内部に指数関数
的に染み込むものの、結果としては例えば電離層と同様
に全反射されて内部には伝搬できない。
For example, as shown in FIG. 18A, when a light wave enters a negative dielectric medium 1 from a normal optical transparent medium having a positive dielectric constant (positive dielectric medium 2), the photoelectromagnetic wave is converted into a light electromagnetic wave as shown in FIG.
As shown in FIG. 8 (b), although it penetrates exponentially into the negative dielectric medium 1, as a result, it is totally reflected like the ionosphere and cannot propagate inside.

【0051】しかし、TMモードでは例えば図19
(a)に示したように、負誘電体媒質1内部境界面近傍
と正誘電体媒質2内部境界近傍との界面に沿ってのみ表
面波の形で伝搬できる表面プラズモンといわれる表面波
が存在可能であり、境界面に対して直行する横方向に
は、図19(b)に示したように、負誘電体媒質1内も
正誘電体媒質2内も正弦波的振動無しに指数関数的に減
衰し、2次元光波(正確には2次元光波は電磁波である
が光ではなく、光周波数で伝搬するプラズマ波)とな
る。
However, in the TM mode, for example, FIG.
As shown in (a), a surface wave called a surface plasmon that can propagate in the form of a surface wave can exist only along the interface between the vicinity of the inner boundary of the negative dielectric medium 1 and the vicinity of the inner boundary of the positive dielectric medium 2. In the horizontal direction perpendicular to the boundary surface, as shown in FIG. 19B, both the inside of the negative dielectric medium 1 and the inside of the positive dielectric medium 2 are exponentially generated without sinusoidal vibration. It attenuates and becomes a two-dimensional light wave (accurately, a two-dimensional light wave is an electromagnetic wave, but is not a light but a plasma wave propagating at an optical frequency).

【0052】さらに、図20(a)および図21(a)
に示したように、負誘電体媒質1薄板と正誘電体媒質2
薄板との間隙では、近接した負誘電体媒質・正誘電体
境界が2面できるため、2つの境界面の表面波が結合
し、これに代わる偶奇性の異なる2つの2次元光波モー
ドを図20(b)および図21(b)に示すように構成
する。
Further, FIGS. 20 (a) and 21 (a)
As shown in the figure, the negative dielectric medium 1 and the positive dielectric medium 2
In the gap with the thin plate, the adjacent negative dielectric medium / positive dielectric medium
Since two quality boundaries can be formed, the surface waves at the two boundary surfaces are combined, and two alternative two-dimensional light wave modes having different evenness are configured as shown in FIGS. 20 (b) and 21 (b). .

【0053】この結果、正誘電体媒質2および負誘電体
媒質1の誘電率の絶対値の大小関係に依存はするが、図
20(a)および図21(a)の何れの場合であって
も、板厚および間隙を光波長に比べ充分に小さくして
も、伝送遮断が生じないモードが存在する。
As a result, although it depends on the magnitude relationship of the absolute values of the dielectric constants of the positive dielectric medium 2 and the negative dielectric medium 1, either of the cases of FIG. 20A and FIG. Also, there is a mode in which transmission is not interrupted even if the plate thickness and the gap are made sufficiently smaller than the optical wavelength.

【0054】本発明の基本構成は、この図19(a)の
境界面、あるいは図20(a)および図21(a)を細
く円筒状に巻いた負誘電体媒質1の外径、または内径を
波長に比べ充分に小さくしたものであり、径方向にはど
の方向にも伝送できないため、軸方向にのみ位相定数を
有する1次元波動伝送路になる。
The basic structure of the present invention is that the outer diameter or inner diameter of the negative dielectric medium 1 obtained by winding the negative dielectric medium 1 shown in FIG. 19 (a) or the thin cylindrical shape shown in FIGS. 20 (a) and 21 (a). Is sufficiently smaller than the wavelength and cannot be transmitted in any direction in the radial direction, so that a one-dimensional wave transmission line having a phase constant only in the axial direction is obtained.

【0055】図22(a)、(b)および図23
(a)、(b)は、図19(a)を表面プラズモン伝搬
方向に平行な軸を中心に、それぞれ負誘電体媒質または
正誘電体媒質の何れかを内側にして巻いた形態の要部断
面図をそれぞれ(a)と要部側面図をそれぞれ(b)に
示し、また図24(a)、(b)および図25(a)、
(b)は、各々図20(a)および図21(a)の2次
元光波の伝搬方向に平行な軸を中心に小さく巻いた形態
に相当する。直角座標形の指数関数または双曲線関数に
対応して、界分布は図22(c)、図23(c)、図2
4(c)および図25(c)に示したような変形ベッセ
ル関数(Kn(αr)、In(αr)但しαは定数)状の
径方向分布となる。従って、半波長程度の厚さの正誘電
帯を内部に含む従来の3次元光波円筒導波路とは全く導
波原理が異なる。
FIGS. 22A and 22B and FIG.
(A) and (b) of FIG. 19 (a) are the main parts of a form in which either the negative dielectric medium or the positive dielectric medium is wound around an axis parallel to the surface plasmon propagation direction. FIGS. 24 (a) and 24 (b) and FIGS. 25 (a) and 25 (a)
(B) corresponds to a mode in which the two-dimensional light wave is slightly wound around an axis parallel to the propagation direction of the two-dimensional light wave in each of FIGS. 20 (a) and 21 (a). According to the exponential function or the hyperbolic function of the rectangular coordinate system, the field distributions are shown in FIGS.
4 (c) and a modified Bessel function (Kn (αr), In (αr), where α is a constant) as shown in FIG. 25 (c). Therefore, the guiding principle is completely different from that of a conventional three-dimensional lightwave cylindrical waveguide including a positive dielectric band having a thickness of about half a wavelength inside.

【0056】本発明の第1の構成である1次元光周波数
波動伝送線路は、例えば短焦点凸レンズで光ビームを対
象物に集光する等のように、レーザ光が小さいサイズの
スポットに集光できることを利用している光機器の、微
細サイズ光ヘッドの最先端部に広く応用できる。
One-dimensional optical frequency of the first configuration of the present invention
The wave transmission line is the most suitable for a micro-sized optical head of an optical device that utilizes the fact that a laser beam can be focused on a small-sized spot, for example, focusing a light beam on a target using a short focal length convex lens. Can be widely applied to the tip.

【0057】本発明の光周波数波動導波線路は、例えば
光ヘッドに適用した図26、図27および光STMの光
ヘッドに適用した図28に示したように、従来の光ヘッ
ド先端部として応用できる。すなわち、図26は一般的
な自由伝搬型光ヘッド、図27は導波路型光ヘッド、ま
た図28はエバネッセント型光STMヘッドに利用でき
る。
As shown in FIGS. 26 and 27 applied to an optical head and FIG. 28 applied to an optical STM optical head, for example, the optical frequency wave waveguide according to the present invention is applied as a conventional optical head tip. it can. That is, FIG. 26 can be used for a general free propagation type optical head, FIG. 27 can be used for a waveguide type optical head, and FIG. 28 can be used for an evanescent type optical STM head.

