JPH02162302A - Hollow light guide body and production thereof - Google Patents

Hollow light guide body and production thereof

Info

Publication number
JPH02162302A
JPH02162302A JP63316476A JP31647688A JPH02162302A JP H02162302 A JPH02162302 A JP H02162302A JP 63316476 A JP63316476 A JP 63316476A JP 31647688 A JP31647688 A JP 31647688A JP H02162302 A JPH02162302 A JP H02162302A
Authority
JP
Japan
Prior art keywords
hollow
optical waveguide
hollow optical
light guide
hollow light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63316476A
Other languages
Japanese (ja)
Inventor
Kenichi Morosawa
諸沢 健一
Akishi Hongo
晃史 本郷
Tsuneo Shioda
塩田 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63316476A priority Critical patent/JPH02162302A/en
Publication of JPH02162302A publication Critical patent/JPH02162302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain the hollow light guide having excellent mechanical strength and heat conduction by integrating at least >=2 pieces of hollow pipes with the hollow light guide axially on the outer periphery of the hollow light guide which transmits light energy. CONSTITUTION:Al pipes 3, 4 having respectively 1.5mm outside diameter and 1.1m and 1.05m length are tightly adhered by Al foil 5 and are provided axially on the outer periphery of the Ni hollow light guide 2 which has 1.5mm inside diameter and 1.2m length and contains Ge 1. The apertures at both ends of the Al pipes 3, 4 and the lower apertures of the hollow light guide 2 are hermetically closed by sealing tapes 6. This assembly is immersed in a watt bath 7 kept at 45 deg.C and is energized with an Ni electrode 8 by 4A/dm<2> density for 4 hours to form an Ni plating layer of a sufficient thickness. The sealing tapes 6 are then peeled and the assembly is immersed in a caustic soda to etch away the the Al pipes 3, 4. The hollow light guide integrated with the Ni hollow pipes usable as water cooling pipes on the outer periphery of the hollow light guide 2 made of the Ni contg. the Ge is formed. The hollow light guide having the good mechanical strength and heat conductivity is thereby obtd.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、光エネルギーを伝送する中空光導波路体とそ
の製造方法に関わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a hollow optical waveguide body for transmitting optical energy and a manufacturing method thereof.

[従来の技術] 従来、炭酸カスレーザ光は、多くのミラーやレンズを用
いた、いわゆる空間伝搬で被照射elまで導かれていた
。このなめ、レーザ加工における切断等では、任意の形
状を得るために、ミラレンズからなる複雑な光軸を精密
に制御し、更には被加工物をも駆動制御する必要があっ
た。この空間伝搬方式の欠点を改善するための光導波路
による炭酸ガスレーザ光伝送が研究された。
[Prior Art] Conventionally, carbon dioxide gas laser light has been guided to the irradiated el by so-called spatial propagation using many mirrors and lenses. Because of this, in cutting in laser machining, etc., in order to obtain an arbitrary shape, it is necessary to precisely control a complicated optical axis consisting of a mirror lens, and furthermore, it is necessary to control the drive of the workpiece. In order to improve the drawbacks of this spatial propagation method, carbon dioxide laser light transmission using an optical waveguide has been studied.

炭酸カスレーザ光は、その波長が10.61mであり、
石英系ファイバで伝送することができないため、光導波
路としては、カルコゲナイド等を用いる赤外ファイバ型
と、空気を媒体とする中空先導波路型が主に研究されて
いる。
The carbon dioxide gas laser beam has a wavelength of 10.61 m,
Since it is not possible to transmit using silica-based fibers, the main types of optical waveguides being researched are infrared fiber types using chalcogenide or the like, and hollow guided waveguide types using air as a medium.

このうち、カルコゲナイド等を中実材料に用いた赤外フ
ァイバでは、レーザ光を入射さぜな際に、ファイバ端面
での反射が大きく、入出射部ての集中的な発熱を生じる
Among these, in an infrared fiber using chalcogenide or the like as a solid material, when a laser beam is incident, there is a large amount of reflection at the fiber end face, resulting in intensive heat generation at the input and output portions.

これに対し、空気をコアとする中空光導波路の場合は、
入出射部での反射が殆ど無く、大パワー伝送に適してい
る。特に、誘電体内装金属中空光導波路は、金属パイプ
の内側に誘電体をコートすることにより内壁での反射率
を高めたもので、低損失導波路として最も有望であり、
現在までにゲルマニウムを内装したニッケル中空光導波
路か試作されている。しかしながら、低損失導波路であ
っても、入射パワーか大きくなるにつれて、損失による
熱量の増大は避けられない。
On the other hand, in the case of a hollow optical waveguide with an air core,
There is almost no reflection at the input/output section, making it suitable for high power transmission. In particular, dielectric-incorporated metal hollow optical waveguides are made by coating the inside of a metal pipe with a dielectric to increase the reflectance on the inner wall, and are the most promising as low-loss waveguides.
To date, a prototype nickel hollow optical waveguide with germanium inside has been produced. However, even with a low-loss waveguide, as the incident power increases, the amount of heat due to loss inevitably increases.

そこで、より大きなパワー伝送を可能にするめに、中空
光導波路の構造的特徴を生かした、導波路内空冷方式の
伝送装置か発明された。これは、炭酸ガスレーザ光を伝
送する中空領域に、冷却のなめガス、例えば窒素カス等
を流すもので、内径1.5硼のゲルマニウム内装ニッケ
ル中空光導波路の場合には、約20 Jl / min
の窒素カス冷却によって、伝送容量か約5倍になった。
Therefore, in order to enable even greater power transmission, a waveguide air-cooled transmission device was invented that takes advantage of the structural features of hollow optical waveguides. This is to flow a cooling gas, such as nitrogen scum, into the hollow region that transmits the carbon dioxide laser beam, and in the case of a germanium-incorporated nickel hollow optical waveguide with an inner diameter of 1.5 mm, the flow rate is approximately 20 Jl/min.
By cooling the nitrogen gas, the transmission capacity increased approximately five times.

[発明が解決しようとする課題] しかしながら、中空光導波路内の空冷を行って伝送でき
る最大パワーは、内径1.5關のゲルマニウム内装ニッ
ケル中空光導波路の場合、直線状態て300w程度であ
り、通常のレーザ加工で使用している、500w〜数k
wのレーザ光伝送には利用することができなかっな。又
、中空光導波路を空間伝搬方式に代わる可撓性導波路と
して曲げて使用すると、彎曲部における伝送損失の増加
にともなって、発熱量か増大し、伝送容量は更に減少し
てしまうため、中空光導波路は大パワーを必要とするレ
ーザ加工分野では非実用的であった。
[Problems to be Solved by the Invention] However, the maximum power that can be transmitted by air cooling in a hollow optical waveguide is about 300 W in a straight state in the case of a germanium-incorporated nickel hollow optical waveguide with an inner diameter of 1.5 mm, and normally 500w to several kilograms used in laser processing
It cannot be used for W laser beam transmission. In addition, if a hollow optical waveguide is bent and used as a flexible waveguide instead of a space propagation method, the transmission loss at the curved portion increases, the heat generation increases, and the transmission capacity further decreases. Optical waveguides have been impractical in the field of laser processing, which requires high power.

本発明の目的は、前記した従来技術の問題点を解決し、
光エネルギー伝送時の中空光導波路に発生ずる熱を極め
て効率良く除去して、最大伝送パワーを飛躍的に増加さ
せる中空光導波路体とその製造方法を提供することにあ
る。
The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide a hollow optical waveguide body and a method for manufacturing the same, which can extremely efficiently remove heat generated in a hollow optical waveguide during optical energy transmission and dramatically increase maximum transmission power.

[課題を解決するための手段] 本発明の中空光導波路体は、光エネルギーを伝送する中
空光導波路の外周に、少なくとも2本以上の中空管を軸
方向に中空光導波路と一体化した構造のものである。
[Means for Solving the Problems] The hollow optical waveguide body of the present invention has a structure in which at least two or more hollow tubes are integrated with the hollow optical waveguide in the axial direction on the outer periphery of the hollow optical waveguide that transmits optical energy. belongs to.

好ましい形態としては、この中空光導波路の外周上に一
体化した中空管内に冷却用媒体を流すなめ、中空光導波
路の光エネルギー出射@側における中空管の開口部を相
互に連結し、該冷却媒体の出入り口を該中空光導波路の
光エネルギー入射端側に形成した′!fJ造とする。
In a preferred embodiment, the cooling medium is flowed into a hollow tube integrated on the outer periphery of the hollow optical waveguide, and the openings of the hollow tubes on the optical energy output side of the hollow optical waveguide are interconnected. The medium entrance/exit is formed on the optical energy incident end side of the hollow optical waveguide'! It will be fJ construction.