【0058】このような光ヘッドに本発明の光周波数波
動伝送線路を適用すると、例えば図29および図30に
示したような形態をとり得る。すなわち、図29では基
本的には図1〜図10の構成がそのまま適用でき、何れ
も構成が極めて単純にすることができる。
The optical frequency wave of the present invention is applied to such an optical head.
When a dynamic transmission line is applied, for example, the form shown in FIGS. 29 and 30 can be taken. That is, in FIG. 29, basically, the configuration of FIGS. 1 to 10 can be applied as it is, and the configuration can be extremely simple in any case.

【0059】また、図29の構成では、ヘッドの伝送線
路部が非常に細く、また機械的強度に劣る、あるいはデ
ィスク等の対象物を傷つけ安い等の点を解決する手法と
して、例えば図30に示すような伝送線路の外側に光が
進入し難い材料の保護層を装荷し、太くした構造も有効
になる。
In the configuration shown in FIG. 29, as a method for solving the problems that the transmission line portion of the head is extremely thin, has poor mechanical strength, or damages an object such as a disk and is cheap, FIG. A structure in which a protective layer made of a material to which light does not easily enter is loaded on the outside of the transmission line as shown in FIG.

【0060】さらに、図29および図30では、何れも
ヘッド先端は1次元伝送線路を切断したままであるが、
例えば図31、図32または図33に示したような伝送
線路の断面を球面あるいは楕円体面状に面とりする構造
も有効である。
Further, in FIGS. 29 and 30, the tip of the head remains cut off the one-dimensional transmission line in both cases.
For example, a structure in which the cross section of the transmission line is chamfered into a spherical or ellipsoidal shape as shown in FIG. 31, FIG. 32, or FIG. 33 is also effective.

【0061】本発明の光周波数波動伝送線路を例えば光
ディスクに適用した場合、30nm程度の電磁界スポッ
トサイズとなるため、ビーム径が1μm程度以上の現行
の方法に比べ、約1000倍の空間密度が向上でき、例
えば1枚の音楽用CDで、数百Gビットの容量にでき、
1カ月以上の連続演奏が可能となる。
When the optical frequency wave transmission line of the present invention is applied to, for example, an optical disk, the electromagnetic field spot size is about 30 nm, so that the spatial density is about 1000 times larger than the current method having a beam diameter of about 1 μm or more. For example, one music CD can have a capacity of several hundred Gbits.
Continuous performance for more than one month is possible.

【0062】図34および図35、図36および図37
は本発明の第2の実施態様の内、負誘電体媒質の板(以
下負誘電体板1と称す)が正誘電体媒質の板(以下正誘
電体板と称す)2およb2’(すなわち正誘電体媒質
およびB)に覆われた形態の実施例を示し、図38、図
39、図40、図41、図42、図43および図44は
本発明の第2の実施態様の内、負誘電体板1と正誘電体
板とが境界面を形成した形態の実施例を示す。
FIGS. 34 and 35, FIGS. 36 and 37
In the second embodiment of the present invention, a plate of a negative dielectric medium ( hereinafter referred to as a plate)
The lower negative dielectric plate 1 is a plate of a positive dielectric medium (hereinafter referred to as a positive dielectric plate ).
Collector plate hereinafter) 2 Oyo b2 '(ie positive dielectric medium A
FIGS. 38, 39, 40, 41, 42, 43 and 44 show a negative dielectric plate according to a second embodiment of the present invention. 1 shows an embodiment in which a boundary surface is formed between a reference numeral 1 and a positive dielectric plate.

【0063】すなわち、図34および図35は図19の
形態、図36および図37は図20および図21の形態
の正誘電体媒質と負誘電体媒質の何れかの一部を、進行
方向に長い棒板状に残し、周辺部を除去し、除去した部
分に元からある正誘電体媒質の屈折率よりも小さい屈折
率を有する媒質を装荷したものである。なお、元からあ
る正誘電体媒質の屈折率よりも小さい屈折率を有する正
誘電体媒質としては、真空または空気でもよい。
[0063] That is, the form of FIG. 34 and FIG. 35 FIG. 19, FIGS. 36 and 37 is either a part of the positive dielectric medium and a negative dielectric medium in the form of FIGS. 20 and 21, the traveling direction leaving a long rod-shaped, and removing the peripheral portion, is obtained by loading a positive dielectric medium having a refractive index less than the refractive index of the medium from the original to the removed portion. The positive dielectric medium having a refractive index smaller than the refractive index of the original positive dielectric medium may be vacuum or air.

【0064】また、図36、図37、図38、図39お
よび図40は、それぞれ図19、図20および図21の
形態の正誘電体板2と負誘電体板1との両方を、光進行
方向に長い板状に切った形態である。この場合の周囲に
は、空気または真空は勿論のこと、棒状の正誘電体媒質
より低屈折率を有する正誘電体媒質を配してもよい。
FIG. 36, FIG. 37, FIG. 38, FIG. 39 and FIG. 40 show that both the positive dielectric plate 2 and the negative dielectric plate 1 in the forms of FIG. 19, FIG. It is a form cut into a long plate in the traveling direction. In this case, not only air or vacuum but also a positive dielectric medium having a lower refractive index than a rod-shaped positive dielectric medium may be arranged around the periphery.

【0065】これらの構造により、負誘電体媒質と正誘
電体媒質との水平境界面に平行で、かつ主伝送方向に垂
直な方向に等価屈折率の分布を生ぜしめ、正誘電体板2
の一部を等価的に高屈折率として、この方向に従来の光
導波路で用いられる光閉じ込め効果を与える。
With these structures, an equivalent refractive index distribution is generated in a direction parallel to the horizontal boundary between the negative dielectric medium and the positive dielectric medium and perpendicular to the main transmission direction.
Is equivalently made to have a high refractive index to give a light confinement effect used in a conventional optical waveguide in this direction.

【0066】また、図41、図42、図43および図4
4に示したように、それぞれ上述した図36、図37、
図38、図39および図40における元からある正誘電
体板2の屈折率よりも小さい屈折率を有する正誘電体板
2’として、真空または空気の何れかの場合であり、こ
のように真空または空気であってもよいこと勿論であ
る。
FIG. 41, FIG. 42, FIG. 43 and FIG.
As shown in FIG. 4, FIG. 36, FIG.
38, 39, and 40, the positive dielectric plate 2 'having a smaller refractive index than the original refractive index of the positive dielectric plate 2 is either vacuum or air. Alternatively, it may be air.

【0067】このような2次元光周波数波動伝送線路
おいて、負誘電体板1と正誘電体板2とを接するとき、
この境界面に表面プラズモンなる2次元光波が伝送可能
なことは、本発明の第1の形態と同様の作用効果であ
る。
In such a two-dimensional optical frequency wave transmission line , when the negative dielectric plate 1 and the positive dielectric plate 2 are in contact with each other,
The fact that a two-dimensional light wave of surface plasmon can be transmitted to this boundary surface is the same operation and effect as in the first embodiment of the present invention.

【0068】すなわち、図45に示したように例えば典
型的な表面プラズモン伝送モデルでは、境界面に垂直な
x方向には電磁界が指数関数的な減衰をするのみで伝送
しないが、y−z平面内では全く自由に伝送できる。そ
こで主伝送成分を軸(図では一例としてz軸)としてこ
の境界面に巻き、y−z面内では何れの方向にも伝送成
分を持たなくしたのが本発明の第1の形態の1次元光周
波数波動伝送線路である。
That is, as shown in FIG. 45, for example, in a typical surface plasmon transmission model, in the x direction perpendicular to the boundary surface, the electromagnetic field only attenuates exponentially and does not transmit. Transmission is completely free in a plane. Therefore, the main transmission component is wound around this boundary surface as an axis (in the drawing, the z-axis as an example), and the transmission component is not provided in any direction in the yz plane. Light circumference
It is a wave number wave transmission line .

【0069】一方、図46または図34〜図44に示す
ような構成では、y方向には従来の誘電体導波路におけ
るように等価的な屈折率分布が設けられているため、y
方向には定在波形の界分布でコア部では位相定数実部に
y成分があり、y方向には従来形の光閉じ込めが行われ
る。この結果、光波はx方向には表面波として波長に比
べはるかに薄く閉じ込められ、y方向には従来の光導波
路と同程度の太さ(すなわち波長程度)に閉じ込められ
る偏平な2次元光周波数波動伝送線路となる。
On the other hand, in the configuration as shown in FIG. 46 or FIGS. 34 to 44, since an equivalent refractive index distribution is provided in the y direction as in the conventional dielectric waveguide, y
In the direction, there is a y component in the real part of the phase constant in the core portion in the field distribution of the standing waveform, and conventional light confinement is performed in the y direction. As a result, a flat two-dimensional optical frequency wave is confined as a surface wave in the x-direction as a surface wave far thinner than the wavelength, and confined in the y-direction to the same thickness (ie, about the wavelength) as a conventional optical waveguide. It becomes a transmission line .

【0070】以上のように、誘電率の実数部が負である
負誘電体板と、誘電率が正である正誘電体板との境界面
に伝送できる表面プラズモン(プラズモン表面波)に対
し、境界面に平行で主伝送方向に直行する方向に正誘電
体板に対しその一部が周辺に比べ等価的に屈折率が高く
なるよう屈折率分布を与えた形態、または、正誘電体板
1(すなわち正誘電体媒質A)と、この正誘電体1よ
りも低い屈折率を有する別の正誘電体2(すなわち正
誘電体媒質B)とを接合し、正誘電体板2の一部に負誘
電体板を存在させた形態の何れかの形態をとる2次元
周波数波動伝送線路が作製できる。
As described above, the surface plasmon (plasmon surface wave) that can be transmitted to the interface between the negative dielectric plate having a negative real part and the positive dielectric plate having a positive dielectric constant is: A form in which a refractive index distribution is given to the positive dielectric plate in a direction parallel to the boundary surface and perpendicular to the main transmission direction so that a part thereof has an equivalently higher refractive index than the periphery, or the positive dielectric plate 1 (That is, the positive dielectric medium A) and another positive dielectric plate 2 having a lower refractive index than the positive dielectric plate 1 (that is, the positive dielectric medium B) are joined to each other. Two-dimensional light in one of the forms where a negative dielectric plate is present in the part
A frequency wave transmission line can be manufactured.

【0071】つまりこの線路は、光波の主伝送方向に直
行する2方向に対し、一方の方向に対しては負誘電体
と正誘電体媒質との境界により、表面波として光波を
閉じ込め、これと直行するもう一方の方向に対しては、
従来の光導波路と同様の屈折率分布による光波閉じ込め
を行う光周波数波動伝送線路である。
In other words, this line has a negative dielectric medium in two directions orthogonal to the main transmission direction of the light wave and in one direction.
The light wave is confined as a surface wave by the boundary between the material and the positive dielectric medium, and for the other direction orthogonal to this,
This is an optical frequency wave transmission line that performs light wave confinement by the same refractive index distribution as a conventional optical waveguide.

【0072】なお、表面波閉じ込め方向には非常に薄く
することができるため、この方向に多層構造をとること
も可能であり、このような多層構造も本発明に含まれる
こと勿論である。また、等価屈折率分布は、勾配型また
は階段的分布の他、通常の光導波路で用いられているよ
うな手法であってもよい。
Since the thickness can be made extremely thin in the direction of confining the surface wave, a multilayer structure can be formed in this direction. Such a multilayer structure is of course included in the present invention. The equivalent refractive index distribution may be a gradient type or a stepwise distribution, or may be a method used in an ordinary optical waveguide.

【0073】本発明の2次元光周波数波動伝送線路は、
従来の3次元光波導波路に比べ、導波光ビームの断面積
を小さくすることができ、高密度光回路が構成できる
他、加工器、センサ、マニピュレータ等に応用できる。
The two-dimensional optical frequency wave transmission line of the present invention
Compared with a conventional three-dimensional light waveguide, the cross-sectional area of a guided light beam can be reduced, and a high-density optical circuit can be formed.

【0074】なお、本発明の光周波数波動伝送線路の第
2の実施態様において、負誘電体板の一部が正誘電体板
の中に入り込んでいても良いこと当然である。
Incidentally, in the second embodiment of the optical frequency wave transmission line of the present invention, it goes without saying that a part of the negative dielectric plate may be inserted into the positive dielectric plate.

【0075】また、本発明の第2の実施態様において
は、負誘電体板と正誘電体板との境界面で表面プラズモ
ンを伝送することが要件であり、この境界面に交差する
方向の導波路に厚さは用いる波長よりも充分に小さくで
きる。
In the second embodiment of the present invention, it is required that surface plasmon be transmitted at the boundary between the negative dielectric plate and the positive dielectric plate. The thickness of the waveguide in the crossing direction can be sufficiently smaller than the wavelength used.

【0076】本発明の光周波数波動伝送線路の第1の形
態、および第2の形態でいう「光波長よりも小さい」と
は、実際の回路等に適用する場合の損失を考慮した大き
さを想定すると、用いる波長の1/3程度以下が好まし
い。
The term “smaller than the optical wavelength” in the first and second embodiments of the optical frequency wave transmission line of the present invention means a size in consideration of a loss when applied to an actual circuit or the like. Assuming that the wavelength is about 3 or less of the used wavelength.