更に、本発明の中空光導波路体の製造方法は、光エネル
ギーを伝送する中空光導波路を形成した後に、該中空光
導波路の外周上に、導電性の中空管を少なくとも1本以
上軸方向に亘って密着させ、電気メッキによって、機械
的強度を得るに十分な厚さの金属膜を形成し、しかる後
に選択性のあるエツチング液で、前記導電性中空管のみ
除去し、該中空光導波路の外周上に一体化された中空管
を持った中空光導波路体を形成する。
Furthermore, in the method for manufacturing a hollow optical waveguide body of the present invention, after forming a hollow optical waveguide for transmitting optical energy, at least one conductive hollow tube is axially arranged on the outer periphery of the hollow optical waveguide. A metal film having a thickness sufficient to obtain mechanical strength is formed by electroplating, and then only the conductive hollow tube is removed using a selective etching solution, thereby forming the hollow optical waveguide. A hollow optical waveguide body having a hollow tube integrated on the outer periphery of the optical waveguide body is formed.

この場合、中空光導波路には誘電体内装金属中空光導波
路を用い、導電性中空管にはアルミニウムパイプを、エ
ツチング液には苛性ソータを用いることかでき、その誘
電体内装金属中空光導波路には、その内装誘電体かゲル
マニウム、金属層かニッケル又は銀であるものを用いる
ことかできる。
In this case, a dielectric-incorporated metal hollow optical waveguide can be used as the hollow optical waveguide, an aluminum pipe can be used as the conductive hollow tube, and a caustic sorter can be used as the etching solution. The inner dielectric may be germanium, the metal layer may be nickel or silver.

[作用] 光エネルギーを伝送する中空光導波路は、その内部に窒
素カス等を流して内側から冷却することが出来るだけで
なく、その外周上の中空管に冷却水等を流して、中空光
導波路を外側から冷却することができる。このため、伝
送損失により中空光導波路に発生した熱を効率よく除去
し、中空光導波路の異常発熱、劣化や破壊を防ぎ、最大
伝送パワーを増大させることができ、500W以上のパ
ワーの伝送も可能となる。
[Function] The hollow optical waveguide that transmits optical energy can not only be cooled from the inside by flowing nitrogen scum, etc. inside it, but also by flowing cooling water, etc. into the hollow tube on its outer periphery. The wave channel can be cooled from the outside. Therefore, it is possible to efficiently remove the heat generated in the hollow optical waveguide due to transmission loss, prevent abnormal heat generation, deterioration, and destruction of the hollow optical waveguide, and increase the maximum transmission power, making it possible to transmit power of 500 W or more. becomes.

また光エネルギーの出射側で中空管の開口部を互いに接
続した構造とすることにより、給排水口を光エネルギー
の入射側のみに設けることができるため、出射端が全く
自由かつ軽量になり、容易に駆動制御できる。
In addition, by creating a structure in which the openings of the hollow tubes are connected to each other on the light energy output side, the water supply and drainage ports can be provided only on the light energy input side, making the output end completely free, lightweight, and easy to use. The drive can be controlled.

光エネルギーを伝送する中空光導波路としては、誘電体
内装金属中空先導波路が最も有望であり、内装誘電体と
しては、ゲルマニウム(Ge)、セレン化亜鉛(ZnS
e)、硫化亜鉛(ZnS)。
As a hollow optical waveguide for transmitting optical energy, a dielectric-incorporated metal hollow guiding waveguide is the most promising.
e), zinc sulfide (ZnS).

フッ化カルシウム(CaF2)等が適し、金属層として
は、銀、ニッケル、銅、金等が適している。
Calcium fluoride (CaF2) or the like is suitable, and for the metal layer, silver, nickel, copper, gold, etc. are suitable.