【0077】このような本発明の光周波数波動伝送線路
は、入力エネルギーとして光を用い出力として局所電磁
界が得られ、極微細な部分に効果が発揮できるため、微
細加工用、光回路用、超空間分解能を有する情報書き込
みまたは読取用、センサ用、超小形光変調起用等の光ヘ
ッドに適用できる。
Such an optical frequency wave transmission line of the present invention uses light as input energy and obtains a local electromagnetic field as an output, and can exert an effect on an extremely fine portion. The present invention can be applied to an optical head for writing or reading information having a super-spatial resolution, for a sensor, for generating a very small light modulation, and the like.

【0078】(実施例1)次のような工程により、本発
明の第1の形態の光周波数波動伝送線路を作成すること
ができる。
Example 1 An optical frequency wave transmission line according to the first embodiment of the present invention can be manufactured by the following steps.

【0079】外径20mm、内径4mmの石英管に、外
径3.5mmの銀細線を挿入し、次にこの銀細線を挿入
した石英管を、真空ポンプで脱気し封止する。
A silver thin wire having an outer diameter of 3.5 mm is inserted into a quartz tube having an outer diameter of 20 mm and an inner diameter of 4 mm, and the quartz tube into which the silver thin wire has been inserted is evacuated and sealed with a vacuum pump.

【0080】封止した石英管を酸水素バーナーを用い、
約2000℃に加熱し中空部をつぶすいわゆるコラプシ
ングを施し、プリフォームを得ることができる。
Using a oxyhydrogen burner, the sealed quartz tube was
A preform can be obtained by applying so-called collapsing in which the hollow portion is crushed by heating to about 2000 ° C.

【0081】このプリフォームを抵抗加熱炉に通し約2
000℃に加熱しながらダイスに通しながら引張り、石
英の外径30nm、銀の外径(すなわち石英の内径)2
0nmの図1に示したような本発明の光周波数波動伝送
線路を得ることができる。
The preform was passed through a resistance heating furnace for about 2 hours.
Pull while passing through a die while heating to 000 ° C., outer diameter of quartz 30 nm, outer diameter of silver (ie inner diameter of quartz) 2
The optical frequency wave transmission line of the present invention as shown in FIG. 1 of 0 nm can be obtained.

【0082】(実施例2)実施例1で得た光周波数波動
伝送線路を、長さ100μmに切断したとするとその伝
送による損失は1/10程度と見積られ、その一端から
発振波長0.8μm、1mWのGaAs半導体レ−ザ素
子を光源とし、ロッドレンズを介して通常の光ファイバ
ーを用い、本発明の光周波数波動線路に100μW入力
したとすると、結合損失を考慮しても数十μW程度の光
出力が他端から得られ、100μm程度以内の光回路で
あれば充分動作できることを確認できる。
(Example 2) If the optical frequency wave transmission line obtained in Example 1 is cut to a length of 100 µm, the loss due to the transmission is estimated to be about 1/10, and the oscillation wavelength is 0.8 µm from one end. Assuming that a 1 mW GaAs semiconductor laser element is used as a light source, a normal optical fiber is used through a rod lens, and 100 μW is input to the optical frequency wave transmission line of the present invention, about tens of μW is considered in consideration of coupling loss. An optical output is obtained from the other end, and it can be confirmed that an optical circuit within about 100 μm can operate satisfactorily.

【0083】また、本発明の光周波数波動伝送線路
は、、例えば各種記録媒体の光書き込みまたは読取用光
ヘッド、加工用光ヘッド、センサ用光ヘッド、STM用
光探針、マニピュレータ用光ヘッド等の各種光ヘッド等
に応用できる可能性も確認した。
Further, the optical frequency wave transmission line of the present invention is, for example, an optical head for writing or reading various recording media, an optical head for processing, an optical head for sensor, an optical probe for STM, an optical head for manipulator, etc. The possibility of application to various optical heads was confirmed.

【0084】さらに、例えば図4の形態では正誘電体媒
質2を例えば低融点ガラスを適用し、銀管に充填させ実
施例1と同様な手法で本発明の光周波数波動伝送線路が
製造でき、また例えば図34の形態は、例えば負誘電体
板上に、用いる光に対して透明で屈折率が異なる物質を
例えばスパッタリング法等で成膜することで作成でき、
さらに例えば図41の形態は、例えば金属等の負誘電体
板の上にスパッタリング法等で正誘電体を形成する等
の手法で作成できる。
Further, in the embodiment shown in FIG. 4, for example, the positive dielectric medium 2 is made of, for example, low melting point glass and filled in a silver tube to produce the optical frequency wave transmission line of the present invention in the same manner as in the first embodiment. Further, for example, the form in FIG. 34 can be created by, for example, forming a material that is transparent to light to be used and has a different refractive index on a negative dielectric plate by, for example, a sputtering method,
Further, for example, the configuration shown in FIG. 41 can be created by a technique such as forming a positive dielectric plate on a negative dielectric plate such as a metal by sputtering or the like.

【0085】[0085]

【発明の効果】本発明は、 (1)単一の柱形状を有し、かつ誘電率の実数部が負の
負誘電体媒質を誘電率が正の正誘電体媒質にて取り囲
み、前記負誘電体媒質の長手方向に交差する断面の長さ
が、光波長よりも小さい形状を有することを特徴とする
光周波数波動伝送線路である。 また、単一の柱形状を有
し、かつ誘電率の実数部が負の負誘電体媒質を誘電率が
正の正誘電体媒質にて取り囲み、前記負誘電体媒質の長
手方向に交差する少なくとも一断面の対角線、長軸また
は直径の何れかが、光波長よりも小さい距離の形状を
することを特徴とする光周波数波動伝送線路である。
た、単一の筒形状を有しかつ誘電率の実数部が負の負誘
電体媒質にて誘電率が正の正誘電体媒質を取り囲み、前
記負誘電体媒質が、前記筒形状の長手方向に交差する少
なくとも一断面の対角線、長軸または直径の何れかが、
光波長よりも小さい内径を有する筒形状を有することを
特徴とする光周波数波動伝送線路である。
According to the present invention, (1) surrounds has a single column-shaped, and the dielectric constant negative dielectric medium permittivity real part is negative is at positive positive dielectric medium, the negative the length of the section crossing the longitudinal direction of the dielectric medium, characterized in that it has a shape smaller than the optical wavelength
An optical frequency wave transmission line. It also has a single pillar shape.
And the real part of the dielectric constant surrounds the negative dielectric medium having a negative dielectric constant with a positive dielectric medium having a positive dielectric constant, and has a diagonal line, a long axis or a diameter of at least one cross section intersecting the longitudinal direction of the negative dielectric medium. Has a shape with a distance smaller than the light wavelength.
It is an optical frequency wave transmission line characterized by the following. Ma
Further, the real part of the permittivity has a single cylindrical shape, and the dielectric constant surrounds the positive dielectric medium with a negative dielectric medium with a negative dielectric medium, and the negative dielectric medium has a longitudinal direction of the cylindrical shape. At least one cross section of the diagonal, the major axis or the diameter of
An optical frequency wave transmission line, characterized in that have a cylindrical shape having an inner diameter smaller than the light wavelength.