上記の如き中空光導波路体は、中空光導波路の回りに導
電性中空管を密着させ、その回りに電気メッキによって
金属膜を形成し後に導電性中空管のみエツチング除去す
ることで、容易に製造することができる。めっきによっ
て一体止するため、機械強度、熱伝導が共に優れ、更に
は、一体止する水冷管の径を任意に設定できるなめ、製
造する導波路全体の可視性あるいは直線性を制御できる
The above-mentioned hollow optical waveguide body can be easily produced by closely adhering a conductive hollow tube around the hollow optical waveguide, forming a metal film around it by electroplating, and then removing only the conductive hollow tube by etching. can be manufactured. Since they are fixed together by plating, they have excellent mechanical strength and thermal conductivity, and furthermore, because the diameter of the water-cooled tubes that are fixed together can be set arbitrarily, the visibility or linearity of the entire waveguide to be manufactured can be controlled.

又、異種材料を使用しないので、熱膨張計数の差によっ
て生ずる光導波路体の変形や、応力によって生ずる損失
増加も避けることができる。
Furthermore, since different materials are not used, deformation of the optical waveguide body caused by differences in thermal expansion coefficients and increase in loss caused by stress can be avoided.

[実施例] 以下、図を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

実施例1 第1図は、本発明による中空光導波路体の電気めっきに
よる製造方法を示したものである。
Example 1 FIG. 1 shows a method of manufacturing a hollow optical waveguide body by electroplating according to the present invention.

先ず、内径1.5rnm、長さ1.2mのゲルマニウム
1を内装したニッケル中空光導波路2の外周上に、軸方
向に亘って、それぞれ外径が1.5市、長さが1.1m
及び1.05mのアルミニウムパイプ3,4を、アルミ
ホイル5で密着させて配設し、これらアルミニウムパイ
プ3.4両端の開口部及び中空光導波路2の下方開口部
をシールテープ6で密閉する。
First, on the outer periphery of a nickel hollow optical waveguide 2 containing germanium 1 with an inner diameter of 1.5 nm and a length of 1.2 m, a waveguide with an outer diameter of 1.5 nm and a length of 1.1 m is placed in the axial direction.
Aluminum pipes 3 and 4 of 1.05 m are placed in close contact with each other with aluminum foil 5, and the openings at both ends of these aluminum pipes 3 and 4 and the lower opening of the hollow optical waveguide 2 are sealed with seal tape 6.

この集合体を、温度45℃のワット浴7に浸して、ニッ
ケル電極8との間に電流密度4A/dll12の通電を
4時間行い、機械的強度を得るに十分な厚さのニッケル
めっき層を形成する。めっき終了後、シールテープ6を
剥がして苛性ソーダに浸漬すれば、アルミニウムパイプ
3.4の部分のみがエツチングされて除去され、中心の
ゲルマニウムを内装したニッケル中空先導波路2の外周
上に水冷管として使用可能なニッケル中空管を一体化し
た中空光導波路体が形成される。
This assembly is immersed in a Watts bath 7 at a temperature of 45°C, and a current density of 4A/dll12 is applied between the nickel electrode 8 for 4 hours to form a nickel plating layer of sufficient thickness to obtain mechanical strength. Form. After plating, by peeling off the sealing tape 6 and immersing it in caustic soda, only the aluminum pipe 3.4 will be etched and removed, and will be used as a water cooling pipe on the outer periphery of the central germanium-filled nickel hollow waveguide 2. A hollow optical waveguide body integrating a possible nickel hollow tube is formed.

このようにして製造された中空光導波路体は、中空光導
波路と水冷管が全く同じ材質で、完全に一体化している
ため、機械的強度に優れ、熱の伝導性も良い。又、一体
止する中空管の径、従ってアルミニウムパイプ3.4を
任意に選ぶことにより、中空光導波路体の可撓性、ある
いは直線性を制御できる。
The hollow optical waveguide body manufactured in this manner has excellent mechanical strength and good thermal conductivity because the hollow optical waveguide and the water-cooled tube are made of exactly the same material and are completely integrated. Further, by arbitrarily selecting the diameter of the hollow tube to be integrally fixed, and thus the aluminum pipe 3.4, the flexibility or linearity of the hollow optical waveguide body can be controlled.

実施例2 第2図は、内径1.5m+nのゲルマニウムを内装した
ニッケル中空光導波路9の外周囲に、内径1.51TI
II+のニッケル中空管10を6本一体止して構成した
、本発明による中空光導波路体11の図である。
Example 2 FIG. 2 shows a nickel hollow optical waveguide 9 with an inner diameter of 1.51 TI around the outer periphery of a germanium-filled nickel hollow optical waveguide 9 with an inner diameter of 1.5 m
FIG. 2 is a diagram of a hollow optical waveguide body 11 according to the present invention, which is configured by integrally fixing six II+ nickel hollow tubes 10.

中心の中空光導波路9は、ゲルマニウム層12の厚さか
約0.5四で、波長10.6四の炭酸ガスレーダ光に対
して最も低損失となるよう作られている。
The central hollow optical waveguide 9 has a thickness of about 0.54 times the thickness of the germanium layer 12, and is made to have the lowest loss for carbon dioxide radar light having a wavelength of 10.6 times.

外周囲の中空管10は肉厚が約200口有り、中空管1
0の長さについては、レーザ光の出射端側では、光導波
路9の出射端13より610師1程度短く形成される。
The outer peripheral hollow tube 10 has a wall thickness of about 200 holes, and the hollow tube 1
Regarding the length of 0, the output end side of the laser beam is formed to be about 610 mm shorter than the output end 13 of the optical waveguide 9.

またレーザ光の入射端側では、6本の中空管10のうち
1つ置きの計3本10aが、中空光導波路9の入射端1
4よりも10關稈度短く形成され、他の3本10bは入
射端14よりも30mm程度短く形成されている。
In addition, on the incident end side of the laser beam, a total of three hollow tubes 10a, every other one of the six hollow tubes 10, are connected to the incident end 1 of the hollow optical waveguide 9.
4, and the other three 10b are formed approximately 30 mm shorter than the incident end 14.

第3図に、本中空光導波路体11の中空管10を水冷管
として使用して冷却水15を流し、中空光導波路9の内
部に冷却ガス16を流すときの、レーザビーム出射部の
構造を示す。
FIG. 3 shows the structure of the laser beam output section when the hollow tube 10 of the present hollow optical waveguide body 11 is used as a water-cooled tube to flow the cooling water 15 and the cooling gas 16 to flow inside the hollow optical waveguide 9. shows.

同図左側の出射端側は、3本の中空管10aを流れてき
た冷却水を折り返して残りの3本10bに流入させるた
めに、折り返し空間18aを有するキャップ18を被せ
、その中央孔18bを中空光導波#19の出射端13に
嵌装し、エポキシ系樹脂から成るシール材17でシール
キャップしである。
The exit end side on the left side of the figure is covered with a cap 18 having a folding space 18a, in order to fold back the cooling water flowing through the three hollow tubes 10a and flow into the remaining three tubes 10b, and the cap 18 has a center hole 18b. is fitted into the output end 13 of hollow optical waveguide #19, and sealed with a sealing material 17 made of epoxy resin.

また入射端側には、冷却水15の出入りを分離するなめ
に、給水、排水の3本の中空管ごとに、出射端側と同様
なシール材17を施して、ノズル27.28の付いた給
水キャップ19.排水キャップ20を、軸方向に相前後
して設けである。中空先導波路9の入射端14の部分は
、これら給水キャップ19、排水キャップ20を貫いて
いる。
In addition, on the input end side, in order to separate the inflow and outflow of the cooling water 15, sealing material 17 similar to that on the output end side is applied to each of the three hollow tubes for water supply and drainage, and the nozzles 27 and 28 are attached. water supply cap19. The drain caps 20 are provided one after the other in the axial direction. The entrance end 14 portion of the hollow waveguide 9 passes through the water supply cap 19 and the drain cap 20.

この給水キャップ19の外側には、中空先導波路9の内
側を空冷するための空冷ホールダ24に接続できるよう
にネジ溝22が形成されている。
A threaded groove 22 is formed on the outside of the water supply cap 19 so that it can be connected to an air cooling holder 24 for air cooling the inside of the hollow waveguide 9.

上記レーザビーム出射部をレーサ加工機の光エネルギー
伝送システムに適用した例を、第4図に示す。
FIG. 4 shows an example in which the above laser beam emitting section is applied to an optical energy transmission system of a laser processing machine.