【0086】(2)誘電率の実数部が負であり単一の負
誘電体媒質を誘電率が正の正誘電体媒質にて取り囲み、
あるいは誘電率が正の正誘電体媒質を誘電率の実数部が
であり単一の負誘電体媒質にて取り囲み、前記負誘電
体媒質と前記正誘電体媒質との境界面に表面プラズモン
を伝送する伝送線路であって、前記正誘電体媒質の主伝
搬方向に交差する断面の一部に、周辺部に比べ等価的に
屈折率が高い屈折率分布を付与し、主伝搬方向に交差す
る負誘電体媒質の厚さが、光波長よりも小さいことを特
徴とする光周波数波動伝送線路である。 また、誘電率の
実数部が負であり単一の負誘電体媒質と、誘電率が正の
正誘電体媒質Aと、前記正誘電体媒質Aより低い屈折率
を有する正誘電体媒質Bとを含み、前記負誘電体媒質を
前記正誘電体媒質Aにて取り囲みあるいは前記正誘電体
媒質Aを前記負誘電体媒質にて取り囲み、前記負誘電体
媒質と前記正誘電体媒質Aとの境界面に表面プラズモン
を伝送する伝送線路であって、前記正誘電体媒質Aの主
伝搬方向に交差する断面の一部に前記負誘電体媒質を存
在させ、主伝搬方向に交差する負誘電体媒質の厚さが光
波長よりも小さい形状を有し、前記負誘電体媒質の前記
正誘電体媒質Aと接触しない面を、前記正誘電体媒質B
取り囲むことを特徴とする光周波数波動伝送線路であ
る。
(2) Surrounding a single negative dielectric medium whose real part is negative with a positive dielectric medium having a positive dielectric constant,
Alternatively, a positive dielectric medium having a positive dielectric constant is surrounded by a single negative dielectric medium in which the real part of the dielectric constant is negative , and a surface plasmon is formed on an interface between the negative dielectric medium and the positive dielectric medium. A transmission line for transmission, in which a part of a cross section intersecting the main propagation direction of the positive dielectric medium is given a refractive index distribution having a refractive index equivalent to that of a peripheral portion, and intersects the main propagation direction. the thickness of the negative dielectric medium, especially smaller than the light wavelength
This is an optical frequency wave transmission line. Further , a single negative dielectric medium having a negative real part of the dielectric constant, a positive dielectric medium A having a positive dielectric constant, and a positive dielectric medium B having a lower refractive index than the positive dielectric medium A Wherein the negative dielectric medium is surrounded by the positive dielectric medium A or the positive dielectric medium A is surrounded by the negative dielectric medium, and a boundary between the negative dielectric medium and the positive dielectric medium A is included. A transmission line for transmitting surface plasmons to a surface, wherein the negative dielectric medium is present in a part of a cross section of the positive dielectric medium A crossing the main propagation direction, and the negative dielectric medium crosses the main propagation direction. The thickness of the negative dielectric medium is smaller than the light wavelength, and the surface of the negative dielectric medium that is not in contact with the positive dielectric medium A is contacted with the positive dielectric medium B.
An optical frequency wave transmission line characterized by being surrounded by
You.

【0087】本発明の光は伝送線路を用いると、光エネ
ルギーを波長に制限されることなく細い伝送線路に詰め
込み伝送でき、その先端部ではもれ光電磁界を波長に比
べ非常に小さい空間範囲に局在および集中させることが
でき、充分なエネルギを付与することができる。
When the light of the present invention uses a transmission line, the light energy can be packed in a thin transmission line without being limited by the wavelength and transmitted, and the leakage of the photoelectromagnetic field at the tip is extremely small compared to the wavelength. It can be localized and concentrated, and sufficient energy can be applied.

【0088】この局在電磁界を利用して、微小領域の電
磁波応答を感知することが可能となり、超高精度のセン
サヘッド、高密度光集積回路等の光学装置への展開が可
能となる。
By utilizing this localized electromagnetic field, it is possible to sense the electromagnetic wave response in a minute area, and it is possible to apply the present invention to an optical device such as an ultra-high-precision sensor head and a high-density optical integrated circuit.

【0089】また、本発明の板状にした伝送線路の形態
でも、導波光ビームの断面積を小さくすることができ、
高密度光回路の構成を可能にできる効果がある。
Further, also in the form of the plate-shaped transmission line of the present invention, the sectional area of the guided light beam can be reduced,
There is an effect that a high-density optical circuit can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光周波数波動伝送線路の第1の形態の
一実施例における一接続例の概念斜視図
FIG. 1 is a conceptual perspective view of a connection example in an embodiment of a first embodiment of an optical frequency wave transmission line of the present invention.

【図2】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 2 is an enlarged conceptual perspective view of an essential part of an embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図3】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 3 is an enlarged conceptual perspective view of an essential part of one embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図4】本発明の光周波数波動伝送線路の第1の形態の
他の実施例における一接続例の概念斜視図
FIG. 4 is a conceptual perspective view of a connection example in another embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図5】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 5 is an enlarged conceptual perspective view of an essential part of one embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図6】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 6 is an enlarged conceptual perspective view of a main part of an embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図7】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 7 is an enlarged conceptual perspective view of an essential part of an embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図8】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 8 is an enlarged conceptual perspective view of an essential part of one embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図9】本発明の光周波数波動伝送線路の第1の形態の
一実施例の要部拡大概念斜視図
FIG. 9 is an enlarged conceptual perspective view of an essential part of one embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図10】本発明の光周波数波動伝送線路の第1の形態
の一実施例の要部拡大概念斜視図
FIG. 10 is an enlarged conceptual perspective view of a main part of an embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図11】本発明の光周波数波動伝送線路の第1の形態
の一実施例の要部拡大概念斜視図
FIG. 11 is an enlarged conceptual perspective view of a main part of one embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図12】本発明の光周波数波動伝送線路の第1の形態
の一実施例の要部拡大概念斜視図
FIG. 12 is an enlarged conceptual perspective view of a main part of an embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図13】本発明の光周波数波動伝送線路の第1の形態
の一実施例の要部拡大概念斜視図
FIG. 13 is an enlarged conceptual perspective view of an essential part of one embodiment of the first embodiment of the optical frequency wave transmission line of the present invention.