第4図において、レーザ発振器23がら出射された炭酸
カスレーザ光は、結合レンスを備えた空冷ホールタ24
を通して、上記中空光導波路体11と同様に構成した中
空光導波路体25の中空光導波路9に結合している。空
冷ホールタ24の空冷用ノズル26から2(lj / 
minの窒素カスを中空光導波路9内に流して内部から
冷却し、同時に給水キャップ1つの水冷用ノズル27か
ら 1.Ill/mII+の冷却水15を中空管10に
流して、外部から中空光導波路9を冷却している。この
伝送システムでは500wのパワー伝送か容易にてきる
In FIG. 4, the carbon dioxide laser beam emitted from the laser oscillator 23 is transmitted to an air-cooled halter 24 equipped with a coupling lens.
Through this, it is coupled to the hollow optical waveguide 9 of a hollow optical waveguide body 25 configured similarly to the hollow optical waveguide body 11 described above. 2 (lj/
Nitrogen sludge of min. min is flowed into the hollow optical waveguide 9 to cool it from inside, and at the same time, from the water cooling nozzle 27 of one water supply cap 1. Cooling water 15 of Ill/mII+ is passed through the hollow tube 10 to cool the hollow optical waveguide 9 from the outside. This transmission system can easily transmit 500W of power.

実施例3 上記実施例2においては、内径1.5+nmの中空光導
波路9の外周囲に、内径1.5胴の中空管10を6本一
体止した構成としたが、本発明による中空光導波路体は
これに限定されるものではない。
Example 3 In Example 2, six hollow tubes 10 with an inner diameter of 1.5 mm were integrally fixed around the outer periphery of the hollow optical waveguide 9 with an inner diameter of 1.5+ nm. The wave body is not limited to this.

例えば、上記実施例2において、第5図に示すように、
一体止する中空管2つの内径を 1.0+nmと小さく
ずれは、十分な水冷効果を保ちながら、光導波路体の可
撓性を上げることがてきる。そこで、従来、空間伝搬で
複雑な光軸制御を行っていなし]2 一ザ切断の分野に、本光導波路体を利用すれば、水冷、
空冷の冷媒供給源がレーザ光との結合部のみに集中して
いるため、大パワーレービームの出射部をX−Yプロッ
タ等で駆動制御するたGフで、容易に任意の形状に切断
できる。
For example, in the second embodiment, as shown in FIG.
A small deviation of 1.0+nm in the inner diameters of the two hollow tubes that are fixed together can increase the flexibility of the optical waveguide body while maintaining a sufficient water cooling effect. Therefore, conventionally, complicated optical axis control using spatial propagation has not been performed.]2 If this optical waveguide body is used in the field of one-zero cutting, water cooling,
Since the air-cooled refrigerant supply source is concentrated only at the coupling part with the laser beam, it can be easily cut into any shape by controlling the output part of the high-power laser beam with an X-Y plotter, etc. .

実施例4 また、上記実施例2において、第6図に示すように、内
径を0.8mmと小さくしたゲルマニウム内装ニッケル
中空光導波路30の回りに、内径が3mmと大きい水冷
用中空管31を一体化して光導波路体を形成すれば、外
側の水冷用中空管30が冷却効果と共に、直線性も保持
しているため、パワー密度が高く、小さいビーム径のレ
ーザ光を、曲がりによる伝送損失の増加等なしに出射で
きる。
Embodiment 4 In addition, in the above-mentioned Embodiment 2, as shown in FIG. 6, a water cooling hollow tube 31 with a large inner diameter of 3 mm was placed around the germanium-incorporated nickel hollow optical waveguide 30 with an inner diameter of 0.8 mm. If they are integrated to form an optical waveguide body, the outer water-cooled hollow tube 30 not only has a cooling effect but also maintains linearity, allowing laser light with high power density and small beam diameter to be transmitted without transmission loss due to bending. It can be emitted without any increase in .

[発明の効果] 以上述べたように、本発明によれは、光エネルギーを伝
送する中空先導波路の外側からの水冷却か可能となり、
500w以上のパワーが伝送できる。しかも、給排水口
を光エネルギーの入射側のみに設けることかできるため
、出射端が全く自由つ軽量になり、容易に駆動制御でき
る。又、めっきによって一体止するため、機械強度、熱
伝導が共に優れ、更には、一体止する水冷管の径を任意
に設定できるため、製造する導波路全体の可撓性あるい
は直線性を制御できる。ス、異種材料を使用しないので
、熱膨張計数の差によって生ずる光導波路体の変形や、
応力によって生ずる損失増加も避けることかできる。即
ち、本発明により、大パワーのレーザ光を伝送する水冷
機構を備えた中空光導波路の製造か可能となった。
[Effects of the Invention] As described above, according to the present invention, water cooling from the outside of the hollow waveguide for transmitting optical energy becomes possible.
It can transmit power of 500W or more. Moreover, since the water supply and drainage ports can be provided only on the light energy incident side, the output end can be completely free and lightweight, and the drive can be easily controlled. In addition, since it is integrally fixed by plating, it has excellent mechanical strength and thermal conductivity, and furthermore, since the diameter of the integrally fixed water-cooled tube can be set arbitrarily, the flexibility or linearity of the entire waveguide to be manufactured can be controlled. . Since different materials are not used, deformation of the optical waveguide body caused by differences in thermal expansion coefficients can be avoided.
Increased losses caused by stress can also be avoided. That is, according to the present invention, it has become possible to manufacture a hollow optical waveguide equipped with a water cooling mechanism that transmits high-power laser light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による中空光導波路体の製造方法の説明
に供する図、第2図は本発明による中空光導波路体の構
造概略図、第3図は中空光導波路体に入出射ホールタを
収り付すな断面図、第4図は本発明による中空光導波路
体を適用したレーサ加工機の光エネルギー伝送システム
の概略図、第5図は本発明による可撓性を高めな中空光
導波路体の断面図、第6図は本発明による直線性を高め
た中空光導波路体の断面図である。 図中、1はゲルマニウム、2はゲルマニウム内層ニッケ
ル中空光導波路、3.4はアルミニウムパイプ、5はア
ルミボイル、6はシールテープ、7はワット浴、8はニ
ッケル電極、9はゲルマニウム内層ニッケル中空光導波
路、10はニラゲル中空管、11は中空光導波路体、1
5は冷却水、16は冷却ガス、18はキャップ、19は
給水キャップ、20は排水キャップ、24は空冷ホール
ダを示ず。
FIG. 1 is a diagram for explaining the method for manufacturing a hollow optical waveguide according to the present invention, FIG. 2 is a schematic structural diagram of the hollow optical waveguide according to the present invention, and FIG. 4 is a schematic diagram of an optical energy transmission system for a laser processing machine to which the hollow optical waveguide body according to the present invention is applied, and FIG. 5 is a cross-sectional view of the hollow optical waveguide body according to the present invention with increased flexibility. 6 is a cross-sectional view of a hollow optical waveguide body with improved linearity according to the present invention. In the figure, 1 is germanium, 2 is a germanium inner layer nickel hollow optical waveguide, 3.4 is an aluminum pipe, 5 is an aluminum boiler, 6 is a sealing tape, 7 is a Watt bath, 8 is a nickel electrode, 9 is a germanium inner layer nickel hollow optical waveguide. wave path, 10 is a Nila gel hollow tube, 11 is a hollow optical waveguide body, 1
5 is cooling water, 16 is cooling gas, 18 is a cap, 19 is a water supply cap, 20 is a drain cap, and 24 is an air cooling holder.

Claims (1)