【図14】(a)は従来の光導波路の構成を説明する長
手方向の断面図 (b)は従来の光導波路の構成を説明する側面断面図 (c)は従来の光導波路の界分布の例を示す概念グラフ
14A is a longitudinal cross-sectional view illustrating a configuration of a conventional optical waveguide, FIG. 14B is a side cross-sectional view illustrating a configuration of a conventional optical waveguide, and FIG. Conceptual graph showing examples

【図15】(a)は従来の光導波路の構成を説明する長
手方向の断面図 (b)は従来の光導波路の構成を説明する側面断面図 (c)は従来の光導波路の界分布の例を示す概念グラフ
15A is a longitudinal sectional view illustrating a configuration of a conventional optical waveguide, FIG. 15B is a side sectional view illustrating a configuration of the conventional optical waveguide, and FIG. 15C is a side sectional view illustrating a field distribution of the conventional optical waveguide. Conceptual graph showing examples

【図16】(a)は従来のマイクロ波ミリ波導波路の構
成を説明する長手方向の断面図 (b)は従来のマイクロ波ミリ波導波路の構成を説明す
る側面断面図 (c)は従来のマイクロ波ミリ波導波路の界分布の例を
示す概念グラフ
16A is a longitudinal cross-sectional view illustrating a configuration of a conventional microwave millimeter-wave waveguide, FIG. 16B is a side cross-sectional view illustrating a configuration of a conventional microwave millimeter-wave waveguide, and FIG. Conceptual graph showing an example of the field distribution of a microwave and millimeter wave waveguide

【図17】(a)は従来のマイクロ波ミリ波伝送クーボ
ー線路の構成を説明する断面図 (b)は従来のマイクロ波ミリ波伝送クーボー線路の構
成を説明する側面断面図 (c)は従来のマイクロ波ミリ波伝送クーボー線路の界
分布の一例を示す概念グラフ
17A is a cross-sectional view illustrating a configuration of a conventional microwave / millimeter-wave transmission coubo line, FIG. 17B is a side cross-sectional view illustrating a configuration of a conventional microwave / millimeter-wave transmission coubo line, and FIG. Graph showing an example of the field distribution of a microwave and millimeter-wave transmission coubo transmission line

【図18】(a)は正誘電体媒質と負誘電体媒質との界
面の光の挙動を説明する側面断面図 (b)は同反射面における電界の挙動を示す概念グラフ
FIG. 18A is a side sectional view for explaining the behavior of light at the interface between a positive dielectric medium and a negative dielectric medium, and FIG. 18B is a conceptual graph showing the behavior of an electric field on the reflection surface;

【図19】(a)は表面プラズモンの厚み方向のしみ込
みを説明する断面側面図 (b)は同表面波の電界法線成分の概念グラフ
FIG. 19A is a cross-sectional side view for explaining the penetration of surface plasmons in the thickness direction, and FIG. 19B is a conceptual graph of the electric field normal component of the surface wave.

【図20】(a)は本発明の負誘電体媒質と正誘電体
との2境界平面が平行にある場合の構成を説明する側
面断面図 (b)は同構成における2次元光波(2つの表面プラズ
モンの結合したもの)の様子を示す概念グラフ
[Figure 20 (a) is negative dielectric medium and a positive dielectric medium of the present invention
Side cross-sectional view second boundary plane illustrating the structure when it is in parallel with the quality (b) a two-dimensional light waves (two surfaces plasma in the same configuration
Concept graph showing how bound ones) Mont

【図21】(a)は負誘電体媒質と正誘電体媒質との2
境界平面が平行にある場合の他の構成を説明する説明す
る側面断面図 (b)は同構成における2次元光波(2つの表面プラズ
モンの結合したもの)の様子を示す概念グラフ
FIG. 21 (a) is a graph showing two types of a negative dielectric medium and a positive dielectric medium.
A cross-sectional side view (b) for explaining another configuration when the boundary planes are parallel is a two-dimensional light wave (two surface plasmas ) in the same configuration.
Concept graph showing how bound ones) Mont

【図22】(a)は本発明の1次元光周波数波動伝送線
の一実施例の挙動を説明する断面図 (b)は同1次元光周波数波動伝送線路の一実施例の挙
動を説明する側面断面図 (c)は同実施例の1次元光波の電界成分の概念グラフ
FIG. 22 (a) is a one-dimensional optical frequency wave transmission line of the present invention.
A sectional view (b) for explaining the behavior of one embodiment of the road is a side sectional view for explaining the behavior of one embodiment of the one-dimensional optical frequency wave transmission line , and (c) is an electric field component of the one-dimensional light wave of the same embodiment. Concept chart of

【図23】(a)は本発明の1次元光周波数波動伝送線
の一実施例の挙動を説明する断面図 (b)は同1次元光周波数波動伝送線路の一実施例の挙
動を説明する側面断面図 (c)は同実施例の1次元光波の電界成分の概念グラフ
FIG. 23 (a) is a one-dimensional optical frequency wave transmission line of the present invention.
A sectional view (b) for explaining the behavior of one embodiment of the road is a side sectional view for explaining the behavior of one embodiment of the one-dimensional optical frequency wave transmission line , and (c) is an electric field component of the one-dimensional light wave of the same embodiment. Concept chart of

【図24】(a)は本発明の1次元光周波数波動伝送線
の一実施例の挙動を説明する断面図 (b)は同1次元光周波数波動伝送線路の一実施例の挙
動を説明する側面断面図 (c)は同実施例の1次元光波の電界成分の概念グラフ
FIG. 24 (a) is a one-dimensional optical frequency wave transmission line of the present invention.
A sectional view (b) for explaining the behavior of one embodiment of the road is a side sectional view for explaining the behavior of one embodiment of the one-dimensional optical frequency wave transmission line , and (c) is an electric field component of the one-dimensional light wave of the same embodiment. Concept chart of

【図25】(a)は本発明の1次元光周波数波動伝送線
の一実施例の挙動を説明する断面図 (b)は同1次元光周波数波動伝送線路の一実施例の挙
動を説明する側面断面図 (c)は同実施例の1次元光波の電界成分の概念グラフ
FIG. 25 (a) is a one-dimensional optical frequency wave transmission line of the present invention.
A sectional view (b) for explaining the behavior of one embodiment of the road is a side sectional view for explaining the behavior of one embodiment of the one-dimensional optical frequency wave transmission line , and (c) is an electric field component of the one-dimensional light wave of the same embodiment. Concept chart of

【図26】従来の光ヘッドの構成図FIG. 26 is a configuration diagram of a conventional optical head.

【図27】従来の光ヘッドの別の構成図FIG. 27 is another configuration diagram of a conventional optical head.

【図28】従来の光STMのヘッドの一実施例の構成図FIG. 28 is a configuration diagram of one embodiment of a conventional optical STM head.

【図29】本発明の光周波数波動伝送線路を光ヘッドに
適用した一応用例を説明する構成図
FIG. 29 is a configuration diagram illustrating an application example in which the optical frequency wave transmission line of the present invention is applied to an optical head.