【特許請求の範囲】 1、光エネルギーを伝送する中空光導波路の外周に、少
なくとも2本以上の中空管を軸方向に中空光導波路と一
体化したことを特徴とする中空光導波路体。 2、前記中空光導波路の外周上に一体化した中空管内に
冷却用媒体を流すため、中空光導波路の光エネルギー出
射端側における中空管の開口部を相互に連結し、該冷却
媒体の出入り口を該中空光導波路の光エネルギー入射端
側に形成したことを特徴とする請求項1記載の中空光導
波路体。 3、光エネルギーを伝送する中空光導波路を形成した後
に、該中空光導波路の外周上に、導電性の中空管を少な
くとも1本以上軸方向に亘って密着させ、電気メッキに
よって、機械的強度を得るに十分な厚さの金属膜を形成
し、しかる後に選択性のあるエッチング液で、前記導電
性中空管のみ除去し、該中空光導波路の外周上に一体化
された中空管を持った中空光導波路体を形成することを
特徴とする中空光導波路体の製造方法。 4、前記中空光導波路に誘電体内装金属中空光導波路を
用い、前記導電性中空管にアルミニウムパイプ、前記エ
ッチング液に苛性ソーダを用いたことを特徴とする請求
項3記載の中空光導波路体の製造方法。 5、前記誘電体内装金属中空光導波路の内装誘電体にゲ
ルマニウム、金属にニッケル又は銀を用いたことを特徴
とする請求項4記載の中空光導波路体の製造方法。
[Scope of Claims] 1. A hollow optical waveguide body characterized in that at least two or more hollow tubes are integrated with the hollow optical waveguide in the axial direction around the outer periphery of the hollow optical waveguide for transmitting optical energy. 2. In order to flow a cooling medium into the hollow tube integrated on the outer periphery of the hollow optical waveguide, the openings of the hollow tubes on the optical energy output end side of the hollow optical waveguide are interconnected, and the openings of the hollow tube are connected to each other to form an inlet/outlet for the cooling medium. 2. The hollow optical waveguide body according to claim 1, wherein: is formed on the optical energy incident end side of the hollow optical waveguide. 3. After forming a hollow optical waveguide for transmitting optical energy, at least one conductive hollow tube is closely attached in the axial direction on the outer circumference of the hollow optical waveguide, and the mechanical strength is increased by electroplating. A metal film is formed with a thickness sufficient to obtain the conductive hollow tube, and then only the conductive hollow tube is removed using a selective etching solution, and the hollow tube integrated on the outer periphery of the hollow optical waveguide is removed. 1. A method for manufacturing a hollow optical waveguide body, the method comprising forming a hollow optical waveguide body having the following properties. 4. The hollow optical waveguide body according to claim 3, wherein a dielectric-incorporated metal hollow optical waveguide is used as the hollow optical waveguide, an aluminum pipe is used as the conductive hollow tube, and caustic soda is used as the etching solution. Production method. 5. The method of manufacturing a hollow optical waveguide body according to claim 4, wherein germanium is used for the interior dielectric of the dielectric interior metal hollow optical waveguide, and nickel or silver is used for the metal.
JP63316476A 1988-12-16 1988-12-16 Hollow light guide body and production thereof Pending JPH02162302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316476A JPH02162302A (en) 1988-12-16 1988-12-16 Hollow light guide body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316476A JPH02162302A (en) 1988-12-16 1988-12-16 Hollow light guide body and production thereof

Publications (1)

Publication Number Publication Date
JPH02162302A true JPH02162302A (en) 1990-06-21

Family

ID=18077522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316476A Pending JPH02162302A (en) 1988-12-16 1988-12-16 Hollow light guide body and production thereof

Country Status (1)

Country Link
JP (1) JPH02162302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450516A (en) * 1992-03-27 1995-09-12 Akzo Nobel N.V. Hollow fiber bundle and a method and device for its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450516A (en) * 1992-03-27 1995-09-12 Akzo Nobel N.V. Hollow fiber bundle and a method and device for its manufacture

Similar Documents

Publication Publication Date Title
US5729646A (en) Optical hollow waveguide, method for fabricating the same, and laser transmission apparatus using the same
WO2014002715A1 (en) Optical fiber and optical cable
US5276761A (en) Hollow waveguide for ultraviolet wavelength region laser beams
JPH02162302A (en) Hollow light guide body and production thereof
Hongo et al. Transmission of 1 kW‐class CO2 laser light through circular hollow waveguides for material processing
CN111226151B (en) Optoelectronic component
JP2020190689A (en) Transmission fiber, laser machining device and laser transmission method
JPH08234026A (en) Hollow waveguide and its production and laser transmission device
JP3718127B2 (en) Medical laser transmission equipment
CN220209607U (en) Laser fixing device and laser
JPH0511116A (en) Light energy transmitter
JPH01237093A (en) Apparatus for transferring co2 laser beam
JPH0466288A (en) Laser beam machine
JPH01309007A (en) Large-power carbon dioxide laser beam optical transmitter
JPH05188225A (en) Hollow waveguide for uv laser beam
JPH052113A (en) Transmission line for laser work
JPH04367802A (en) Structure of hollow waveguide
JPH01292303A (en) Hollow waveguide
JPS62299908A (en) Optical fiber cable
CN116544755A (en) Laser fixing device and laser
JPH10260327A (en) Laser beam generating device
JPH032804A (en) Structure of dielectric incorporated metallic hollow waveguide
JP2001056421A (en) Laser beam transmission method
Wang et al. Characterization of copper waveguides for mid-IR radiation with applications in medicine
JPH06148440A (en) Hollow waveguide and its production