【図30】本発明の光周波数波動伝送線路を光ヘッドに
適用した別の応用例を説明する構成図
FIG. 30 is a configuration diagram illustrating another application example in which the optical frequency wave transmission line of the present invention is applied to an optical head.

【図31】本発明の光周波数波動伝送線路の一応用例の
構成を示す要部拡大概念断面図
FIG. 31 is an enlarged conceptual sectional view showing a configuration of an application example of the optical frequency wave transmission line of the present invention.

【図32】本発明の光周波数波動伝送線路の他の応用例
の構成を示す要部拡大概念断面図
FIG. 32 is an essential part enlarged conceptual sectional view showing the configuration of another application example of the optical frequency wave transmission line of the present invention.

【図33】本発明の光周波数波動伝送線路の別の応用例
の構成を示す要部拡大概念断面図
FIG. 33 is an enlarged conceptual sectional view showing the configuration of another application example of the optical frequency wave transmission line of the present invention.

【図34】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 34 is a conceptual perspective view of an example of the second embodiment of the optical frequency wave transmission line of the present invention.

【図35】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 35 is a conceptual perspective view of one embodiment of the second embodiment of the optical frequency wave transmission line of the present invention.

【図36】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 36 is a conceptual perspective view of an example of the second embodiment of the optical frequency wave transmission line of the present invention.

【図37】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 37 is a conceptual perspective view of an example of the second embodiment of the optical frequency wave transmission line of the present invention.

【図38】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 38 is a conceptual perspective view of one embodiment of the second embodiment of the optical frequency wave transmission line of the present invention.

【図39】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 39 is a conceptual perspective view of an example of an optical frequency wave transmission line according to a second embodiment of the present invention.

【図40】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 40 is a conceptual perspective view of an example of a second embodiment of the optical frequency wave transmission line of the present invention.

【図41】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 41 is a conceptual perspective view of an embodiment of the second embodiment of the optical frequency wave transmission line of the present invention.

【図42】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 42 is a conceptual perspective view of an example of a second embodiment of the optical frequency wave transmission line of the present invention.

【図43】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 43 is a conceptual perspective view of one embodiment of the second embodiment of the optical frequency wave transmission line of the present invention.

【図44】本発明の光周波数波動伝送線路の第2の形態
の一実施例の概念斜視図
FIG. 44 is a conceptual perspective view of an example of the second embodiment of the optical frequency wave transmission line of the present invention.

【図45】表面プラズモンの伝送を説明する図FIG. 45 is a diagram illustrating transmission of surface plasmons .

【図46】本発明の2次元光波伝送路での光波の伝送を
説明する図
FIG. 46 is a view for explaining light wave transmission in the two-dimensional light wave transmission line of the present invention.

【符号の説明】[Explanation of symbols]

1 負誘電体媒質 2 正誘電体媒質 3 光導波路 4 結合整合部 5 保護用クラッド 1 Negative dielectric medium 2 Positive dielectric medium 3 Optical waveguide 4 Coupling matching part 5 Cladding for protection

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単一の柱形状を有し、かつ誘電率の実数部
が負の負誘電体媒質を誘電率が正の正誘電体媒質にて取
り囲み、前記負誘電体媒質の長手方向に交差する断面の
長さが、光波長よりも小さい形状を有することを特徴と
する光周波数波動伝送線路。
1. A has a single column-shaped, and the real part of the dielectric constant negative negative dielectric medium surrounding the dielectric constant is at positive positive dielectric medium, in the longitudinal direction of the negative dielectric medium the length of the cross section intersecting the optical frequency wave transmission line and having a shape smaller than the optical wavelength.
【請求項2】単一の柱形状を有し、かつ誘電率の実数部
が負の負誘電体媒質を誘電率が正の正誘電体媒質にて取
り囲み、前記負誘電体媒質の長手方向に交差する少なく
とも一断面の対角線、長軸または直径の何れかが、光波
長よりも小さい距離の形状を有することを特徴とする光
周波数波動伝送線路。
2. A negative dielectric medium having a single column shape and a real part of a dielectric constant having a negative dielectric constant is surrounded by a positive dielectric medium having a positive dielectric constant , and extending in a longitudinal direction of the negative dielectric medium. An optical frequency wave transmission line, characterized in that at least one of the cross sections, at least one of a diagonal line, a long axis and a diameter, has a shape having a distance smaller than an optical wavelength.
【請求項3】単一の筒形状を有しかつ誘電率の実数部が
負の負誘電体媒質にて誘電率が正の正誘電体媒質を取り
囲み、前記負誘電体媒質が、前記筒形状の長手方向に交
差する少なくとも一断面の対角線、長軸または直径の何
れかが、光波長よりも小さい内径を有する筒形状を有
ことを特徴とする光周波数波動伝送線路。
3. A negative dielectric medium having a single cylindrical shape and a real part of a dielectric constant having a negative dielectric constant surrounding a positive dielectric medium having a positive dielectric constant, wherein the negative dielectric medium has a cylindrical shape. longitudinally diagonal of at least one cross section intersecting, one of the major axis or diameter is, to have a cylindrical shape having an inner diameter smaller than the wavelength of light
Optical frequency wave transmission line, characterized in that that.
【請求項4】負誘電体媒質、または、筒形状を有する負
誘電体媒質の何れかを、正誘電体媒質の端部から突出さ
せたことを特徴とする請求項1〜3の何れかに記載の光
周波数波動伝送線路。
4. The method according to claim 1, wherein one of the negative dielectric medium and the cylindrical negative dielectric medium is projected from an end of the positive dielectric medium. An optical frequency wave transmission line as described.
【請求項5】請求項1〜4のいずれか1項に記載の光周
波数波動伝送線路を、複数個平行に配列したことを特徴
する光周波数波動伝送線路。
5. An optical circuit according to claim 1, wherein :
An optical frequency wave transmission line comprising a plurality of wave number wave transmission lines arranged in parallel.
【請求項6】誘電率の実数部が負であり単一の負誘電体
媒質を誘電率が正の正誘電体媒質にて取り囲み、あるい
は誘電率が正の正誘電体媒質を誘電率の実数部が負であ
り単一の負誘電体媒質にて取り囲み、前記負誘電体媒質
と前記正誘電体媒質との境界面に表面プラズモンを伝送
する伝送線路であって、前記正誘電体媒質の主伝搬方向
に交差する断面の一部に、周辺部に比べ等価的に屈折率
が高い屈折率分布を付与し、主伝搬方向に交差する負誘
電体媒質の厚さが、光波長よりも小さいことを特徴とす
る光周波数波動伝送線路。
6. A single negative dielectric medium having a real part of negative permittivity surrounded by a positive dielectric medium having a positive permittivity, or a positive dielectric medium having a positive permittivity is a real number of permittivity. part is negative der
Ri surrounds at single negative dielectric medium, wherein a negative dielectric medium and the transmission line for transmitting a surface plasmon at the interface between the positive dielectric medium, intersecting the main direction of propagation of said positive dielectric medium A part of the cross-section to be formed is provided with a refractive index distribution having a refractive index equivalent to that of the peripheral part, and the thickness of the negative dielectric medium crossing the main propagation direction is smaller than the light wavelength. Optical frequency wave transmission line.
【請求項7】誘電率の実数部が負であり単一の負誘電体
媒質と、誘電率が正の正誘電体媒質Aと、前記正誘電体
媒質Aより低い屈折率を有する正誘電体媒質Bとを含
み、前記負誘電体媒質を前記正誘電体媒質Aにて取り囲
みあるいは前記正誘電体媒質Aを前記負誘電体媒質にて
取り囲み、前記負誘電体媒質と前記正誘電体媒質Aとの
境界面に表面プラズモンを伝送する伝送線路であって、
前記正誘電体媒質Aの主伝搬方向に交差する断面の一部
に前記負誘電体媒質を存在させ、主伝搬方向に交差する
負誘電体媒質の厚さが光波長よりも小さい形状を有し、
前記負誘電体媒質の前記正誘電体媒質Aと接触しない面
を、前記正誘電体媒質Bで取り囲むことを特徴とする光
周波数波動伝送線路。
7. A single negative dielectric medium having a negative real part of a dielectric constant, a positive dielectric medium A having a positive dielectric constant, and a positive dielectric medium having a lower refractive index than the positive dielectric medium A. And the negative dielectric medium is surrounded by the positive dielectric medium A or the positive dielectric medium A is surrounded by the negative dielectric medium, and the negative dielectric medium and the positive dielectric medium A are surrounded by the negative dielectric medium A. A transmission line that transmits surface plasmons to the boundary surface with
The negative dielectric medium is present in a part of the cross section of the positive dielectric medium A crossing the main propagation direction, and the thickness of the negative dielectric medium crossing the main propagation direction has a shape smaller than the light wavelength. ,
An optical frequency wave transmission line, wherein a surface of the negative dielectric medium that does not contact the positive dielectric medium A is surrounded by the positive dielectric medium B.
【請求項8】主伝搬方向および正誘電体媒質と負誘電体
媒質との境界面に交差する方向の導波路の厚さが、光波
長よりも小さいことを特徴とする、請求項6〜7何れか
に記載の光周波数波動伝送線路。
8. The waveguide according to claim 6 , wherein the thickness of the waveguide in the main propagation direction and in the direction intersecting the boundary surface between the positive dielectric medium and the negative dielectric medium is smaller than the optical wavelength. The optical frequency wave transmission line according to any one of the above.
【請求項9】光導波路と光周波数波動伝送線路との間の
伝送インピーダンスの整合をはかる結合整合部を介して
前記光導波路と光学的に結合する光周波数波動伝送線路
であって、請求項1〜8の何れかに記載の光周波数波動
伝送線路を用いたことを特徴とする光周波数波動伝送線
路。
9. The method according to claim 8, wherein the optical waveguide is connected to an optical frequency wave transmission line.
Through a coupling matching section that measures transmission impedance
Optical frequency wave transmission line optically coupled to the optical waveguide
An optical frequency wave according to any one of claims 1 to 8,
An optical frequency wave transmission line characterized by using a transmission line.
JP26329693A 1993-10-21 1993-10-21 Optical frequency wave transmission line Expired - Fee Related JP3391521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26329693A JP3391521B2 (en) 1993-10-21 1993-10-21 Optical frequency wave transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26329693A JP3391521B2 (en) 1993-10-21 1993-10-21 Optical frequency wave transmission line

Publications (2)

Publication Number Publication Date
JPH07120636A JPH07120636A (en) 1995-05-12
JP3391521B2 true JP3391521B2 (en) 2003-03-31

Family

ID=17387508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26329693A Expired - Fee Related JP3391521B2 (en) 1993-10-21 1993-10-21 Optical frequency wave transmission line

Country Status (1)

Country Link
JP (1) JP3391521B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530254B2 (en) * 2003-10-02 2010-08-25 Fdk株式会社 Plasmon mode optical waveguide
EP1746589A4 (en) 2004-05-14 2008-11-19 Fujitsu Ltd Light projecting head, information storage device, light projection head designing device, and light projection head designing program
WO2006093056A1 (en) * 2005-03-01 2006-09-08 National Institute For Materials Science Electromagnetic wave resonator and its manufacturing method, and electromagnetic wave resonance method
JP5233983B2 (en) 2007-02-19 2013-07-10 日本電気株式会社 Optical phase modulation element and optical modulator using the same
JP4567071B2 (en) * 2008-04-28 2010-10-20 富士通株式会社 Optical head and information storage device
JP5123155B2 (en) * 2008-12-16 2013-01-16 日本電信電話株式会社 Light switch

Also Published As

Publication number Publication date
JPH07120636A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US7440660B1 (en) Transducer for heat assisted magnetic recording
US7706654B2 (en) Integrated device for heat assisted magnetic recording
JP4610625B2 (en) Near-field optical transducer for heat-assisted magnetic and optical data storage
KR100595777B1 (en) Optical head and information storage device
US7272102B2 (en) Ridge waveguide with recess
US7936959B2 (en) Apparatus for focusing plasmon waves
US6795630B2 (en) Apparatus and method for producing a small spot of optical energy
JP3262909B2 (en) Optical system
US7412143B2 (en) Heat assisted magnetic recording with heat profile shaping
US7365941B2 (en) Optical recording head including an optical resonant cavity
KR100851973B1 (en) waveguide, method of fabricating the same, light delivery module employing the waveguide and heat assisted magnetic recording head employing the bending waveguide
US7068911B2 (en) Optical probe and optical pick-up apparatus
WO2010095333A1 (en) Near-field light emitting device, optical recording head and optical recorder
US20110249546A1 (en) Nano-Fabricated Plasmonic Optical Transformer
JP3391521B2 (en) Optical frequency wave transmission line
US7312445B2 (en) Pyramid-shaped near field probe using surface plasmon wave
CN113687465B (en) Surface plasmon near-field focusing lens based on all-dielectric super surface
JP2005127982A (en) Optical fiber probe using potential difference, and optical recording and regenerating device using the same
JPH04291310A (en) Short distance field scanning optics microscope and its use
WO2011033926A1 (en) Near-field light emitter, light-assisted magnetic recording head, and light-assisted magnetic recording device
JP4567071B2 (en) Optical head and information storage device
Jin et al. Obtaining subwavelength optical spots using nanoscale ridge apertures
JP2009048742A (en) Optical head and information storing apparatus
JP3502539B2 (en) Optical memory device
Cabrini et al. c12) United States Patent

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

EXPY Cancellation because of completion of term